• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
ZHANG S H, FAN Y S. Identification and Characterization of Heat Shock Protein Hsp70 in Setosphaeria turcica [J]. Fujian Journal of Agricultural Sciences,2022,37(9):1187−1193 doi: 10.19303/j.issn.1008-0384.2022.009.010
Citation: ZHANG S H, FAN Y S. Identification and Characterization of Heat Shock Protein Hsp70 in Setosphaeria turcica [J]. Fujian Journal of Agricultural Sciences,2022,37(9):1187−1193 doi: 10.19303/j.issn.1008-0384.2022.009.010

Identification and Characterization of Heat Shock Protein Hsp70 in Setosphaeria turcica

doi: 10.19303/j.issn.1008-0384.2022.009.010
  • Received Date: 2022-05-04
  • Rev Recd Date: 2022-05-17
  • Publish Date: 2022-09-30
  •   Objective  Identification and characteristics of Hsp70 family in Setosphaeria turcica were studied to facilitate elucidating their roles in the growth, development, and pathogenicity of the microbe.   Methods  Members of StHsp70 family were identified from the S. turcica genome database. Physicochemical properties, subcellular localization, phylogenetic evolution, conserved motifs, and domains of the genes analyzed by bioinformatics methods.   Results  Eleven members, StHsp70-1 to StHsp70-11, were identified from the database. Most of them were predicated to locate in the cytoplasmic as well as in endoplasmic reticulum, mitochondrial, and nucleus in lesser amounts. The phylogenetic analysis divided the members into 7 categories including Classes A−F that showed a high homology with the heat shock proteins SSA, SSB, SSC, KAR2, SSE, and SSZ of Saccharomyces cerevisiae, respectively, and Class G that had none with what were found in yeasts. All StHsp70s contained conserved motif 5, but motif 6 existed in Class A−D only. Class G had only motifs 2−4 making the class significantly different from the others. The variations in subcellular localization might be the reason of the significant N-terminal differences in the NBD domains of the Hsp70 classes of S. turcica from those of yeast. Whereas the considerably varied C-terminal structure and extensibility among the classes, especially on the StHsp70s of Class G, might contribute to the diversity of substrates.   Conclusion  The 11 members of Hsp70 family of S. turcica could be divided into 7 classes with 4 members in Class G being significantly different from the others in physicochemical properties and structure. It indicated that the genes were of multifunctional molecular chaperones.
  • loading
  • [1]
    HENDRICK J P, HARTL F U. Molecular chaperone functions of heat-shock proteins [J]. Heredity, 1993, 62: 349−384.
    [2]
    FARHAN Y ALMALKI A, ARABDIN M, KHAN A. The role of heat shock proteins in cellular homeostasis and cell survival [J]. Cureus, 2021, 13(9): e18316.
    [3]
    SHAN Q, MA F, WEI J, et al. Physiological functions of heat shock proteins [J]. Current Protein & Peptide Science, 2020, 21(8): 751−760.
    [4]
    CARPANE P D, PEPER A M, KOHN F. Management of northern corn leaf blight using Nativo (Trifloxistrobin + Tebuconazole) fungicide applications [J]. Crop Protection, 2020, 127(C): 104982.
    [5]
    李茂盛. 玉米大斑病的发生规律及防治 [J]. 吉林农业, 2019(5):69. doi: 10.14025/j.cnki.jlny.2019.05.029

    LI M S. Occurrence regularity and control of corn leaf blight [J]. Agriculture of Jilin, 2019(5): 69.(in Chinese) doi: 10.14025/j.cnki.jlny.2019.05.029
    [6]
    王彩霞. 玉米大斑病的发病原因及防治策略 [J]. 南方农业, 2021, 15(3):48−49. doi: 10.19415/j.cnki.1673-890x.2021.03.022

    WANG C X. The cause and control strategy of Cercospora Maydis [J]. South China Agriculture, 2021, 15(3): 48−49.(in Chinese) doi: 10.19415/j.cnki.1673-890x.2021.03.022
    [7]
    MORIMOTO R I, TISSIERES A, GEORGOPOULOS C. The stress response, function of the proteins and perspectives [J]. Cold Spring Harbor monograph archive, 1990, 19: 1−36.
    [8]
    FINKA A, MATTOO R U H, GOLOUBINOFF P. Experimental milestones in the discovery of molecular chaperones as polypeptide unfolding enzymes [J]. Annual Review of Biochemistry, 2016, 85(1): 715−742. doi: 10.1146/annurev-biochem-060815-014124
    [9]
    BERKA M, KOPECKÁ R, BERKOVÁ V, et al. Regulation of heat shock proteins 70 and their role in plant immunity [J]. Journal of Experimental Botany, 2022, 73(7): 1894−1909. doi: 10.1093/jxb/erab549
    [10]
    CHASTON J J, SMITS C, ARAGÃO D, et al. Structural and functional insights into the evolution and stress adaptation of type II chaperonins [J]. Structure, 2016, 24(3): 364−374. doi: 10.1016/j.str.2015.12.016
    [11]
    SEO K, CHOI E, LEE D, et al. Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans [J]. Aging Cell, 2013, 12(6): 1073−1081. doi: 10.1111/acel.12140
    [12]
    WEGRZYN R D, DEUERLING E. Molecular guardians for newborn proteins: Ribosome-associated chaperones and their role in protein folding [J]. Cellular and Molecular Life Sciences, 2005, 62(23): 2727−2738. doi: 10.1007/s00018-005-5292-z
    [13]
    WERNER-WASHBURNE M, STONE D E, CRAIG E A. Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology, 1987, 7(7): 2568−2577.
    [14]
    XU X P, SARBENG E B, VORVIS C, et al. Unique peptide substrate binding properties of 110-kDa heat-shock protein (Hsp110) determine its distinct chaperone activity [J]. The Journal of Biological Chemistry, 2012, 287(8): 5661−5672. doi: 10.1074/jbc.M111.275057
    [15]
    DRAGOVIC Z, BROADLEY S A, SHOMURA Y, et al. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s [J]. The EMBO Journal, 2006, 25(11): 2519−2528. doi: 10.1038/sj.emboj.7601138
    [16]
    GAUTSCHI M, LILIE H, FÜNFSCHILLING U, et al. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(7): 3762−3767. doi: 10.1073/pnas.071057198
    [17]
    HALLSTROM T C, MOYE-ROWLEY W S. Hyperactive forms of the Pdr1p transcription factor fail to respond to positive regulation by the hsp70 protein Pdr13p [J]. Molecular Microbiology, 2000, 36(2): 402−413. doi: 10.1046/j.1365-2958.2000.01858.x
    [18]
    EISENMAN H C, CRAIG E A. Activation of pleiotropic drug resistance by the J-protein and Hsp70-related proteins, Zuo1 and Ssz1 [J]. Molecular Microbiology, 2004, 53(1): 335−344. doi: 10.1111/j.1365-2958.2004.04134.x
    [19]
    MONTERO-BARRIENTOS M, HERMOSA R, NICOLÁS C, et al. Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses [J]. Fungal Genetics and Biology, 2008, 45(11): 1506−1513. doi: 10.1016/j.fgb.2008.09.003
    [20]
    金承涛, 曾云中, 吴雪昌, 朱旭芬. 耐热酵母菌株HU-TY-1的耐热机理初探 [J]. 浙江大学学报(理学版), 2001, 28(6):676−681.

    JIN C T, ZENG Y Z, WU X C, et al. Study on heat shock protein and thermotolerant mechanism of S. cerevisiae [J]. Journal of Zhejiang University (Sciences Edition), 2001, 28(6): 676−681.(in Chinese)
    [21]
    谢翎, 陈红梅, 汤强, 等. 实时荧光定量PCR检测球孢白僵菌热休克蛋白基因hsp70在几种胁迫条件下的表达 [J]. 菌物学报, 2009, 28(6):806−812. doi: 10.13346/j.mycosystema.2009.06.013

    XIE L, CHEN H M, TANG Q, et al. Expression analysis of hsp70 gene from Beauveria bassiana under several stress conditions by Realtime-PCR [J]. Mycosystema, 2009, 28(6): 806−812.(in Chinese) doi: 10.13346/j.mycosystema.2009.06.013
    [22]
    曹华宁, 刘博, 刘太国, 等. 小麦条锈菌hsp70基因的克隆及热胁迫下的表达特征分析 [J]. 植物保护, 2015, 41(3):19−24. doi: 10.3969/j.issn.0529-1542.2015.03.004

    CAO H N, LIU B, LIU T G, et al. Cloning of a heat shock protein gene hsp70 of Puccinia striiformis f. sp. tritici and its expression in response to high-temperature stress [J]. Plant Protection, 2015, 41(3): 19−24.(in Chinese) doi: 10.3969/j.issn.0529-1542.2015.03.004
    [23]
    YI M, CHI M H, KHANG C H, et al. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae [J]. The Plant Cell, 2009, 21(2): 681−695. doi: 10.1105/tpc.107.055988
    [24]
    YANG J, LIU M X, LIU X Y, et al. Heat-shock proteins MoSsb1, MoSsz1, and MoZuo1 attenuate MoMkk1-mediated cell-wall integrity signaling and are important for growth and pathogenicity of Magnaporthe oryzae [J]. Molecular Plant-Microbe Interactions, 2018, 31(11): 1211−1221. doi: 10.1094/MPMI-02-18-0052-R
    [25]
    CHEN L L, GENG X J, MA Y M, et al. The ER lumenal Hsp70 protein FpLhs1 is important for conidiation and plant infection in Fusarium pseudograminearum [J]. Frontiers in Microbiology, 2019, 10: 1401. doi: 10.3389/fmicb.2019.01401
    [26]
    LIU Z, WANG Z, HUANG M, et al. The FgSsb-FgZuo-FgSsz complex regulates multiple stress responses and mycotoxin production via folding the soluble SNARE Vam7 and β2-tubulin in Fusarium graminearum [J]. Environmental Microbiology, 2017, 19(12): 5040−5059. doi: 10.1111/1462-2920.13968
    [27]
    STONE D E, CRAIG E A. Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology, 1990, 10(4): 16222−1632.
    [28]
    MURAKAMI H, PAIN D, BLOBEL G. 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria [J]. Revista Espanola De Enfermedades Digestivas, 1988, 107(6 pt 1): 2051−2057.
    [29]
    XU C L, WANG S, THIBAULT G, et al. Futile protein folding cycles in the ER are terminated by the unfolded protein O-mannosylation pathway [J]. Science, 2013, 340(6135): 978−981. doi: 10.1126/science.1234055
    [30]
    NISHIKAWA S I, FEWELL S W, KATO Y, et al. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation [J]. Scientific Reports, 2001, 153(5): 1061−1070.
    [31]
    LYMAN S K, SCHEKMAN R. Binding of secretory precursor polypeptides to a translocon sub complex is regulated by BiP [J]. Cell, 1997, 88(1): 85−96. doi: 10.1016/S0092-8674(00)81861-9
    [32]
    HUANG P, GAUTSCHI M, WALTER W, et al. The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1 [J]. Nature Structural & Molecular Biology, 2005, 12(6): 497−504.
    [33]
    CUI Z M, WANG P, SUN L L, et al. Lipopolysaccharide-evoked HSPA12B expression by activation of MAPK cascade in microglial cells of the spinal cord [J]. Journal of the Neurological Sciences, 2010, 294(1/2): 29−37.
    [34]
    SARKAR N K, KUNDNANI P, GROVER A. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa) [J]. Cell Stress & Chaperones, 2013, 18(4): 427−437.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (590) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return