• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
CHEN Y, MA L, RAO X E, et al. Expressions of Flavonoid Biosynthesis Genes in Acorus gramineus Determined by Transcriptome Sequencing [J]. Fujian Journal of Agricultural Sciences,2023,38(8):924−931 doi: 10.19303/j.issn.1008-0384.2023.08.006
Citation: CHEN Y, MA L, RAO X E, et al. Expressions of Flavonoid Biosynthesis Genes in Acorus gramineus Determined by Transcriptome Sequencing [J]. Fujian Journal of Agricultural Sciences,2023,38(8):924−931 doi: 10.19303/j.issn.1008-0384.2023.08.006

Expressions of Flavonoid Biosynthesis Genes in Acorus gramineus Determined by Transcriptome Sequencing

doi: 10.19303/j.issn.1008-0384.2023.08.006
  • Received Date: 2023-03-06
  • Rev Recd Date: 2023-05-15
  • Available Online: 2023-09-19
  • Publish Date: 2023-08-28
  •   Objective  Transcriptomes of Acorus gramineus tissues were applied to molecularly differentiating flavonoid synthesis genes in the organs.   Methods  The high-throughput sequencing technology was employed to obtain the transcriptomes of the genes in 7 organs of A, gramineus. Thereby, the functions of unigenes were annotated, the flavonoid biosynthesis pathway deciphered, the differentially expressed genes (DEGs) in the pathway screened, and an expression analysis performed.  Results  A total of 39.91 to 42.97 M of high-quality data were secured with 5.98–6.45 Gb bases, more than 94.05% Q30 bases, and a GC content of 47.81%–50.32%. From the GO database, 62506 were annotated to classify the 18616 unigenes into 3 functional groups that included cellular components, molecular functions, and biological processes corresponding to 6, 14, and 21 subcategories, respectively. Numerous genes were distributed in the subcategories, such as cellular anatomical entities, connections, catalytic activities, and cellular processes. There were 10124 unigenes enriched in the 5 major categories and 19 subclasses of the KEGG database. From which, 4 flavonoid biosynthesis pathways, 14 key enzymes, and 63 DEGs were screened. The transcriptomes in 7 tissues of A. gramineus obtained in this study led to the identification of 63 DEGs involved in 4 flavonoid biosynthesis pathways. These genes differed in expressions in the organs indicating their diversified roles in the flavonoid biosynthesis in A. gramineus  Conclusion  The research results have enriched the genetic information of A. gramineus and provided a reference for further elucidating the functional genes involved in the biosynthesis of flavonoids in A. gramineus.
  • loading
  • [1]
    中国科学院中国植物志编辑委员会. 中国植物志-第五十七卷, 第三分册[M]. 北京: 科学出版社, 1991: 8.
    [2]
    HUANG Y Z, HUA H X, LI S G, et al. Contact and fumigant toxicities of calamusenone isolated from Acorus gramineus rhizome against adults of Sitophilus zeamais and Rhizopertha Dominica [J]. Insect Science, 2011, 18(2): 181−188. doi: 10.1111/j.1744-7917.2010.01358.x
    [3]
    张可凡, 李勇学, 陈瑶, 等. 金钱蒲组织培养再生体系建立的研究 [J]. 种子, 2020, 39(8):86−90,93.

    ZHANG K F, LI Y X, CHEN Y, et al. Studies on establishment of tissue culture regeneration system of Acorus gramineus [J]. Seed, 2020, 39(8): 86−90,93.(in Chinese)
    [4]
    RAI R, GUPTA A, SIDDIQUI I R, et al. Xanthone glycoside from rhizome of Acorus calamus[J]. Indian Journal of Chemistry, 1999, 38B∶1143-1144.
    [5]
    陶宏, 朱恩圆, 王峥涛. 石菖蒲的化学成分 [J]. 中国天然药物, 2006, 4(2):159−160.

    TAO H, ZHU E Y, WANG Z T. Chemical study on the rhizome of Acorus tatarinowii [J]. Chinese Journal of Natural Medicines, 2006, 4(2): 159−160.(in Chinese)
    [6]
    陈峰. 菖蒲属植物的化学成分及药理作用 [J]. 世界科学技术(中医药现代化), 2011, 13(6):1013−1017.

    CHEN F. Chemical compositions and pharmacological action of Acorus [J]. World Science and Technology (Modernization of Traditional Chinese Medicine and Materia Medica), 2011, 13(6): 1013−1017.(in Chinese)
    [7]
    乔小燕, 马春雷, 陈亮. 植物类黄酮生物合成途径及重要基因的调控 [J]. 天然产物研究与开发, 2009, 21(2):354−360,207.

    QIAO X Y, MA C L, CHEN L. Plant flavonoid biosynthesis pathway and regulation of its important genes [J]. Natural Product Research and Development, 2009, 21(2): 354−360,207.(in Chinese)
    [8]
    谭政委, 鲁丹丹, 李磊, 等. 红花类黄酮3-O-糖基转移酶基因CtUF3GT的克隆及功能鉴定 [J]. 药学学报, 2022, 57(8):2543−2551.

    TAN Z W, LU D D, LI L, et al. Identification and characterization of flavonoid 3-O-glycosyltransferase gene CtUF3GT from safflower(Carthamus tinctorius L. ) [J]. Acta Pharmaceutica Sinica, 2022, 57(8): 2543−2551.(in Chinese)
    [9]
    孙诗瑶, 王晓丽, 曹子林, 等. 千针万线草根转录组测序及黄酮类化合物合成相关基因挖掘 [J]. 福建农业学报, 2022, 37(8):1008−1015.

    SUN S Y, WANG X L, CAO Z L, et al. Transcriptome sequencing and identification of genes associated with flavonoid biosynthesis in Stellaria yunnanensis roots [J]. Fujian Journal of Agricultural Sciences, 2022, 37(8): 1008−1015.(in Chinese)
    [10]
    叶碧欢, 杨阳, 朱杰丽, 等. 基于比较转录组学的多花黄精黄酮类化合物合成基因表达分析 [J]. 食品与生物技术学报, 2022, 41(4):84−92.

    YE B H, YANG Y, ZHU J L, et al. Analysis of genes expression involved in flavonoids biosynthesis in Polygonatum cyrtonema based on comparative transcriptome [J]. Journal of Food Science and Biotechnology, 2022, 41(4): 84−92.(in Chinese)
    [11]
    肖恺灵, 张媛媛, 齐致源, 等. 藜蒿总黄酮提取工艺优化及其抗氧化活性研究 [J]. 湖南饲料, 2022(3):32−38.

    XIAO K L, ZHANG Y Y, QI Z Y, et al. Optimization of extraction process of total flavonoids from Artemisia selengensis and its antioxidant activity [J]. Hunan Feed, 2022(3): 32−38.(in Chinese)
    [12]
    李长缨, 李东方. 水菖蒲根茎挥发油提取及含量测定 [J]. 现代医药卫生, 2013, 29(6):842,844.

    LI C Y, LI D F. Extraction of volatile oil in rhizome of Acorus calamus L. and its content determination [J]. Journal of Modern Medicine & Health, 2013, 29(6): 842,844.(in Chinese)
    [13]
    李娟, 刘清茹, 肖兰, 等. 湖南产石菖蒲和水菖蒲挥发油成分分析和抑菌活性检测 [J]. 中成药, 2015, 37(12):2778−2782.

    LI J, LIU Q R, XIAO L, et al. Composition analysis and antibacterial activity detection of volatile oil from Acorus gramineus and Acorus calamus produced in Hunan Province [J]. Chinese Traditional Patent Medicine, 2015, 37(12): 2778−2782.(in Chinese)
    [14]
    KIM C S, WINN M D, SACHDEVA V, et al. K-mer clustering algorithm using a MapReduce framework: Application to the parallelization of the Inchworm module of Trinity [J]. BMC Bioinformatics, 2017, 18(1): 467. doi: 10.1186/s12859-017-1881-8
    [15]
    赵莹, 杨欣宇, 赵晓丹, 等. 植物类黄酮化合物生物合成调控研究进展 [J]. 食品工业科技, 2021, 42(21):454−463.

    ZHAO Y, YANG X Y, ZHAO X D, et al. Research progress on regulation of plant flavonoids biosynthesis [J]. Science and Technology of Food Industry, 2021, 42(21): 454−463.(in Chinese)
    [16]
    王圭垚. 金露梅转录组分析及黄酮类化合物合成关键基因的克隆[D]. 西宁: 青海师范大学, 2023.

    WANG G Y. Transcriptome analysis and cloning of key genes for flavonoid synthesis in Potentilla fruticosa L. [D]. Xining: Qinghai Normal University, 2023. (in Chinese)
    [17]
    侯杰, 佟玲, 崔国新, 等. 植物类黄酮3’-羟化酶(F3’H)基因的研究进展 [J]. 植物生理学报, 2011, 47(7):641−647.

    HOU J, TONG L, CUI G X, et al. Research advances of plant flavonoid 3’-hydroxylase(F3’H) gene [J]. Plant Physiology Journal, 2011, 47(7): 641−647.(in Chinese)
    [18]
    FERRER J L, AUSTIN M B, STEWART C, et al. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids [J]. Plant Physiology and Biochemistry, 2008, 46(3): 356−370. doi: 10.1016/j.plaphy.2007.12.009
    [19]
    JUN S Y, SATTLER S A, CORTEZ G S, et al. Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia-lyase [J]. Plant Physiology, 2018, 176(2): 1452−1468. doi: 10.1104/pp.17.01608
    [20]
    吕思佳, 吴月燕, 贾永红, 等. 云锦杜鹃苯丙氨酸解氨酶基因的克隆及功能分析 [J]. 生物工程学报, 2022, 38(1):374−385.

    LÜ S J, WU Y Y, JIA Y H, et al. Cloning and functional analysis of the phenylalaninammo-nialyase gene from Rhododendron fortunei [J]. Chinese Journal of Biotechnology, 2022, 38(1): 374−385.(in Chinese)
    [21]
    熊青, 宋姣敏, 崔萌, 等. 茉莉花JsPAL2基因的克隆与表达分析 [J]. 热带作物学报, 2018, 39(7):1359−1366.

    XIONG Q, SONG J M, CUI M, et al. Cloning and expression analysis of JsPAL2 gene from Jasminum sambac [J]. Chinese Journal of Tropical Crops, 2018, 39(7): 1359−1366.(in Chinese)
    [22]
    PUNYASIRI P A N, ABEYSINGHE I S B, KUMAR V, et al. Flavonoid biosynthesis in the tea plant Camellia sinensis: Properties of enzymes of the prominent epicatechin and catechin pathways [J]. Archives of Biochemistry and Biophysics, 2004, 431(1): 22−30. doi: 10.1016/j.abb.2004.08.003
    [23]
    XU B B, LI J N, ZHANG X K, et al. Cloning and molecular characterization of a functional flavonoid 3’-hydroxylase gene from Brassica napus [J]. Journal of Plant Physiology, 2007, 164(3): 350−363. doi: 10.1016/j.jplph.2006.03.001
    [24]
    陈建华, 李晓曼, 杨文钰, 等. 植物甲基化类黄酮及其O-甲基转移酶研究进展 [J]. 天然产物研究与开发, 2021, 33(6):1072−1079.

    CHEN J H, LI X M, YANG W Y, et al. Research progress of plant O-methoxide flavonoids and O-methyltransferases [J]. Natural Product Research and Development, 2021, 33(6): 1072−1079.(in Chinese)
    [25]
    ITOH N, IWATA C, TODA H. Molecular cloning and characterization of a flavonoid-O-methyltransferase with broad substrate specificity and regioselectivity from Citrus depressa [J]. BMC Plant Biology, 2016, 16(1): 180. doi: 10.1186/s12870-016-0870-9
    [26]
    POLLASTRI S, TATTINI M. Flavonols: Old compounds for old roles [J]. Annals of Botany, 2011, 108(7): 1225−1233. doi: 10.1093/aob/mcr234
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (499) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return