• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
LIU C, LI M, REN Y Y, et al. Characteristics and Evolution of Panax Chloroplast Genomes [J]. Fujian Journal of Agricultural Sciences,2022,37(7):886−896 doi: 10.19303/j.issn.1008-0384.2022.007.009
Citation: LIU C, LI M, REN Y Y, et al. Characteristics and Evolution of Panax Chloroplast Genomes [J]. Fujian Journal of Agricultural Sciences,2022,37(7):886−896 doi: 10.19303/j.issn.1008-0384.2022.007.009

Characteristics and Evolution of Panax Chloroplast Genomes

doi: 10.19303/j.issn.1008-0384.2022.007.009
  • Received Date: 2022-03-31
  • Accepted Date: 2022-03-31
  • Rev Recd Date: 2022-05-30
  • Available Online: 2022-08-29
  • Publish Date: 2022-07-28
  •   Objective  Characteristics and phylogeny of chloroplast genomes of the medicinally and economically valuable species in Panax genus were studied.   Methods  Using bioinformatics software, the properties, repeats, structural variation, evolution, and phylogeny of the genomes of chloroplasts from 14 ginseng species were analyzed.   Results   The genomes consisted of typical quadripartite structure with 114 unique genes. The long repeats in them were mainly of palindromic and forward types with a length between 30 bp and 39 bp. The simple sequence repeats were largely A/T type and most abundantly mononucleotides. No gene rearrangement occurred in the genomes was observed. The boundary between the inverted repeat region and the single copy region was highly conserved. Of the 12 regions with highly variable nucleotides, 7 were in the large and 5 in the small single copy region. Indicated by the dN/dS ratios, the positive selection could occur on clpP, ycf1, and ycf2 with unknown functions. The phylogenetic analysis showed that P. stipulenatus and P. trifolius were in the basal lineage, the tetraploid P. ginseng and P. quinquefolius separated from other diploid species, while P. notoginseng, P. japonicus, and P. vietnamensis closely related.   Conclusion  The chloroplasts of the ginseng species examined were basically same in number and order of genomes, conservative in structure, but divert in number and type of repeats. The nucleotide polymorphism of the chloroplasts was higher in single copy region than inverted repeat regions. The positive selection genes identified in the study might result from the ecological adaptation of these Panax species.
  • loading
  • [1]
    WEN J, ZIMMER E A. Phylogeny and biogeography of Panax L. (The Ginseng Genus, Araliaceae): Inferences from ITS sequences of nuclear ribosomal DNA [J]. Molecular Phylogenetics and Evolution, 1996, 6(2): 167−177. doi: 10.1006/mpev.1996.0069
    [2]
    NGUYEN V B, LINH GIANG V N, WAMINAL N E, et al. Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers [J]. Journal of Ginseng Research, 2020, 41(1): 135−144. doi: 10.1016/j.jgr.2018.06.003
    [3]
    NGUYEN V B, PARK H S, LEE S C, et al. Authentication markers for five major Panax species developed via comparative analysis of complete chloroplast genome sequences [J]. Journal of Agricultural and Food Chemistry, 2017, 65(30): 6298−6306. doi: 10.1021/acs.jafc.7b00925
    [4]
    LI S, WANG P, YANG W Z, et al. Characterization of the components and pharmacological effects of mountain-cultivated ginseng and garden ginseng based on the integrative pharmacology strategy [J]. Frontiers in Pharmacology, 2021, 12: 659954. doi: 10.3389/fphar.2021.659954
    [5]
    SHIN B K, KWON S W, PARK J H. Chemical diversity of ginseng saponins from Panax ginseng [J]. Journal of Ginseng Research, 2015, 39(4): 287−298. doi: 10.1016/j.jgr.2014.12.005
    [6]
    CHOI H I, KIM N H, LEE J, et al. Evolutionary relationship of Panax ginseng and P. quinquefolius inferred from sequencing and comparative analysis of expressed sequence tags [J]. Genetic Resources and Crop Evolution, 2013, 60(4): 1377−1387. doi: 10.1007/s10722-012-9926-3
    [7]
    YANG Z J, LIU G Z, ZHANG G H, et al. The chromosome-scale high-quality genome assembly of Panax notoginseng provides insight into dencichine biosynthesis [J]. Plant Biotechnology Journal, 2021, 19(5): 869−871. doi: 10.1111/pbi.13558
    [8]
    LIU C, CHEN H H, TANG L Z, et al. Plastid genome evolution of a monophyletic group in the subtribe Lauriineae (Laureae, Lauraceae)[J]. Plant Diversity, 2022 , 44 (4): 377 − 388. DOI: 10.1016/j.pld.2021.11.009
    [9]
    刘潮, 韩利红, 彭悦, 等. 黄丹木姜子叶绿体基因组特征分析 [J]. 南方农业学报, 2022, 53(1):12−20. doi: 10.3969/j.issn.2095-1191.2022.01.002

    LIU C, HAN L H, PENG Y, et al. Characteristics of chloroplast genome of Litsea elongata(wall. ex nees)Benth. et hook. F [J]. Journal of Southern Agriculture, 2022, 53(1): 12−20.(in Chinese) doi: 10.3969/j.issn.2095-1191.2022.01.002
    [10]
    刘潮, 韩利红, 代小波, 等. 辣椒属叶绿体基因组特征及进化 [J]. 热带作物学报, 2022, 43(3):447−454. doi: 10.3969/j.issn.1000-2561.2022.03.002

    LIU C, HAN L H, DAI X B, et al. Characteristics and phylogenetics of the complete chloroplast genomes of Capsicum species [J]. Chinese Journal of Tropical Crops, 2022, 43(3): 447−454.(in Chinese) doi: 10.3969/j.issn.1000-2561.2022.03.002
    [11]
    YU J J, FU J, FANG Y P, et al. Complete chloroplast genomes of Rubus species (Rosaceae) and comparative analysis within the genus [J]. BMC Genomics, 2022, 23(1): 32. doi: 10.1186/s12864-021-08225-6
    [12]
    刘潮, 唐利洲, 韩利红. 四川山胡椒叶绿体基因组特征及山胡椒属系统发育 [J]. 林业科学, 2021, 57(12):167−174.

    LIU C, TANG L Z, HAN L H. Characterization of the chloroplast genome of Lindera setchuenensis and phylogenetics of the genus Lindera [J]. Scientia Silvae Sinicae, 2021, 57(12): 167−174.(in Chinese)
    [13]
    LIU C K, YANG Z Y, YANG L F, et al. The complete plastome of Panax stipuleanatus: Comparative and phylogenetic analyses of the genus Panax (Araliaceae) [J]. Plant Diversity, 2018, 40(6): 265−276. doi: 10.1016/j.pld.2018.11.001
    [14]
    岳杰. 四种人参属植物叶绿体全基因组结构及其系统发育分析[D]. 汉中: 陕西理工大学, 2021

    YUE J. Structural and phylogenetic analyses of the complete chloroplast genomes of four species within the genus Panax linn. [D]. Hanzhong: Shaanxi University of Technology, 2021. (in Chinese)
    [15]
    KURTZ S, CHOUDHURI J V, OHLEBUSCH E, et al. REPuter: The manifold applications of repeat analysis on a genomic scale [J]. Nucleic Acids Research, 2001, 29(22): 4633−4642. doi: 10.1093/nar/29.22.4633
    [16]
    BEIER S, THIEL T, MÜNCH T, et al. MISA-web: A web server for microsatellite prediction [J]. Bioinformatics, 2017, 33(16): 2583−2585. doi: 10.1093/bioinformatics/btx198
    [17]
    AMIRYOUSEFI A, HYVÖNEN J, POCZAI P. IRscope: An online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics (Oxford, England), 2018, 34(17): 3030−3031. doi: 10.1093/bioinformatics/bty220
    [18]
    FRAZER K A, PACHTER L, POLIAKOV A, et al. VISTA: Computational tools for comparative genomics[J]. Nucleic Acids Research, 2004, 32(Web Server issue): W273-W279.
    [19]
    KATOH K, ROZEWICKI J, YAMADA K D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization [J]. Briefings in Bioinformatics, 2019, 20(4): 1160−1166. doi: 10.1093/bib/bbx108
    [20]
    ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets [J]. Molecular Biology and Evolution, 2017, 34(12): 3299−3302. doi: 10.1093/molbev/msx248
    [21]
    XU B, YANG Z H. PAMLX: A graphical user interface for PAML [J]. Molecular Biology and Evolution, 2013, 30(12): 2723−2724. doi: 10.1093/molbev/mst179
    [22]
    MINH B Q, SCHMIDT H A, CHERNOMOR O, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era [J]. Molecular Biology and Evolution, 2020, 37(5): 1530−1534. doi: 10.1093/molbev/msaa015
    [23]
    GANLEY A R D, KOBAYASHI T. Monitoring the rate and dynamics of concerted evolution in the ribosomal DNA repeats of Saccharomyces cerevisiae using experimental evolution [J]. Molecular Biology and Evolution, 2011, 28(10): 2883−2891. doi: 10.1093/molbev/msr117
    [24]
    ZEB U, DONG W L, ZHANG T T, et al. Comparative plastid genomics of Pinus species: Insights into sequence variations and phylogenetic relationships [J]. Journal of Systematics and Evolution, 2020, 58(2): 118−132. doi: 10.1111/jse.12492
    [25]
    ZHU B, QIAN F, HOU Y F, et al. Complete chloroplast genome features and phylogenetic analysis of Eruca sativa (Brassicaceae) [J]. PLoS One, 2021, 16(3): e0248556. doi: 10.1371/journal.pone.0248556
    [26]
    LI D M, YE Y J, XU Y C, et al. Complete chloroplast genomes of Zingiber montanum and Zingiber zerumbet: Genome structure, comparative and phylogenetic analyses [J]. PLoS One, 2020, 15(7): e0236590. doi: 10.1371/journal.pone.0236590
    [27]
    XU K W, LIN C X, LEE S Y, et al. Comparative analysis of complete Ilex (Aquifoliaceae) chloroplast genomes: Insights into evolutionary dynamics and phylogenetic relationships [J]. BMC Genomics, 2022, 23(1): 203. doi: 10.1186/s12864-022-08397-9
    [28]
    KASHI Y, KING D G. Simple sequence repeats as advantageous mutators in evolution [J]. Trends in Genetics, 2006, 22(5): 253−259. doi: 10.1016/j.tig.2006.03.005
    [29]
    HAN C Y, DING R, ZONG X Y, et al. Structural characterization of Platanthera ussuriensis chloroplast genome and comparative analyses with other species of Orchidaceae [J]. BMC Genomics, 2022, 23(1): 84. doi: 10.1186/s12864-022-08319-9
    [30]
    YAN J W, LI J H, YU L, et al. Comparative chloroplast genomes of Prunus subgenus Cerasus (Rosaceae): Insights into sequence variations and phylogenetic relationships [J]. Tree Genetics & Genomes, 2021, 17(6): 50.
    [31]
    马孟莉, 张薇, 孟衡玲, 等. 草果叶绿体基因组特征及系统发育分析 [J]. 中草药, 2021, 52(19):6023−6031. doi: 10.7501/j.issn.0253-2670.2021.19.025

    MA M L, ZHANG W, MENG H L, et al. Characterization and phylogenetic analysis of the complete chloroplast genome of Amomum tsao-ko [J]. Chinese Traditional and Herbal Drugs, 2021, 52(19): 6023−6031.(in Chinese) doi: 10.7501/j.issn.0253-2670.2021.19.025
    [32]
    KIM K J. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng nees) and comparative analysis of sequence evolution among 17 vascular plants [J]. DNA Research, 2004, 11(4): 247−261. doi: 10.1093/dnares/11.4.247
    [33]
    LI R, MA P F, WEN J, et al. Complete sequencing of five Araliaceae chloroplast genomes and the phylogenetic implications [J]. PLoS One, 2013, 8(10): e78568. doi: 10.1371/journal.pone.0078568
    [34]
    TROFIMOV D, CADAR D, SCHMIDT-CHANASIT J, et al. A comparative analysis of complete chloroplast genomes of seven Ocotea species (Lauraceae) confirms low sequence divergence within the Ocotea complex [J]. Scientific Reports, 2022, 12: 1120. doi: 10.1038/s41598-021-04635-4
    [35]
    YANG J, CHIANG Y C, HSU T W, et al. Characterization and comparative analysis among plastome sequences of eight endemic Rubus (Rosaceae) species in Taiwan [J]. Scientific Reports, 2021, 11: 1152. doi: 10.1038/s41598-020-80143-1
    [36]
    NIU Y F, GAO C W, LIU J. Comparative analysis of the complete plastid genomes of Mangifera species and gene transfer between plastid and mitochondrial genomes [J]. PeerJ, 2021, 9: e10774. doi: 10.7717/peerj.10774
    [37]
    GARUD N R, POLLARD K S. Population genetics in the human microbiome [J]. Trends in Genetics:TIG, 2020, 36(1): 53−67. doi: 10.1016/j.tig.2019.10.010
    [38]
    JI Y H, LIU C K, YANG Z Y, et al. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae) [J]. Molecular Ecology Resources, 2019, 19(5): 1333−1345. doi: 10.1111/1755-0998.13050
    [39]
    KIM N H, CHOI H I, KIM K H, et al. Evidence of genome duplication revealed by sequence analysis of multi-loci expressed sequence tag-simple sequence repeat bands in Panax ginseng Meyer [J]. Journal of Ginseng Research, 2014, 38(2): 130−135. doi: 10.1016/j.jgr.2013.12.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (563) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return