• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 39 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
LIU J, WENG H Y, CHENG Z Y, et al. Effects of Pulsed Electric Field on Photosynthetic Electron Transport and Negative Air Ion Releasing of Agave americana [J]. Fujian Journal of Agricultural Sciences,2024,39(7):801−809 doi: 10.19303/j.issn.1008-0384.2024.07.007
Citation: LIU J, WENG H Y, CHENG Z Y, et al. Effects of Pulsed Electric Field on Photosynthetic Electron Transport and Negative Air Ion Releasing of Agave americana [J]. Fujian Journal of Agricultural Sciences,2024,39(7):801−809 doi: 10.19303/j.issn.1008-0384.2024.07.007

Effects of Pulsed Electric Field on Photosynthetic Electron Transport and Negative Air Ion Releasing of Agave americana

doi: 10.19303/j.issn.1008-0384.2024.07.007
  • Received Date: 2024-04-18
  • Rev Recd Date: 2024-05-25
  • Available Online: 2024-10-25
  • Publish Date: 2024-07-28
  •   Objective   To investigate the effects of pulsed electric field on the photosynthetic electron transport and ability to release negative air ions (NAIs) of Agave americana were investigated.   Method  Chlorophyll content, rapid chlorophyll fluorescence kinetic functions (OJIP curve), chlorophyll fluorescence parameters, and NAI concentration of A. americana var. Marginata exposed to a pulsed electric field at 0 kV (CK), 5 kV (T1), or 7 kV (T2) were determined.  Result   (1) T1 and T2 significantly increased the chlorophyll content over CK by 6.30% and 6.70%, respectively. (2) The OJIP curves had higher deflection (I) and peak (P) than the origin (O) and inflection point (J), a flatter upward trend on I-P than on O-J, and a greater than 0 J-band with the peak of T2 higher than that of T1. (3) T1 and T2 also caused the chlorophyll fluorescence parameters to generally rise on the peak fluorescence intensity (Fm) and energy captured by unit reaction center (TRo/CSo), fall on the PSⅡ light, system potential activity (Fv/Fo), and number of electron transmitters on PSⅡ acceptor side (Sm), and maintain a stable maximum light quantum efficiency (Fv/Fm) as well as fluorescence at J-step (Vj). The performance index based on light energy absorption (PIabs) decreased with an 18.60% reduction by T1 and 14.1% by T2. The comprehensive performance parameter (PItotal) under CK was greater than that under T1 or T2. (4) After a 4h treatment, the NAI concentration increased 87.60% under T1 and 62.09% under T2 from an hour previously. And, during that time, the concentrations differed significantly between T1 and T2, as well as in comparison with CK.  Conclusion  Exposure to a pulsed electric field significantly affected the photosynthetic electron transport and NAIs releasing of A. americana. The findings disclosed a means to identify potentially applicable germplasms and a physical treatment to enrich the unique biological function of the plant.
  • loading
  • [1]
    杨志坚, 温杭凯, 陈选阳, 等. 金边龙舌兰组织培养技术研究 [J]. 江苏农业科学, 2019, 47(5):37−39.

    YANG Z J, WEN H K, CHEN X Y, et al. Study on tissue culture technology of Agave americana var. marginata [J]. Jiangsu Agricultural Sciences, 2019, 47(5): 37−39. (in Chinese)
    [2]
    焦淑萍, 陈彪, 姜虹. 龙舌兰抗炎作用的实验研究 [J]. 北华大学学报(自然科学版), 2001, 2(5):377−379.

    JIAO S P, CHEN B, JIANG H. On the Anti-inflammatory of Agave americana var. marginata hort [J]. Journal of Beihua University (Natural Science), 2001, 2(5): 377−379. (in Chinese)
    [3]
    兑宝峰. 龙舌兰属植物栽培与繁殖 [J]. 中国花卉园艺, 2012(20):34−36.

    DUI B F. Cultivation and propagation of Agave plant [J]. China Flowers & Horticulture, 2012(20): 34−36. (in Chinese)
    [4]
    BUCKLEY R, ZHONG L S, YU H, et al. Health benefits of airborne terpenoids and aeroanions: Insights from thematic review of Chinese-language research on forest sensory experiences [J]. Environments, 2024, 11(4): 79. doi: 10.3390/environments11040079
    [5]
    TIKHONOV V P, TSVETKOV V D, LITVINOVA E G, et al. Generation of negative air ions by plants upon pulsed electrical stimulation applied to soil [J]. Russian Journal of Plant Physiology, 2004, 51(3): 414−419. doi: 10.1023/B:RUPP.0000028690.74805.e2
    [6]
    李娜, 魏天静, 肖明扬, 等. 空气负离子对原发性高血压大鼠血压、氧化应激和炎症水平的影响及机制 [J]. 卫生研究, 2024, 53(02):300−309.

    LI N, WEI T J, XIAO M Y, et al. Effects and mechanisms of air anions on levels of blood pressure, oxidative stress and inflammation in primary hypertensive rats [J]. Health Research, 2024, 53(02): 300−309.
    [7]
    张超英. 空气负离子对室内环境颗粒物影响的研究[D]. 北京: 北京化工大学, 2020.

    ZHANG C Y. Study on the influence of negative air ions on indoor environmental particles[D]. Beijing: Beijing University of Chemical Technology, 2020. (in Chinese)
    [8]
    罗诗茵, 聂菁, 韩文敏, 等. 脉冲电场回收农产品加工废料中生物活性物质的研究进展[J]. 食品工业科技, 2024, 45(19): 392−398.

    LUO S Y, NIE J, HAN W M, et al. Recovery of bioactive substances in agricultural processing waste by pulsed electric field[J]. Food Industry Technology, 2024, 45(19): 392−398.
    [9]
    SIDDEEG A, ZENG X N, RAHAMAN A, et al. Effect of pulsed electric field pretreatment of date palm fruits on free amino acids, bioactive components, and physicochemical characteristics of the alcoholic beverage [J]. Journal of Food Science, 2019, 84(11): 3156−3162. doi: 10.1111/1750-3841.14825
    [10]
    张良, 王丽娟, 钱建亚. 脉冲电场处理油菜籽对菜籽油品质的影响 [J]. 中国油脂, 2017, 42(11):33−37.

    ZHANG L, WANG L J, QIAN J Y. Effect of pulsed electric field on quality of canola oil by treating oilseed grain [J]. China Oils and Fats, 2017, 42(11): 33−37. (in Chinese)
    [11]
    宋婷, 张谧, 高吉喜, 等. 快速叶绿素荧光动力学及其在植物抗逆生理研究中的应用 [J]. 生物学杂志, 2011, 28(6):81−86.

    SONG T, ZHANG M, GAO J X, et al. Fast chlorophyll fluorescence kinetics and its application in plant physiology research [J]. Journal of Biology, 2011, 28(6): 81−86. (in Chinese)
    [12]
    KALAJI H M, JAJOO A, OUKARROUM A, et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions [J]. Acta Physiologiae Plantarum, 2016, 38(4): 102. doi: 10.1007/s11738-016-2113-y
    [13]
    吴仁烨, 邓传远, 王彬, 等. 具备释放负离子功能室内植物的种质资源研究 [J]. 中国农学通报, 2011, 27(8):91−97.

    WU R Y, DENG C Y, WANG B, et al. Study on indoor plant germplasm resources which generate negative air ions [J]. Chinese Agricultural Science Bulletin, 2011, 27(8): 91−97. (in Chinese)
    [14]
    习岗, 贺瑞瑞, 刘锴, 等. 脉冲电场对渗透胁迫下玉米幼苗自发光子辐射的影响 [J]. 农业工程学报, 2015(3):319−324.

    XI G, HE R R, LIU K, et al. Effect of pulsed electric field on spontaneous photon emission of corn seedlings under osmotic stress [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015(3): 319−324. (in Chinese)
    [15]
    FRATIANNI A, NIRO S, MESSIA M C, et al. Evaluation of carotenoids and furosine content in air dried carrots and parsnips pre-treated with pulsed electric field (PEF) [J]. European Food Research and Technology, 2019, 245(11): 2529−2537. doi: 10.1007/s00217-019-03367-0
    [16]
    王艳英, 邓传远, 郑金贵, 等. 植物源负离子发生器室内应用的研究 [J]. 广州大学学报(自然科学版), 2014, 13(1):29−37.

    WANG Y Y, DENG C Y, ZHENG J G, et al. Study on the indoor application of the plants-NAI generator [J]. Journal of Guangzhou University (Natural Science Edition), 2014, 13(1): 29−37. (in Chinese)
    [17]
    WU R Y. Research on generation of negative air ions by plants and stomatal characteristics under pulsed electrical field stimulation [J]. International Journal of Agriculture and Biology, 2017, 19(5): 1235−1245. doi: 10.17957/IJAB/15.0431
    [18]
    王红燕. 龙舌兰科植物在脉冲电场刺激下释放负离子浓度及叶肉细胞超微结构的变化[D]. 福州: 福建农林大学, 2013

    WANG H Y. Changes of negative ion concentration and ultrastructure of mesophyll cells released by Agavaceae plants under pulsed electric field stimulation[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. (in Chinese)
    [19]
    WANG J, LI S H. Changes in negative air ions concentration under different light intensities and development of a model to relate light intensity to directional change [J]. Journal of Environmental Management, 2009, 90(8): 2746−2754. doi: 10.1016/j.jenvman.2009.03.003
    [20]
    TIKHONOV V P, TSVETKOV V D, LITVINOVA E G, et al. Generation of negative air ions by wheat seedlings in a high voltage electrization of soil [J]. Biofizika, 2002, 47(1): 130−134.
    [21]
    危也宁. 脉冲电场作用对植物释放负离子及生理机制的研究[D]. 福州: 福建农林大学, 2015.

    WEI Y N. Study on the release of negative ions from plants by pulsed electric field and its physiological mechanism[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese)
    [22]
    吴仁烨. 功能型植物高效释放负离子及其发生器的研究[D]. 福州: 福建农林大学, 2011.

    WU R Y. Study on efficient release of negative ions from functional plants and its generator[D]. Fuzhou: Fujian Agriculture and Forestry University, 2011. (in Chinese)
    [23]
    杨运经, 习岗, 刘锴, 等. 应用负高压脉冲技术提高植物空气净化能力的探讨 [J]. 高电压技术, 2011, 37(1):190−197.

    YANG Y J, XI G, LIU K, et al. Application of negative high-voltage pulse technology to improve air purification ability of plants [J]. High Voltage Engineering, 2011, 37(1): 190−197. (in Chinese)
    [24]
    STRASSERF R J, SRIVASTAVA A, GOVINDJEE. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria [J]. Photochemistry and Photobiology, 1995, 61(1): 32−42. doi: 10.1111/j.1751-1097.1995.tb09240.x
    [25]
    丁旭玲, 张万超, 黄龙飞, 等. 常态下仙人掌科植物负离子释放量与其刺尖数量的相关性研究 [J]. 安徽农业大学学报, 2015, 42(2):263−267.

    DING X L, ZHANG W C, HUANG L F, et al. Correlation between the spine number and the release of negative air ions by cactaceous in the natural state [J]. Journal of Anhui Agricultural University, 2015, 42(2): 263−267. (in Chinese)
    [26]
    张万超, 郑俊鸣, 丁旭玲, 等. 3种仙人掌科植物负离子释放量与释放通道的相关性研究 [J]. 热带作物学报, 2016, 37(7):1298−1305.

    ZHANG W C, ZHENG J M, DING X L, et al. Correlation between the negative air ions released by 3 species in Cactaceae and the releasing passage [J]. Chinese Journal of Tropical Crops, 2016, 37(7): 1298−1305. (in Chinese)
    [27]
    吴仁烨, 郑金贵, 翁海勇, 等. 脉冲电场刺激对植物释放负离子的影响及其机理 [J]. 生态学杂志, 2017, 36(5):1224−1233.

    WU R Y, ZHENG J G, WENG H Y, et al. Influence of pulsed electrical fields on generation of negative air ions by plants and its mechanism [J]. Chinese Journal of Ecology, 2017, 36(5): 1224−1233. (in Chinese)
    [28]
    原佳乐, 马超, 冯雅岚, 等. 不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应 [J]. 植物生理学报, 2018, 54(6):1119−1129.

    YUAN J L, MA C, FENG Y L, et al. Response of chlorophyll fluorescence transient in leaves of wheats with different drought resistances to drought stresses and rehydration [J]. Plant Physiology Journal, 2018, 54(6): 1119−1129. (in Chinese)
    [29]
    陈文胜, 出佳范, 吕再辉, 等. 模拟酸雨处理后番茄叶片叶绿素含量及叶绿素荧光参数的动态变化 [J]. 植物资源与环境学报, 2019, 28(3):108−116.

    CHEN W S, CHU J F, LYU Z H, et al. Dynamic changes in chlorophyll content and chlorophyll fluorescence parameters of leaf of Lycopersicon esculentum after simulated acid rain treatment [J]. Journal of Plant Resources and Environment, 2019, 28(3): 108−116. (in Chinese)
    [30]
    王兰兰, 李琦, 宋晓卉, 等. 环境条件对植物叶绿素荧光参数影响研究进展 [J]. 沈阳师范大学学报(自然科学版), 2019, 37(4):362−367.

    WANG L L, LI Q, SONG X H, et al. Effects of environmental conditions on chlorophyll fluorescence parameters of plants [J]. Journal of Shenyang Normal University (Natural Science Edition), 2019, 37(4): 362−367. (in Chinese)
    [31]
    SPERANZA A, CROSTI P, MALERBA M, et al. The environmental endocrine disruptor, bisphenol A, affects germination, elicits stress response and alters steroid hormone production in kiwifruit pollen [J]. Plant Biology, 2011, 13(1): 209−217. doi: 10.1111/j.1438-8677.2010.00330.x
    [32]
    谢丰璞, 王楠, 高静, 等. 干旱及复水循环对苗期药用大黄叶片光合碳同化功能和光化学活性的影响 [J]. 西北植物学报, 2023, 43(11):1872−1887.

    XIE F P, WANG N, GAO J, et al. Effects of drought and re-watering cycle on photosynthetic carbon assimilation function and photochemical activity of Rheum of ficinale Baill. Leaves at seedling stage [J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(11): 1872−1887. (in Chinese)
    [33]
    APPENROTH K J, STÖCKEL J, SRIVASTAVA A, et al. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements [J]. Environmental Pollution, 2001, 115(1): 49−64. doi: 10.1016/S0269-7491(01)00091-4
    [34]
    SNIDER J L, THANGTHONG N, PILON C, et al. OJIP-fluorescence parameters as rapid indicators of cotton (Gossypium hirsutum L. ) seedling vigor under contrasting growth temperature regimes [J]. Plant Physiology and Biochemistry, 2018, 132: 249−257. doi: 10.1016/j.plaphy.2018.09.015
    [35]
    WENG H Y, WU M Y, LI X B, et al. High-throughput phenotyping salt tolerance in JUNCAOs by combining prompt chlorophyll a fluorescence with hyperspectral spectroscopy [J]. Plant Science, 2023, 330: 111660. doi: 10.1016/j.plantsci.2023.111660
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (7) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return