• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
LIN F M, SUN W J. Effect of Rocking-withering on Metabolites in Wuyi Rougui Tea Leaf [J]. Fujian Journal of Agricultural Sciences,2022,37(7):921−928 doi: 10.19303/j.issn.1008-0384.2022.007.013
Citation: LIN F M, SUN W J. Effect of Rocking-withering on Metabolites in Wuyi Rougui Tea Leaf [J]. Fujian Journal of Agricultural Sciences,2022,37(7):921−928 doi: 10.19303/j.issn.1008-0384.2022.007.013

Effect of Rocking-withering on Metabolites in Wuyi Rougui Tea Leaf

doi: 10.19303/j.issn.1008-0384.2022.007.013
  • Received Date: 2021-12-29
  • Accepted Date: 2021-12-29
  • Rev Recd Date: 2022-04-20
  • Available Online: 2022-08-07
  • Publish Date: 2022-07-28
  •   Objective  Effect of rocking-withering in processing Wuyi rougui tea on the metabolites in leaves was analyzed using GC-TOF-MS non-targeted metabonomics.   Method  Freshly plucked buds and leaves from Wuyi rougui tea bushes were processed according to the conventional northern Fujian technique with or without (CK) the rocking-withering procedure. The non-targeted metabolic analysis was performed to obtain data for differentiating the metabolites in the leaves by multivariate and univariate statistical analyses. A KEGG pathway enrichment analysis was conducted to identify the associated metabolic pathways.   Result  Compared with the conventional brief withering under the sun, the different metabolites of tea leaves without rocking (CK) and after rocking-withering were 21 and 14; meanwhile tea leaves after rocking-withering had 9 significantly upregulated and 3 downregulated metabolites compared to leaves without rocking (CK) . The most significant differentiations were found in the metabolites such as shikimic acid, citric acid, L-malic acid, raffinose, and maltose.   Conclusion   Rocking-withering stimulated the tea leaves to produce certain intermediate products in the tricarboxylic acid cycle and caused a reduction on shikimic acid. It was the metabolisms of amino acids and carbohydrates that were largely affected. The significantly reduced shikimic acid and increased phenylalanine in LY7M metabolite might play a role in the synthesis of aromatic compounds that give the oolong tea its characteristic sensory quality.
  • loading
  • [1]
    SUMNER L W, MENDES P, DIXON R A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era [J]. Phytochemistry, 2003, 62(6): 817−836. doi: 10.1016/S0031-9422(02)00708-2
    [2]
    戴宇樵, 吕才有. 代谢组学技术在茶学中的应用研究进展 [J]. 江苏农业科学, 2019, 47(2):24−28.

    DAI Y Q, LYU C Y. Research progress of application of metabolomics technology in tea science [J]. Jiangsu Agricultural Sciences, 2019, 47(2): 24−28.(in Chinese)
    [3]
    王秀梅. 祁门红茶加工过程中代谢谱分析及其品质形成机理研究[D]. 合肥: 安徽农业大学, 2012

    WANG X M. Metabolic profiling analysis on the main characteristic metabolites investigates the metabolic changes during the processing of Qimen black tea[D]. Hefei: Anhui Agricultural University, 2012. (in Chinese)
    [4]
    张静杰. 基于代谢谱分析的工夫红茶加工工艺优化及其品质形成研究[D]. 合肥: 安徽农业大学, 2013

    ZHANG J J. Metabolic profiling reveals the optimal processing technique on the main characteristic metabolites of Congou black tea[D]. Hefei: Anhui Agricultural University, 2013. (in Chinese)
    [5]
    陈红霞. 普洱茶发酵过程的代谢组学研究[D]. 北京: 北京化工大学, 2013

    CHEN H X. Ametabonomic study during Pu-erh tea fermentation[D]. Beijing: Beijing University of Chemical Technology, 2013. (in Chinese)
    [6]
    李鑫磊, 俞晓敏, 林军, 等. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较 [J]. 食品科学, 2020, 41(12):197−203. doi: 10.7506/spkx1002-6630-20190128-358

    LI X L, YU X M, LIN J, et al. Comparative metabolite characteristics of white tea with green tea, oolong tea and black tea based on non-targeted metabolomics approach [J]. Food Science, 2020, 41(12): 197−203.(in Chinese) doi: 10.7506/spkx1002-6630-20190128-358
    [7]
    DAI W D, XIE D C, LU M L, et al. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach [J]. Food Research International, 2017, 96: 40−45. doi: 10.1016/j.foodres.2017.03.028
    [8]
    FRASER K, LANE G A, OTTER D E, et al. Non-targeted analysis by LC-MS of major metabolite changes during the oolong tea manufacturing in New Zealand [J]. Food Chemistry, 2014, 151: 394−403. doi: 10.1016/j.foodchem.2013.11.054
    [9]
    CHEN S, LIU H H, ZHAO X M, et al. Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture [J]. Food Research International, 2020, 128: 108778. doi: 10.1016/j.foodres.2019.108778
    [10]
    LIU Z B, CHEN F C, SUN J Y, et al. Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi Rock tea (Rougui) [J]. Food Chemistry, 2022, 367: 130624. doi: 10.1016/j.foodchem.2021.130624
    [11]
    贺群, 黄旦益, 卢翠, 等. 适制绿茶与红绿茶兼宜品种挥发性香气组分及其相对含量差异研究 [J]. 西北农业学报, 2017, 26(9):1363−1378. doi: 10.7606/j.issn.1004-1389.2017.09.014

    HE Q, HUANG D Y, LU C, et al. Comparative analysis on volatile aroma components and its relative content difference in fresh leaves among tea varieties suitable for green tea and for both black tea and green tea [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(9): 1363−1378.(in Chinese) doi: 10.7606/j.issn.1004-1389.2017.09.014
    [12]
    汤莎莎, 芦晨阳, 周君, 等. 基于电子鼻和HS-SPME-GC-MS技术解析乌牛早茶的挥发性风味物质 [J]. 食品工业科技, 2018, 39(14):223−230. doi: 10.13386/j.issn1002-0306.2018.14.042

    TANG S S, LU C Y, ZHOU J, et al. Volatile flavor compounds of different wu Niuzao leaves and different heating temperatures based on electronic nose and GC-MS [J]. Science and Technology of Food Industry, 2018, 39(14): 223−230.(in Chinese) doi: 10.13386/j.issn1002-0306.2018.14.042
    [13]
    王丽鸳, 成浩, 周健, 等. 基于多元化学指纹图谱的武夷岩茶身份判别研究 [J]. 茶叶科学, 2010, 30(2):83−88. doi: 10.3969/j.issn.1000-369X.2010.02.002

    WANG L Y, CHENG H, ZHOU J, et al. Discriminant classification of Wuyi Yan tea based on multiple chemical fingerprint [J]. Journal of Tea Science, 2010, 30(2): 83−88.(in Chinese) doi: 10.3969/j.issn.1000-369X.2010.02.002
    [14]
    成浩, 王丽鸳, 周健, 等. 基于化学指纹图谱的扁形茶产地判别分析研究 [J]. 茶叶科学, 2008, 28(2):83−88.

    CHENG H, WANG L Y, ZHOU J, et al. Discriminant classification of production area of flatten-shaped green tea based on multiple chemical fingerprint [J]. Journal of Tea Science, 2008, 28(2): 83−88.(in Chinese)
    [15]
    周黎, 赵振军, 刘勤晋, 等. 不同贮藏年份普洱茶非挥发物质的GC-MS分析 [J]. 西南大学学报(自然科学版), 2009, 31(11):140−144.

    ZHOU L, ZHAO Z J, LIU Q J, et al. GC-MS analysis of non-volatile components of Pu-erh tea stored for different years [J]. Journal of Southwest University (Natural Science Edition), 2009, 31(11): 140−144.(in Chinese)
    [16]
    刘顺航, 徐咏全, 李长文, 等. 不同年份生产帝泊洱茶珍HPLC指纹图谱研究 [J]. 茶叶通讯, 2016, 43(2):24−29. doi: 10.3969/j.issn.1009-525X.2016.02.006

    LIU S H, XU Y Q, LI C W, et al. Study on deepure instant Pu-erh tea from different years by HPLC fingerprint [J]. Journal of Tea Communication, 2016, 43(2): 24−29.(in Chinese) doi: 10.3969/j.issn.1009-525X.2016.02.006
    [17]
    胡燕, 齐桂年. 四川黑茶的高效液相色谱指纹图谱研究 [J]. 西北农林科技大学学报(自然科学版), 2015, 43(1):134−140.

    HU Y, QI G N. High performance liquid chromatographic fingerprinting of Sichuan dark tea [J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(1): 134−140.(in Chinese)
    [18]
    郑起帆. 基于1H-NMR的四个茶山普洱生茶代谢组学研究[D]. 广州: 广东药科大学, 2016

    ZHENG Q F. 1H-NMR-based metabolomics for Pu-erh raw tea from four different mountain origins[D]. Guangzhou: Guangdong Pharmaceutical University, 2016. (in Chinese)
    [19]
    DAGLIA M, ANTIOCHIA R, SOBOLEV A, et al. Untargeted and targeted methodologies in the study of tea (Camellia sinensis L. ) [J]. Food Research International, 2014, 63: 275−289. doi: 10.1016/j.foodres.2014.03.070
    [20]
    王镜岩, 朱圣庚, 徐长法, 等. 生物化学[M]. 第3版. 北京: 高等教育出版社, 2002: 110-111.
    [21]
    傅豪, 魏旭, 梁国鲁, 等. 茶树莽草酸代谢途径相关基因研究进展 [J]. 分子植物育种, 2021, 19(2):485−493.

    FU H, WEI X, LIANG G L, et al. Research progress on genes related to shikimic acid metabolism pathway in tea plant(Camellia sinensis) [J]. Molecular Plant Breeding, 2021, 19(2): 485−493.(in Chinese)
    [22]
    向林, 陈龙清. 花香的基因工程研究进展 [J]. 中国农业科学, 2009, 42(6):2076−2084. doi: 10.3864/j.issn.0578-1752.2009.06.025

    XIANG L, CHEN L Q. Adavances in genetic engineering of floral scent [J]. Scientia Agricultura Sinica, 2009, 42(6): 2076−2084.(in Chinese) doi: 10.3864/j.issn.0578-1752.2009.06.025
    [23]
    ZHENG C, ZHAO L, WANG Y, et al. Integrated RNA-seq and sRNA-seq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis) [J]. PLoS One, 2015, 10(4): e0125031. doi: 10.1371/journal.pone.0125031
    [24]
    ZHOU Y, ZENG L T, LIU X Y, et al. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing [J]. Food Chemistry, 2017, 231: 78−86. doi: 10.1016/j.foodchem.2017.03.122
    [25]
    GUI J D, FU X M, ZHOU Y, et al. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? [J]. Journal of Agricultural and Food Chemistry, 2015, 63(31): 6905−6914. doi: 10.1021/acs.jafc.5b02741
    [26]
    唐邦明, 吴阳风, 陈迪, 等. 基于广泛靶向代谢组学的乌龙茶加工过程中差异代谢物分析 [J]. 食品科技, 2021, 46(11):81−89.

    TANG B M, WU Y F, CHEN D, et al. Analysis on differential metabolites of the samples from oolong tea production based on widely-targeted metabonomic approach [J]. Food Science and Technology, 2021, 46(11): 81−89.(in Chinese)
    [27]
    ZENG L T, ZHOU X C, SU X G, et al. Chinese oolong tea: An aromatic beverage produced under multiple stresses [J]. Trends in Food Science & Technology, 2020, 106: 242−253.
    [28]
    YU Z M, YANG Z Y. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(5): 844−858. doi: 10.1080/10408398.2018.1552245
    [29]
    邱晓红, 张丹丹, 韦航, 等. 基于PTR-TOF-MS与GC-MS技术的武夷水仙和武夷肉桂香气特征分析 [J]. 天然产物研究与开发, 2018, 30(7):1195−1201.

    QIU X H, ZHANG D D, WEI H, et al. Analysis of aroma of different varieties of Wuyi rock tea by PTR-TOF-MS and GC-MS [J]. Natural Product Research and Development, 2018, 30(7): 1195−1201.(in Chinese)
    [30]
    邓慧莉. 武夷岩茶加工过程香气形成及糖苷酶基因表达的研究[D]. 福州: 福建农林大学, 2016

    DENG H L. Studies on aroma formation and glycosidase gene expression in Wuyi rock tea[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese)
    [31]
    成晨. 乌龙茶连续慢速做青工艺研究[D]. 广州: 华南农业大学, 2019

    CHENG C. Study on continuous green-making technique of oolong tea with slow speed[D]. Guangzhou: South China Agricultural University, 2019. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (803) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return