Citation: | LI X F, LIN X Y, SU B X, et al. Genome-wide Identification and Expressions of PIF Family in Longan [J]. Fujian Journal of Agricultural Sciences,2022,37(8):1025−1037 doi: 10.19303/j.issn.1008-0384.2022.008.008 |
[1] |
张媛媛. 光敏色素的结构及其信号调控机制 [J]. 湖北农业科学, 2020, 59(4):5−10. doi: 10.14088/j.cnki.issn0439-8114.2020.04.001
ZHANG Y Y. Structure and signal regulation mechanism of phytochrome [J]. Hubei Agricultural Sciences, 2020, 59(4): 5−10.(in Chinese) doi: 10.14088/j.cnki.issn0439-8114.2020.04.001
|
[2] |
ZHONG S W, SHI H, XUE C, et al. A molecular framework of light-controlled phytohormone action in Arabidopsis [J]. Current Biology, 2012, 22(16): 1530−1535. doi: 10.1016/j.cub.2012.06.039
|
[3] |
LAU O S, DENG X W. Plant hormone signaling lightens up: Integrators of light and hormones [J]. Current Opinion in Plant Biology, 2010, 13(5): 571−577. doi: 10.1016/j.pbi.2010.07.001
|
[4] |
XU X S, PAIK I, ZHU L, et al. Illuminating progress in phytochrome-mediated light signaling pathways [J]. Trends in Plant Science, 2015, 20(10): 641−650. doi: 10.1016/j.tplants.2015.06.010
|
[5] |
KHANNA R, HUQ E, KIKIS E A, et al. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic Helix-loop-Helix transcription factors [J]. The Plant Cell, 2004, 16(11): 3033−3044. doi: 10.1105/tpc.104.025643
|
[6] |
NI M, TEPPERMAN J M, QUAIL P H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic Helix-loop-Helix protein [J]. Cell, 1998, 95(5): 657−667. doi: 10.1016/S0092-8674(00)81636-0
|
[7] |
ZHANG Y, MAYBA O, PFEIFFER A, et al. A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis [J]. PLoS Genetics, 2013, 9(1): e1003244. doi: 10.1371/journal.pgen.1003244
|
[8] |
JEONG J, CHOI G. Phytochrome-interacting factors have both shared and distinct biological roles [J]. Molecules and Cells, 2013, 35(5): 371−380. doi: 10.1007/s10059-013-0135-5
|
[9] |
DE LUCAS M, PRAT S. PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals [J]. The New Phytologist, 2014, 202(4): 1126−1141. doi: 10.1111/nph.12725
|
[10] |
DE WIT M, GALVÃO V C, FANKHAUSER C. Light-mediated hormonal regulation of plant growth and development [J]. Annual Review of Plant Biology, 2016, 67: 513−537. doi: 10.1146/annurev-arplant-043015-112252
|
[11] |
OH E, KIM J, PARK E, et al. PIL5, a phytochrome-interacting basic Helix-loop-Helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana [J]. The Plant Cell, 2004, 16(11): 3045−3058. doi: 10.1105/tpc.104.025163
|
[12] |
LI L, LJUNG K, BRETON G, et al. Linking photoreceptor excitation to changes in plant architecture [J]. Genes & Development, 2012, 26(8): 785−790.
|
[13] |
MUTASA-GÖTTGENS E, HEDDEN P. Gibberellin as a factor in floral regulatory networks [J]. Journal of Experimental Botany, 2009, 60(7): 1979−1989. doi: 10.1093/jxb/erp040
|
[14] |
HUQ E, AL-SADY B, HUDSON M, et al. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis [J]. Science, 2004, 305(5692): 1937−1941. doi: 10.1126/science.1099728
|
[15] |
STEPHENSON P G, FANKHAUSER C, TERRY M J. PIF3 is a repressor of chloroplast development [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7654−7659. doi: 10.1073/pnas.0811684106
|
[16] |
LIU Z J, ZHANG Y Q, WANG J F, et al. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings [J]. Plant Science, 2015, 238: 64−72. doi: 10.1016/j.plantsci.2015.06.001
|
[17] |
HUQ E, QUAIL P H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis [J]. The EMBO Journal, 2002, 21(10): 2441−2450. doi: 10.1093/emboj/21.10.2441
|
[18] |
LORRAIN S, ALLEN T, DUEK P D, et al. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors [J]. The Plant Journal, 2007, 53(2): 312−323. doi: 10.1111/j.1365-313X.2007.03341.x
|
[19] |
FRANKLIN K A, LEE S H, PATEL D, et al. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20231−20235. doi: 10.1073/pnas.1110682108
|
[20] |
KUMAR S V, LUCYSHYN D, JAEGER K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering [J]. Nature, 2012, 484(7393): 242−245. doi: 10.1038/nature10928
|
[21] |
汪硕, 丁岚, 刘建祥, 等. 拟南芥热形态建成中PIF4下游基因研究 [J]. 生物技术通报, 2018, 34(7):57−65. doi: 10.13560/j.cnki.biotech.bull.1985.2018-0211
WANG S, DING L, LIU J X, et al. PIF4-regulated thermo-responsive genes in Arabidopsis [J]. Biotechnology Bulletin, 2018, 34(7): 57−65.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2018-0211
|
[22] |
FIORUCCI A S, GALVÃO V C, INCE Y Ç, et al. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings [J]. The New Phytologist, 2020, 226(1): 50−58. doi: 10.1111/nph.16316
|
[23] |
徐向东, 任逸秋, 张利, 等. 杨树PIF基因家族成员表达模式研究 [J]. 林业科学研究, 2018, 31(2):19−25. doi: 10.13275/j.cnki.lykxyj.2018.02.003
XU X D, REN Y Q, ZHANG L, et al. Analysis of expression pattern of PIF family members in Populus [J]. Forest Research, 2018, 31(2): 19−25.(in Chinese) doi: 10.13275/j.cnki.lykxyj.2018.02.003
|
[24] |
JIANG B C, SHI Y T, ZHANG X Y, et al. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32): E6695−E6702.
|
[25] |
王峰. PhyA、HY5和PIF4在光质调控番茄低温抗性中的机制研究[D]. 杭州: 浙江大学, 2017.
WANG F. Roles and mechanisms of phyA-, HY5- and PIF4- mediated light quality-regulated cold tolerance in tomato[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
|
[26] |
陈裕坤, 林晓艺, 赖钟雄. 龙眼体细胞胚胎发生研究进展 [J]. 热带作物学报, 2020, 41(10):1990−2002. doi: 10.3969/j.issn.1000-2561.2020.10.006
CHEN Y K, LIN X Y, LAI Z X. Advances in somatic embryogenesis of Dimocarpus longan lour [J]. Chinese Journal of Tropical Crops, 2020, 41(10): 1990−2002.(in Chinese) doi: 10.3969/j.issn.1000-2561.2020.10.006
|
[27] |
赖钟雄, 潘良镇, 陈振光. 龙眼胚性细胞系的建立与保持 [J]. 福建农业大学学报, 1997, 26(2):160−167.
LAI Z X, PAN L Z, CHEN Z G. Establishment and maintenance of Longan embryogenic cell lines [J]. Journal of Fujian Agricultural University, 1997, 26(2): 160−167.(in Chinese)
|
[28] |
刘范, 田娜, 孙雪丽, 等. 香蕉GLP基因家族全基因组鉴定及表达分析 [J]. 园艺学报, 2020, 47(10):1930−1946. doi: 10.16420/j.issn.0513-353x.2019-0983
LIU F, TIAN N, SUN X L, et al. Genome-wide identification and expression analysis of banana GLP gene family [J]. Acta Horticulturae Sinica, 2020, 47(10): 1930−1946.(in Chinese) doi: 10.16420/j.issn.0513-353x.2019-0983
|
[29] |
李汉生. 光对龙眼细胞培养中功能性代谢产物的影响及分子机制[D]. 福州: 福建农林大学, 2018.
LI H S. Effect of light on functional metabolites and its molecular mechanism in cultivation of Longan cells[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese)
|
[30] |
LIN Y L, LAI Z X. Reference gene selection for qPCR analysis during somatic embryogenesis in Longan tree [J]. Plant Science, 2010, 178(4): 359−365. doi: 10.1016/j.plantsci.2010.02.005
|
[31] |
LEIVAR P, MONTE E. PIFs: Systems integrators in plant development [J]. The Plant Cell, 2014, 26(1): 56−78. doi: 10.1105/tpc.113.120857
|
[32] |
GAO Y, REN X Y, QIAN J J, et al. The phytochrome-interacting family of transcription factors in maize (Zea mays L. ): Identification, evolution, and expression analysis [J]. Acta Physiologiae Plantarum, 2019, 41(1): 8. doi: 10.1007/s11738-018-2802-9
|
[33] |
吴昊, 张城瑜, 倪珊珊, 等. 香蕉基因MaPIF家族全基因组鉴定及激素表达模式[J]. 应用与环境生物学报. https://doi.org/10.19675/j.cnki.1006-687x.2021.02036.
WU H, ZHANG C Y, NI S S, et al. Genome-wide identification and hormone expression pattern of the MaPIF family of banana gene[J]. Chinese Journal of Applied and Environmental Biology. https://doi.org/10.19675/j.cnki.1006-687x.2021.02036. (in Chinese)
|
[34] |
荐红举, 尚丽娜, 金中辉, 等. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析 [J]. 作物学报, 2022, 48(1):86−98.
JIAN H J, SHANG L N, JIN Z H, et al. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86−98.(in Chinese)
|
[35] |
袁凌云, 张利婷, 蓝天, 等. 白菜PIF基因家族及表达模式分析[J]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.S.20211123.1315.004.html.
YUAN L Y , ZHANG L T, LAN T, et al. Identification and expression analysis of PIF gene family in Chinese cabbage[J]. Molecular Plant Breeding. https://kns.cnki.net/kcms/detail/46.1068.S.20211123.1315.004.html. (in Chinese)
|
[36] |
吴广霞. 玉米光敏色素作用因子PIFs在光信号和光形态建成中的功能研究[D]. 北京: 中国农业科学院, 2020
WU G X. Initial functional characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
|
[37] |
武志强, 周家伟. 植物细胞器基因编辑研究进展 [J]. 广西植物, 2021, 41(10):1654−1664. doi: 10.11931/guihaia.gxzw202106033
WU Z Q, ZHOU J W. Advances in plant organelle gene editing [J]. Guihaia, 2021, 41(10): 1654−1664.(in Chinese) doi: 10.11931/guihaia.gxzw202106033
|
[38] |
TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/Helix-loop-Helix transcription factor family [J]. The Plant Cell, 2003, 15(8): 1749−1770. doi: 10.1105/tpc.013839
|
[39] |
KIM J, YI H, CHOI G, et al. Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction [J]. The Plant Cell, 2003, 15(10): 2399−2407. doi: 10.1105/tpc.014498
|
[40] |
MONTE E, TEPPERMAN J M, AL-SADY B, et al. The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(46): 16091−16098. doi: 10.1073/pnas.0407107101
|
[41] |
FUJIMORI T, YAMASHINO T, KATO T, et al. Circadian-controlled basic/Helix-loop-Helixfactor,PIL6, implicated in light-signal transduction in Arabidopsis thaliana [J]. Plant and Cell Physiology, 2004, 45(8): 1078−1086. doi: 10.1093/pcp/pch124
|
[42] |
LEIVAR P, MONTE E, AL-SADY B, et al. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels [J]. The Plant Cell, 2008, 20(2): 337−352. doi: 10.1105/tpc.107.052142
|
[43] |
PHAM V N, KATHARE P K, HUQ E. Phytochromes and phytochrome interacting factors [J]. Plant Physiology, 2017, 176(2): 1025−1038.
|
[44] |
WANG F F, LIAN H L, KANG C Y, et al. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana [J]. Molecular Plant, 2010, 3(1): 246−259. doi: 10.1093/mp/ssp097
|
[45] |
任小芸. ZmPIFs基因的克隆、表达及AtPIFs基因的抗旱功能研究[D]. 扬州: 扬州大学, 2017.
REN X Y. Cloning and expression of ZmPIFs and study on the drought resistant function of AtPIFs[D]. Yangzhou: Yangzhou University, 2017. (in Chinese)
|
[46] |
KOINI M A, ALVEY L, ALLEN T, et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4 [J]. Current Biology, 2009, 19(5): 408−413. doi: 10.1016/j.cub.2009.01.046
|
[47] |
QIU Y J, LI M N, KIM R J A, et al. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA [J]. Nature Communications, 2019, 10: 140. doi: 10.1038/s41467-018-08059-z
|
[48] |
LEE C M, THOMASHOW M F. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(37): 15054−15059. doi: 10.1073/pnas.1211295109
|
[49] |
LAU O S, HUANG X, CHARRON J B, et al. Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock [J]. Molecular Cell, 2011, 43(5): 703−712. doi: 10.1016/j.molcel.2011.07.013
|
[50] |
陈笑笑. PIF4介导光质调控番茄低温抗性的作用机制[D]. 杭州: 浙江大学, 2019.
CHEN X X. The mechanisms of PIF4-mediated light quality-regulated cold tolerance in tomato[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
|
[51] |
李春平, 赖成霞, 徐海江, 等. 不同因素对早熟陆地棉离体胚成苗的影响 [J]. 新疆农业科学, 2020, 57(9):1596−1603.
LI C P, LAI C X, XU H J, et al. Effects of different factors on early-maturing upland cotton excised embryos into seedlings [J]. Xinjiang Agricultural Sciences, 2020, 57(9): 1596−1603.(in Chinese)
|
[52] |
石岭, 霍秀文, 郝春光. 不同光质对河套蜜瓜器官培养的影响 [J]. 内蒙古农牧学院学报, 1999, 20(2):76−79.
SHI L, HUO X W, HAO C G. Effects of different light quality on organ cultire of Cucumis melo l. var cantalupensis naut [J]. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry, 1999, 20(2): 76−79.(in Chinese)
|
[53] |
胡恒康. 山核桃合子胚发育、体胚再生及其生物学特性研究[D]. 南昌: 江西农业大学, 2011.
HU H K. Studies on biological characteristics of development and regeneration of zygotic embryos in hickory (Carya cathayensis sarg.)[D]. Nanchang: Jiangxi Agricultural University, 2011. (in Chinese)
|