• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
CAO L, LI Y W, LING K J, et al. Effects of Arbuscular Mycorrhizal Fungi Inoculation on Salt-tolerance of Tomato Plants [J]. Fujian Journal of Agricultural Sciences,2022,37(2):188−196 doi: 10.19303/j.issn.1008-0384.2022.002.008
Citation: CAO L, LI Y W, LING K J, et al. Effects of Arbuscular Mycorrhizal Fungi Inoculation on Salt-tolerance of Tomato Plants [J]. Fujian Journal of Agricultural Sciences,2022,37(2):188−196 doi: 10.19303/j.issn.1008-0384.2022.002.008

Effects of Arbuscular Mycorrhizal Fungi Inoculation on Salt-tolerance of Tomato Plants

doi: 10.19303/j.issn.1008-0384.2022.002.008
  • Received Date: 2021-12-10
  • Rev Recd Date: 2022-02-10
  • Publish Date: 2022-02-25
  •   Objective  Effect of introducing various arbuscular mycorrhizal fungi (AMF) in soil on the growth and salt-tolerance of tomato plants was studied.  Method  After a preliminary screening, two potentially applicable AMF, Moses (F.m) and rhizosphere (R.i), were added to potting soils with salt concentrations of 0 (CK) and 100 mmol·L−1 for a tomato plant cultivation experimentation. Physiological and photosynthetic properties of the plants were monitored.  Result  The AMF-treatments increased superoxide dismutase (SOD) activity by 47.4%, peroxidase (POD) activity by 32.9%, catalase (CAT) activity by 35.7%, malondialdehyde (MDA) content by 61.8%, and proline (PRO) content by 6% of the tomato plants under the imposed salt stress. Meanwhile, the mycorrhizal infection rate and photosynthetic intensity decreased by 27.8% and 54.6%, respectively. The inoculation effectively enhanced the resistance of the host plants to high salinity. The proline content of the tomato plants grown on the F.m-inoculated soil declined 60.7%, which was 2.2 times of that on R.i-inoculated counterpart. The net photosynthetic rate (Pn) and stomatal conductance (Gs) of the tomato plants on the F.m-inoculated soil increased by 49.1% and 35.4%, respectively, which were 1.4 times of R.i-inoculation. In addition, the damage to the key photosynthesis enzymes was reduced, as the maximum increase rate of RuBP carboxylase in the tomato plants rose to 31.2% under the F.m-treatment and 1.1 times of which under R.i.   Conclusion  The introduction of AMF in soil could delay the adverse effect of high salinity on the physiological activities, improve the photosynthetic carbon assimilation and salt tolerance, and promote the growth of tomato plants. Of the two candidates, F.m was shown to significantly superior to R.i for the application.
  • loading
  • [1]
    解雪峰, 濮励杰, 沈洪运,等 滨海重度盐碱地改良土壤盐渍化动态特征及预测[J/OL]. 土壤学报: 1-13[2022-02-22]. http://kns.cnki.net/kcms/detail/32.1119.P.20210928.0907.004.html.

    XIE X F, PU L J, SHEN H Y, et al. Dynamic characteristics and prediction of soil salinization in coastal severely saline-alkali land[J/OL]. Acta Pedologica Sinica: 1-13[2022-02-22]. http://kns.cnki.net/kcms/detail/32.1119.P.20210928.0907.004.html.
    [2]
    ABDEL LATEF A A H, HE C X. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress [J]. Scientia Horticulturae, 2011, 127(3): 228−233. doi: 10.1016/j.scienta.2010.09.020
    [3]
    KITAMURA Y, YANO T, HONNA T, et al. Causes of farmland salinization and remedial measures in the Aral Sea Basin—Research on water management to prevent secondary salinization in rice-based cropping system in arid land [J]. Agricultural Water Management, 2006, 85(1/2): 1−14.
    [4]
    ATTIA H, KARRAY N, RABHI M, et al. Salt-imposed restrictions on the uptake of macroelements by roots of Arabidopsis thaliana [J]. Acta Physiologiae Plantarum, 2008, 30(5): 723−727. doi: 10.1007/s11738-008-0172-4
    [5]
    郭兆晖. 生态文明建设“十四五”规划与二〇三五远景目标 [J]. 领导科学论坛, 2020(20):3−32.

    GUO Z H. The 14th five-year plan of ecological civilization construction and the long-term goal of 2035 [J]. The Forum of Leadership Science, 2020(20): 3−32.(in Chinese)
    [6]
    徐钰德, 刘子金, 程慧, 等. 基于HYDRUS-3D的畦灌模式下田间水盐运移模拟 [J]. 水利水电技术(中英文), 2021(7):14−22.

    XU Y D, LIU Z J, CHENG H, et al. Simulation of water and salt transportation under border irrigation in field scale based on HYDRUS-3D [J]. Water Resources and Hydropower Engineering, 2021(7): 14−22.(in Chinese)
    [7]
    潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制 [J]. 地球科学进展, 2018, 33(4):361−372. doi: 10.11867/j.issn.1001-8166.2018.04.0361

    PAN J, HUANG C H, LUO J, et al. Effects of salt stress on plant and the mechanism of arbuscular mycorrhizal fungi enhancing salt tolerance of plants [J]. Advances in Earth Science, 2018, 33(4): 361−372.(in Chinese) doi: 10.11867/j.issn.1001-8166.2018.04.0361
    [8]
    ZHANG X H, HAN C Z, GAO H M, et al. Comparative transcriptome analysis of the garden Asparagus (Asparagus officinalis L. ) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress [J]. Plant Physiology and Biochemistry, 2019, 141: 20−29. doi: 10.1016/j.plaphy.2019.05.013
    [9]
    李胜, 姜丽娜, 宋洁蕾, 等. 幼套球囊霉接种量对紫茎泽兰生长的影响 [J]. 云南农业大学学报(自然科学), 2019, 34(2):193−199.

    LI S, JIANG L N, SONG J L, et al. Effects of arbuscular mycorrhizal fungi, Glomus etunicatum inoculation and different inoculum concentrations on the growth of Ageratina adenophora sprengel [J]. Journal of Yunnan Agricultural University, 2019, 34(2): 193−199.(in Chinese)
    [10]
    周霞, 崔明, 秦永胜, 等. 扩繁条件对3种丛枝菌根真菌(AMF)的影响 [J]. 中国农学通报, 2012, 28(12):83−87. doi: 10.11924/j.issn.1000-6850.2011-3888

    ZHOU X, CUI M, QIN Y S, et al. The effects of the propagation condition on the three kinds of arbuscular mycorrhizal fungi [J]. Chinese Agricultural Science Bulletin, 2012, 28(12): 83−87.(in Chinese) doi: 10.11924/j.issn.1000-6850.2011-3888
    [11]
    SMITH S E, JAKOBSEN I, GRØNLUND M, et al. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition [J]. Plant Physiology, 2011, 156(3): 1050−1057. doi: 10.1104/pp.111.174581
    [12]
    曹荷莉, 丁日升, 薛富岚. 不同水盐胁迫对番茄生长发育和产量的影响研究 [J]. 灌溉排水学报, 2019(2):29−35.

    CAO H L, DING R S, XUE F L. Growth and yield of tomato as impacted by salinity stress [J]. Journal of Irrigation and Drainage, 2019(2): 29−35.(in Chinese)
    [13]
    雷垚, 伍松林, 郝志鹏, 等. 丛枝菌根根外菌丝网络形成过程中的时间效应及植物介导作用 [J]. 西北植物学报, 2013, 33(1):154−161. doi: 10.3969/j.issn.1000-4025.2013.01.024

    LEI Y, WU S L, HAO Z P, et al. Development of arbuscular mycorrhizal hyphal networks mediated by different plants and the time effects [J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(1): 154−161.(in Chinese) doi: 10.3969/j.issn.1000-4025.2013.01.024
    [14]
    李小方, 张志良. 植物生理学实验指导[M]. 5版. 北京: 高等教育出版社, 2016.
    [15]
    SHABNAM N, TRIPATHI I, SHARMILA P, et al. A rapid, ideal, and eco-friendlier protocol for quantifying proline [J]. Protoplasma, 2016, 253(6): 1577−1582. doi: 10.1007/s00709-015-0910-6
    [16]
    王仁杰, 朱凡, 梁惠子, 等. 重金属Mn对苦楝叶片光系统性能的影响 [J]. 生态学报, 2020, 40(6):2019−2027.

    WANG R J, ZHU F, LIANG H Z, et al. Effects of Manganese (Mn) on the performances of photosystems Ⅰ and Ⅱ in Melia azedarach young plant [J]. Acta Ecologica Sinica, 2020, 40(6): 2019−2027.(in Chinese)
    [17]
    TORRES R, DIZ V E, LAGORIO M G. Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts [J]. Photochemical & Photobiological Sciences, 2018, 17(4): 505−516.
    [18]
    李翔, 桑勤勤, 束胜, 等. 外源油菜素内酯对弱光下番茄幼苗光合碳同化关键酶及其基因的影响 [J]. 园艺学报, 2016, 43(10):2012−2020.

    LI X, SANG Q Q, SHU S, et al. Effects of epibrassinolide on the activities and gene expression of photosynthetic enzymes in tomato seedlings under low light [J]. Acta Horticulturae Sinica, 2016, 43(10): 2012−2020.(in Chinese)
    [19]
    杨凤军, 高凤, 韩昱, 等. 不同基因型番茄幼苗期耐盐性分析 [J]. 黑龙江八一农垦大学学报, 2018, 30(4):12−17. doi: 10.3969/j.issn.1002-2090.2018.04.003

    YANG F J, GAO F, HAN Y, et al. Analysis of salt tolerance of different genotypic tomato seedlings [J]. Journal of Heilongjiang August First Land Reclamation University, 2018, 30(4): 12−17.(in Chinese) doi: 10.3969/j.issn.1002-2090.2018.04.003
    [20]
    NEMEC S. Response of six citrus root-stocks to three species of Glomus, a mycorrhizalfungus [J]. Proc Fla State Hort Sci, 1978, 9(1): 10−14.
    [21]
    罗巧玉, 王晓娟, 林双双, 等. AM真菌对重金属污染土壤生物修复的应用与机理 [J]. 生态学报, 2013, 33(13):3898−3906.

    LUO Q Y, WANG X J, LIN S S, et al. Mechanism and application of bioremediation to heavy metal polluted soil using arbuscular mycorrhizal fungi [J]. Chinese Journal of Plant Ecology, 2013, 33(13): 3898−3906.(in Chinese)
    [22]
    何新华, 段英华, 陈应龙, 等. 中国菌根研究60年: 过去、现在和将来 [J]. 中国科学(生命科学), 2012, 42(6):431−454.

    HE X H, DUAN Y H, CHEN Y L, et al. A 60-year journey of mycorrhizal research in China: Past, present and future directions [J]. Science in China (Series C), 2012, 42(6): 431−454.(in Chinese)
    [23]
    WU Q S, ZOU Y N, HE X H. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of Citrus seedlings under salt stress [J]. Acta Physiologiae Plantarum, 2010, 32(2): 297−304. doi: 10.1007/s11738-009-0407-z
    [24]
    曹翠玲, 张玖玲, 杨向娜, 等. 金银花根系VAM真菌侵染过程观察 [J]. 西北植物学报, 2016, 36(3):479−485. doi: 10.7606/j.issn.1000-4025.2016.03.0479

    CAO C L, ZHANG J L, YANG X N, et al. Investigation of the mycorrhiza forming in honeysuckle infected by vesicular arbuscular mycorrhizal(VAM) [J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(3): 479−485.(in Chinese) doi: 10.7606/j.issn.1000-4025.2016.03.0479
    [25]
    LOTFI R, PESSARAKLI M, GHARAVI-KOUCHEBAGH P, et al. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity [J]. The Crop Journal, 2015, 3(5): 434−439. doi: 10.1016/j.cj.2015.05.006
    [26]
    HE Z Q, HE C X, ZHANG Z B, et al. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress [J]. Colloids and Surfaces B:Biointerfaces, 2007, 59(2): 128−133. doi: 10.1016/j.colsurfb.2007.04.023
    [27]
    GUO S X, CHEN D M, RUNJIN L. Effects of arbuscular mycorrhizal fungi on antioxidant enzyme activity in peony seedlings under salt stress [J]. Acta Horticulturae Sinica, 2010, 37(11): 1796−1802.
    [28]
    KAUR G, ASTHIR B. Proline: a key player in plant abiotic stress tolerance [J]. Biologia Plantarum, 2015, 59(4): 609−619. doi: 10.1007/s10535-015-0549-3
    [29]
    CAO D, CHEN S, HUANG Y, et al. Effects of artificial aging on physiological characteristics of rice seeds with different dormancy characteristics [J]. Agricultural Biotechnology, 2019, 8(1): 56−60.
    [30]
    CHANDRASEKARAN M, BOUGHATTAS S, HU S J, et al. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress [J]. Mycorrhiza, 2014, 24(8): 611−625. doi: 10.1007/s00572-014-0582-7
    [31]
    冯固, 白灯莎, 杨茂秋, 等. 盐胁迫对VA菌根形成及接种VAM真菌对植物耐盐性的效应 [J]. 应用生态学报, 1999, 10(1):79−82. doi: 10.3321/j.issn:1001-9332.1999.01.021

    FENG G, BAI D S, YANG M Q, et al. Effects of salt stress on VA mycorrhizal formation and inoculation of VAM fungi on plant salt tolerance [J]. Chinese Journal of Applied Ecology, 1999, 10(1): 79−82.(in Chinese) doi: 10.3321/j.issn:1001-9332.1999.01.021
    [32]
    邹晖, 林江波, 戴艺民, 等. 干旱胁迫下内生真菌对铁皮石斛抗旱性的影响 [J]. 北方园艺, 2020(6):119−125.

    ZOU H, LIN J B, DAI Y M, et al. Effects of endophyte on the drought resistance of Dendrobium officinale under drought stress [J]. Northern Horticulture, 2020(6): 119−125.(in Chinese)
    [33]
    吴秀红, 戚厚芸, 孙婷, 等. 内生菌根菌剂对水稻秧苗生长及生理特性的影响 [J]. 江苏农业科学, 2018, 46(21):65−68.

    WU X H, QI H Y, SUN T, et al. Effects of endogenous mycorrhizal fungi inoculant on growth and physiological characteristics of rice seedlings [J]. Jiangsu Agricultural Sciences, 2018, 46(21): 65−68.(in Chinese)
    [34]
    MA H, WANG A, ZHANG M H, et al. Compared the physiological response of two petroleum-tolerant contrasting plants to petroleum stress [J]. International Journal of Phytoremediation, 2018, 20(10): 1043−1048. doi: 10.1080/15226514.2018.1460303
    [35]
    TEH C Y, SHAHARUDDIN N A, HO C L, et al. Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress [J]. Acta Physiologiae Plantarum, 2016, 38(6): 1−10.
    [36]
    ELHINDI K M, EL-DIN A S, ELGORBAN A M. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L. ) [J]. Saudi Journal of Biological Sciences, 2017, 24(1): 170−179. doi: 10.1016/j.sjbs.2016.02.010
    [37]
    张斌斌, 许建兰, 蔡志翔, 等. 淹水胁迫下2个李砧木品种光合特性变化及其与环境因子的关系 [J]. 南京农业大学学报, 2013(5):39−44.

    ZHANG B B, XU J L, CAI Z X, et al. Relationship between photosynthetic characteristics and environmental factors in leaves of two plum rootstock varieties under waterlogging stress [J]. Journal of Nanjing Agricultural University, 2013(5): 39−44.(in Chinese)
    [38]
    LYSENKO V S, VARDUNY T V, KOSENKO P O, et al. Video registration as a method for studying kinetic parameters of chlorophyll fluorescence in Ficus benjamina leaves [J]. Russian Journal of Plant Physiology, 2014, 61(3): 419−425. doi: 10.1134/S102144371403008X
    [39]
    MAURO R P, OCCHIPINTI A, LONGO A M G, et al. Effects of shading on chlorophyll content, chlorophyll fluorescence and photosynthesis of subterranean clover [J]. Journal of Agronomy and Crop Science, 2011, 197(1): 57−66. doi: 10.1111/j.1439-037X.2010.00436.x
    [40]
    朱先灿, 宋凤斌, 徐洪文. 低温胁迫下丛枝菌根真菌对玉米光合特性的影响 [J]. 应用生态学报, 2010, 21(2):470−475.

    ZHU X C, SONG F B, XU H W. Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress [J]. Chinese Journal of Applied Ecology, 2010, 21(2): 470−475.(in Chinese)
    [41]
    刘建新, 欧晓彬, 王金成. 镧胁迫下外源H2O2对裸燕麦幼苗叶绿素荧光参数和光合碳同化酶活性的影响 [J]. 生态学报, 2019, 39(8):2833−2841.

    LIU J X, OU X B, WANG J C. Effects of exogenous hydrogen peroxide on chlorophyll fluorescence parameters and photosynthetic carbon assimilation enzymes activities in naked oat seedlings under lanthanum stress [J]. Acta Ecologica Sinica, 2019, 39(8): 2833−2841.(in Chinese)
    [42]
    刘领, 李冬, 马宜林, 等. 外源褪黑素对干旱胁迫下烤烟幼苗生长的缓解效应与生理机制研究 [J]. 草业学报, 2019, 28(8):95−105. doi: 10.11686/cyxb2019098

    LIU L, LI D, MA Y L, et al. Alleviation of drought stress and the physiological mechanisms in tobacco seedlings treated with exogenous melatonin [J]. Acta Prataculturae Sinica, 2019, 28(8): 95−105.(in Chinese) doi: 10.11686/cyxb2019098
    [43]
    张淑彬, 纪晶晶, 王幼珊, 等. 内蒙古露天煤矿区回填土壤具生态适应能力丛枝菌根真菌的筛选 [J]. 生态学报, 2009, 29(7):3729−3736. doi: 10.3321/j.issn:1000-0933.2009.07.034

    ZHANG S B, JI J J, WANG Y S, et al. The screening of arbuscular mycorrhizal fungi with high ecological adaptations in backfill soil of open pit mining area in Inner Mongolia [J]. Acta Ecologica Sinica, 2009, 29(7): 3729−3736.(in Chinese) doi: 10.3321/j.issn:1000-0933.2009.07.034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (879) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return