Citation: | ZHANG S H, FAN Y S. Identification and Characterization of Heat Shock Protein Hsp70 in Setosphaeria turcica [J]. Fujian Journal of Agricultural Sciences,2022,37(9):1187−1193 doi: 10.19303/j.issn.1008-0384.2022.009.010 |
[1] |
HENDRICK J P, HARTL F U. Molecular chaperone functions of heat-shock proteins [J]. Heredity, 1993, 62: 349−384.
|
[2] |
FARHAN Y ALMALKI A, ARABDIN M, KHAN A. The role of heat shock proteins in cellular homeostasis and cell survival [J]. Cureus, 2021, 13(9): e18316.
|
[3] |
SHAN Q, MA F, WEI J, et al. Physiological functions of heat shock proteins [J]. Current Protein & Peptide Science, 2020, 21(8): 751−760.
|
[4] |
CARPANE P D, PEPER A M, KOHN F. Management of northern corn leaf blight using Nativo (Trifloxistrobin + Tebuconazole) fungicide applications [J]. Crop Protection, 2020, 127(C): 104982.
|
[5] |
李茂盛. 玉米大斑病的发生规律及防治 [J]. 吉林农业, 2019(5):69. doi: 10.14025/j.cnki.jlny.2019.05.029
LI M S. Occurrence regularity and control of corn leaf blight [J]. Agriculture of Jilin, 2019(5): 69.(in Chinese) doi: 10.14025/j.cnki.jlny.2019.05.029
|
[6] |
王彩霞. 玉米大斑病的发病原因及防治策略 [J]. 南方农业, 2021, 15(3):48−49. doi: 10.19415/j.cnki.1673-890x.2021.03.022
WANG C X. The cause and control strategy of Cercospora Maydis [J]. South China Agriculture, 2021, 15(3): 48−49.(in Chinese) doi: 10.19415/j.cnki.1673-890x.2021.03.022
|
[7] |
MORIMOTO R I, TISSIERES A, GEORGOPOULOS C. The stress response, function of the proteins and perspectives [J]. Cold Spring Harbor monograph archive, 1990, 19: 1−36.
|
[8] |
FINKA A, MATTOO R U H, GOLOUBINOFF P. Experimental milestones in the discovery of molecular chaperones as polypeptide unfolding enzymes [J]. Annual Review of Biochemistry, 2016, 85(1): 715−742. doi: 10.1146/annurev-biochem-060815-014124
|
[9] |
BERKA M, KOPECKÁ R, BERKOVÁ V, et al. Regulation of heat shock proteins 70 and their role in plant immunity [J]. Journal of Experimental Botany, 2022, 73(7): 1894−1909. doi: 10.1093/jxb/erab549
|
[10] |
CHASTON J J, SMITS C, ARAGÃO D, et al. Structural and functional insights into the evolution and stress adaptation of type II chaperonins [J]. Structure, 2016, 24(3): 364−374. doi: 10.1016/j.str.2015.12.016
|
[11] |
SEO K, CHOI E, LEE D, et al. Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans [J]. Aging Cell, 2013, 12(6): 1073−1081. doi: 10.1111/acel.12140
|
[12] |
WEGRZYN R D, DEUERLING E. Molecular guardians for newborn proteins: Ribosome-associated chaperones and their role in protein folding [J]. Cellular and Molecular Life Sciences, 2005, 62(23): 2727−2738. doi: 10.1007/s00018-005-5292-z
|
[13] |
WERNER-WASHBURNE M, STONE D E, CRAIG E A. Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology, 1987, 7(7): 2568−2577.
|
[14] |
XU X P, SARBENG E B, VORVIS C, et al. Unique peptide substrate binding properties of 110-kDa heat-shock protein (Hsp110) determine its distinct chaperone activity [J]. The Journal of Biological Chemistry, 2012, 287(8): 5661−5672. doi: 10.1074/jbc.M111.275057
|
[15] |
DRAGOVIC Z, BROADLEY S A, SHOMURA Y, et al. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s [J]. The EMBO Journal, 2006, 25(11): 2519−2528. doi: 10.1038/sj.emboj.7601138
|
[16] |
GAUTSCHI M, LILIE H, FÜNFSCHILLING U, et al. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(7): 3762−3767. doi: 10.1073/pnas.071057198
|
[17] |
HALLSTROM T C, MOYE-ROWLEY W S. Hyperactive forms of the Pdr1p transcription factor fail to respond to positive regulation by the hsp70 protein Pdr13p [J]. Molecular Microbiology, 2000, 36(2): 402−413. doi: 10.1046/j.1365-2958.2000.01858.x
|
[18] |
EISENMAN H C, CRAIG E A. Activation of pleiotropic drug resistance by the J-protein and Hsp70-related proteins, Zuo1 and Ssz1 [J]. Molecular Microbiology, 2004, 53(1): 335−344. doi: 10.1111/j.1365-2958.2004.04134.x
|
[19] |
MONTERO-BARRIENTOS M, HERMOSA R, NICOLÁS C, et al. Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses [J]. Fungal Genetics and Biology, 2008, 45(11): 1506−1513. doi: 10.1016/j.fgb.2008.09.003
|
[20] |
金承涛, 曾云中, 吴雪昌, 朱旭芬. 耐热酵母菌株HU-TY-1的耐热机理初探 [J]. 浙江大学学报(理学版), 2001, 28(6):676−681.
JIN C T, ZENG Y Z, WU X C, et al. Study on heat shock protein and thermotolerant mechanism of S. cerevisiae [J]. Journal of Zhejiang University (Sciences Edition), 2001, 28(6): 676−681.(in Chinese)
|
[21] |
谢翎, 陈红梅, 汤强, 等. 实时荧光定量PCR检测球孢白僵菌热休克蛋白基因hsp70在几种胁迫条件下的表达 [J]. 菌物学报, 2009, 28(6):806−812. doi: 10.13346/j.mycosystema.2009.06.013
XIE L, CHEN H M, TANG Q, et al. Expression analysis of hsp70 gene from Beauveria bassiana under several stress conditions by Realtime-PCR [J]. Mycosystema, 2009, 28(6): 806−812.(in Chinese) doi: 10.13346/j.mycosystema.2009.06.013
|
[22] |
曹华宁, 刘博, 刘太国, 等. 小麦条锈菌hsp70基因的克隆及热胁迫下的表达特征分析 [J]. 植物保护, 2015, 41(3):19−24. doi: 10.3969/j.issn.0529-1542.2015.03.004
CAO H N, LIU B, LIU T G, et al. Cloning of a heat shock protein gene hsp70 of Puccinia striiformis f. sp. tritici and its expression in response to high-temperature stress [J]. Plant Protection, 2015, 41(3): 19−24.(in Chinese) doi: 10.3969/j.issn.0529-1542.2015.03.004
|
[23] |
YI M, CHI M H, KHANG C H, et al. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae [J]. The Plant Cell, 2009, 21(2): 681−695. doi: 10.1105/tpc.107.055988
|
[24] |
YANG J, LIU M X, LIU X Y, et al. Heat-shock proteins MoSsb1, MoSsz1, and MoZuo1 attenuate MoMkk1-mediated cell-wall integrity signaling and are important for growth and pathogenicity of Magnaporthe oryzae [J]. Molecular Plant-Microbe Interactions, 2018, 31(11): 1211−1221. doi: 10.1094/MPMI-02-18-0052-R
|
[25] |
CHEN L L, GENG X J, MA Y M, et al. The ER lumenal Hsp70 protein FpLhs1 is important for conidiation and plant infection in Fusarium pseudograminearum [J]. Frontiers in Microbiology, 2019, 10: 1401. doi: 10.3389/fmicb.2019.01401
|
[26] |
LIU Z, WANG Z, HUANG M, et al. The FgSsb-FgZuo-FgSsz complex regulates multiple stress responses and mycotoxin production via folding the soluble SNARE Vam7 and β2-tubulin in Fusarium graminearum [J]. Environmental Microbiology, 2017, 19(12): 5040−5059. doi: 10.1111/1462-2920.13968
|
[27] |
STONE D E, CRAIG E A. Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology, 1990, 10(4): 16222−1632.
|
[28] |
MURAKAMI H, PAIN D, BLOBEL G. 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria [J]. Revista Espanola De Enfermedades Digestivas, 1988, 107(6 pt 1): 2051−2057.
|
[29] |
XU C L, WANG S, THIBAULT G, et al. Futile protein folding cycles in the ER are terminated by the unfolded protein O-mannosylation pathway [J]. Science, 2013, 340(6135): 978−981. doi: 10.1126/science.1234055
|
[30] |
NISHIKAWA S I, FEWELL S W, KATO Y, et al. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation [J]. Scientific Reports, 2001, 153(5): 1061−1070.
|
[31] |
LYMAN S K, SCHEKMAN R. Binding of secretory precursor polypeptides to a translocon sub complex is regulated by BiP [J]. Cell, 1997, 88(1): 85−96. doi: 10.1016/S0092-8674(00)81861-9
|
[32] |
HUANG P, GAUTSCHI M, WALTER W, et al. The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1 [J]. Nature Structural & Molecular Biology, 2005, 12(6): 497−504.
|
[33] |
CUI Z M, WANG P, SUN L L, et al. Lipopolysaccharide-evoked HSPA12B expression by activation of MAPK cascade in microglial cells of the spinal cord [J]. Journal of the Neurological Sciences, 2010, 294(1/2): 29−37.
|
[34] |
SARKAR N K, KUNDNANI P, GROVER A. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa) [J]. Cell Stress & Chaperones, 2013, 18(4): 427−437.
|