Citation: | ZHUANG P J, LI N, LIU L M, et al. Condition Optimization for Leucaena leucocephala Seedling Growth in Factory [J]. Fujian Journal of Agricultural Sciences,2023,38(2):183−192 doi: 10.19303/j.issn.1008-0384.2023.02.008 |
[1] |
赵英, 陈小斌, 蒋昌顺. 我国银合欢研究进展 [J]. 热带农业科学, 2006, 26(4):55−58,63. doi: 10.3969/j.issn.1009-2196.2006.04.019
ZHAO Y, CHEN X B, JIANG C S. Advances on studies of Leucaena Bentham in China [J]. Chinese Journal of Tropical Agriculture, 2006, 26(4): 55−58,63.(in Chinese) doi: 10.3969/j.issn.1009-2196.2006.04.019
|
[2] |
GRAAMANS L, BAEZA E, VAN DEN DOBBELSTEEN A, et al. Plant factories versus greenhouses: Comparison of resource use efficiency [J]. Agricultural Systems, 2018, 160: 31−43. doi: 10.1016/j.agsy.2017.11.003
|
[3] |
崔羽, 严思维, 吴建召, 等. 不同林龄银合欢生长季土壤呼吸影响因素分析 [J]. 武夷学院学报, 2018, 37(9):31−38.
CUI Y, YAN S W, WU J Z, et al. Analyzing the factors that affect soil respiration during the growing season in Leucaena leucocephala (Lam.) de wit [J]. Journal of Wuyi University, 2018, 37(9): 31−38.(in Chinese)
|
[4] |
徐文栋, 李春兰. 密闭式植物工厂内大黄育苗技术研究 [J]. 南方农机, 2022, 53(12):25−27,31.
XU W D, LI C L. Study on seedling raising technology of Dahuang in closed plant factory [J]. South Agricultural Machinery, 2022, 53(12): 25−27,31.(in Chinese)
|
[5] |
黄思杰. 植物工厂条件下不同基质对番茄产量和品质的影响[D]. 南京: 南京农业大学, 2013.
HUANG S J. Effects of different substrates on yield and quality of tomato cultivated in plant factory[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
|
[6] |
苗妍秀, 曲梅, 李伟, 等. 植物工厂中不同供液方式对辣椒育苗的影响 [J]. 长江蔬菜, 2012(6):33−36. doi: 10.3865/j.issn.1001-3547.2012.06.010
MIAO Y X, QU M, LI W, et al. Effects of different irrigation systems on pepper seedling in plant factory [J]. Journal of Changjiang Vegetables, 2012(6): 33−36.(in Chinese) doi: 10.3865/j.issn.1001-3547.2012.06.010
|
[7] |
陈永快, 王涛, 兰婕, 等. 植物工厂内LED光调控在作物栽培中的研究进展 [J]. 江苏农业科学, 2020, 48(23):40−46.
CHEN Y K, WANG T, LAN J, et al. Research progress of LED light regulation in plant factories in crop cultivation [J]. Jiangsu Agricultural Sciences, 2020, 48(23): 40−46.(in Chinese)
|
[8] |
刘文科, 吴启保, 查凌雁. LED连续光照的植物生理作用及植物工厂应用策略 [J]. 照明工程学报, 2020, 31(5):5−8,21. doi: 10.3969/j.issn.1004-440X.2020.05.002
LIU W K, WU Q B, ZHA L Y. Application strategies and physiological mechanisms of LED continuous light for plant factory with artificial light [J]. China Illuminating Engineering Journal, 2020, 31(5): 5−8,21.(in Chinese) doi: 10.3969/j.issn.1004-440X.2020.05.002
|
[9] |
季延海. 韭菜营养液栽培的关键技术[D]. 南京: 南京农业大学, 2014.
JI Y H. The key technology of nutrient solutions cultivation of Chinese chives[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese)
|
[10] |
刘青. 营养液配方对盆栽水芹生长和品质的影响[D]. 扬州: 扬州大学, 2020.
LIU Q. Effect of nutrient solution formula on growth and quality of the potted water dropwort (Oenanthe javanica (Roxb) Wall. )[D]. Yangzhou: Yangzhou University, 2020. (in Chinese)
|
[11] |
乔源. 氮磷钾供应对水培芹菜产量、品质及元素利用效率影响的研究[D]. 杨凌: 西北农林科技大学, 2016.
QIAO Y. Effects of NPK on yield, quality and element utilization efficiency of hydroponic celery[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
|
[12] |
李莉萍, 应东山, 王琴飞, 等. 银合欢种子研究进展 [J]. 热带农业科学, 2014, 34(2):21−26.
LI L P, YING D S, WANG Q F, et al. Research progress of Leucaena seeds [J]. Chinese Journal of Tropical Agriculture, 2014, 34(2): 21−26.(in Chinese)
|
[13] |
蔡克强, 黄维南. 银合欢幼苗根瘤固氮特性研究 [J]. 植物生理学通讯, 1986(3):35−37.
CAI K Q, HUANG W N. Nitrogen fixation characteristics of nodules of Acacia seedlings [J]. Plant Physiology Communications, 1986(3): 35−37.(in Chinese)
|
[14] |
杨韡韡. 矿山废弃地生态修复技术与效应研究——以河南省鲁山县某铁矿区为例[D]. 郑州: 华北水利水电学院, 2012.
YANG W W. Ecological restoration technology and effect research of abandoned mines ——Take an iron mining area in Lushan Countyof Henan Province for example[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2012. (in Chinese)
|
[15] |
过聪, 关伟, 曾祥国, 等. 不同营养液配方对水培白蝴蝶合果芋的影响 [J]. 湖北农业科学, 2020, 59(23):87−93.
GUO C, GUAN W, ZENG X G, et al. Influence of different nutrient solution formulations on hydroponic Syngonium podoopphyllum cv. White Butterfly [J]. Hubei Agricultural Sciences, 2020, 59(23): 87−93.(in Chinese)
|
[16] |
LU T, YU H J, LI Q, et al. Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L. ) seedlings [J]. Frontiers in Plant Science, 2019, 10: 490. doi: 10.3389/fpls.2019.00490
|
[17] |
VENISSE J S, PAULIN J P, RISSET M N. Mechanisms underlying disease and resistance in host plants of fire blight [J]. Acta Hortic, 2002, 590(72): 467−468.
|
[18] |
LACAN D, BACCOU J C. High levels of antioxidant enzymes correlate with delayed senescence in nonnetted muskmelon fruits [J]. Planta, 1998, 204(3): 377−382. doi: 10.1007/s004250050269
|
[19] |
王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006.
|
[20] |
刘杰, 胡笑涛, 王文娥, 等. 光强和光周期对水培生菜光合及叶绿素荧光特性的影响 [J]. 西南农业学报, 2019, 32(8):1784−1790.
LIU J, HU X T, WANG W E, et al. Effects of light intensity and photoperiod on photosynthetic characteristics and chlorophyll fluorescence of hydroponic lettuce [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(8): 1784−1790.(in Chinese)
|
[21] |
闫晓花, 郁继华. LED补光对温室黄瓜幼苗抗衰老及抗氧化酶系统的影响 [J]. 中国沙漠, 2016, 36(2):392−398.
YAN X H, YU J H. Effects of supplemental LED light on photosynthetic pigment contents and antioxidant enzyme activities of cucumber seedling leaves [J]. Journal of Desert Research, 2016, 36(2): 392−398.(in Chinese)
|
[22] |
HALLIDAY K J, MARTÍNEZ-GARCÍA J F, JOSSE E M. Integration of light and auxin signaling [J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(6): a001586.
|
[23] |
张悦. 不同光质、光照强度及光周期对苦苣生长特性及营养品质的影响[D]. 武汉: 华中农业大学, 2021.
ZHANG Y. Effects of different light quality, light intensity and photoperiod on growth characteristics and nutritional quality of chicory[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
|
[24] |
ALAM M, KHAN M A, IMTIAZ M, et al. Indole-3-Acetic Acid Rescues Plant Growth and Yield of Salinity Stressed Tomato (Lycopersicon esculentum L.) [J]. Gesunde Pflanzen, 2020, 72: 87−95. doi: 10.1007/s10343-019-00489-z
|
[25] |
MADANI S M, PIRI S, SEDAGHATHOOR S. The response of three mandarin cultivars grafted on sour orange rootstock to salinity stress [J]. International Journal of Fruit Science, 2022, 22(1): 264−274. doi: 10.1080/15538362.2022.2036669
|
[26] |
BHUTTA T S, ZAFAR-UL-HYE M, SHAABAN M, et al. Influence of plant growth promoting rhizobacterial inoculation on wheat productivity under soil salinity stress [J]. Phyton, 2019, 88(2): 119. doi: 10.32604/phyton.2019.06570
|
[27] |
GERAMI M, MAJIDIAN P, GHORBANPOUR A, et al. Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor [J]. Physiology and Molecular Biology of Plants:an International Journal of Functional Plant Biology, 2020, 26(5): 965−974. doi: 10.1007/s12298-020-00788-0
|
[28] |
SAYYAD-AMIN P, JAHANSOOZ M R, BORZOUEI A, et al. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress [J]. Journal of Biological Physics, 2016, 42(4): 601−620. doi: 10.1007/s10867-016-9428-1
|
[29] |
JAYAWARDENA D M, HECKATHORN S A, BOLDT J K. Effects of Elevated Carbon Dioxide and Chronic Warming on Nitrogen (N)-Uptake Rate, -Assimilation, and -Concentration of Wheat [J]. Plants (Basel)., 2020, 9(12): 1689.
|
[30] |
CECHIN I, DE FÁTIMA F T. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse [J]. Plant Science, 2004, 166(5): 1379−1385. doi: 10.1016/j.plantsci.2004.01.020
|
[31] |
CHEN J, LIU S D, ZHANG S P, et al. Nitrogen modulates cotton root morphology by affecting abscisic acid (ABA) and salicylic acid (SA) content [J]. Archives of Agronomy and Soil Science, 2021, 67(12): 1722−1738. doi: 10.1080/03650340.2020.1807518
|
[32] |
FORNARI E Z, GAVIRAGHI L, BASSO C J, et al. Relationship between photosynthetic pigments and corn production under nitrogen sources [J]. Pesquisa Agropecuária Tropical, 2020, 50: 1−9.
|
[33] |
CHEN G, WANG L, FABRICE M R, et al. Physiological and nutritional responses of pear seedlings to nitrate concentrations [J]. Frontiers in Plant Science, 2018: 1679.
|
[34] |
CRUZ J L, MOSQUIM P R, PELACANI C R, et al. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency [J]. Plant and Soil, 2003, 257(2): 417−423. doi: 10.1023/A:1027353305250
|
[35] |
ZANGANI E, AFSAHI K, SHEKARI F. Nitrogen and Phosphorus Addition to Soil Improves Seed Yield, Foliar Stomatal Conductance, and the Photosynthetic Response of Rapeseed (Brassica napus L.) [J]. Agriculture., 2021, 11(6): 483. doi: 10.3390/agriculture11060483
|
[36] |
TU P F, DENG L S, LI J, et al. Effect of phosphorus on N, P, K, Mg accumulation and plant growth of different citrus rootstocks [J]. Applied Ecology and Environmental Research, 2018, 16(1): 819−836. doi: 10.15666/aeer/1601_819836
|
[37] |
JOHNSON N C. Responses of Salsola kali and Panicum virgatum to mycorrhizal fungi, phosphorus and soil organic matter: implications for reclamation [J]. Journal of Applied Ecology, 1998, 35: 86−94. doi: 10.1046/j.1365-2664.1998.00277.x
|
[38] |
SOBCZAK A, KOWALCZYK K, GAJC-WOLSKA J, et al. Growth, yield and quality of sweet pepper fruits fertilized with polyphosphates in hydroponic cultivation with LED lighting [J]. Agronomy, 2020, 10(10): 1560. doi: 10.3390/agronomy10101560
|
[39] |
CETNER M D, KALAJI H M, BORUCKI W. Phosphorus deficiency affects the I-step of chlorophyll a fluorescence induction curve of radish [J]. Photosynthetica, 2020, 58(2): 671−681.
|