• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 39 Issue 5
May  2024
Turn off MathJax
Article Contents
CHEN X Z, DONG Z X, ZHANG J G. Silage Carbon Sources Preferred by Epiphytic Lactic Acid Bacteria [J]. Fujian Journal of Agricultural Sciences,2024,39(5):512−521 doi: 10.19303/j.issn.1008-0384.2024.05.002
Citation: CHEN X Z, DONG Z X, ZHANG J G. Silage Carbon Sources Preferred by Epiphytic Lactic Acid Bacteria [J]. Fujian Journal of Agricultural Sciences,2024,39(5):512−521 doi: 10.19303/j.issn.1008-0384.2024.05.002

Silage Carbon Sources Preferred by Epiphytic Lactic Acid Bacteria

doi: 10.19303/j.issn.1008-0384.2024.05.002
  • Received Date: 2023-11-28
  • Rev Recd Date: 2024-02-18
  • Available Online: 2024-06-26
  • Publish Date: 2024-05-28
  •   Objective   Preferential carbon sources of epiphytic lactic acid bacteria (LAB) were studied in laboratory to aid turning native grasses into silage.   Method   Sixteen representative LAB were isolated from forage and cultured on MRS broth media using glucose, sucrose, fructose, xylose, raffinose, or a mixture of the 5 sugars as carbon source. Three replicates for each LAB strain and a blank control without LAB inoculation for each sugar treatment were included. After incubation for 24 h, contents of residual sugars and generated lactic acid in the medium were determined by high-performance liquid chromatography.   Results   (1) Sucrose appeared to be the preferential carbon source by most LAB. Among the other sugars, raffinose and xylose were preferred by Lactobacillus fermentum (LbF-WM), and xylose by Leuconostoc pseudomesenteroides (LeP-IR). (2) An 100% utilization on sucrose by Lb. reuteri (LbR-EG) and Leuconostoc citreum (LeC-IR), on fructose by LbF-WM and LbR-EG, as well as on raffinose by LbF-WM, LbR-EG, and LeP-IR was observed. Enterococcus faecium (EF-KG), Lb. brevis (LbB-KG), Lactobacillus pentosus (LbPe-EG), and Lactococcus lactis (LcL-SC) could more efficiently utilize glucose than the other sugars. (3) The greatest amounts of lactic acid were produced from the fermentation of glucose or the mixed sugars by E. durans (EG-IR), from that of fructose by LbPe-EG, from that of raffinose or the sugar mixture by Leuconostoc mesenteroides (LeM-IR), from that of sucrose by LbPe-EG, from that of xylose by LbF-WM, and from that of the mixed sugars by Lactococcus garvieae (LcG-IR). (4) The lactic acid production was more efficient by E. durans (ED-IR) on glucose, by Lb. plantarum (LbPl-IR), or LbPe-EG on fructose, by LbPl-IR or LeM-IR on raffinose, by LbPe-EG, LbPl-IR, or ED-IR on sucrose, Le. pseudomesenteroides (LeP-IR) on xylose, and LcG-IR or EG-IR on mixed sugars. A lactic acid production efficiency greater than 80% was reached by LbPl-IR grown on the medium with the mixed sugars.   Conclusion   The sugar utilization and lactic acid production of the LAB fermentations on native grasses varied significantly. Sucrose appeared to be the preferential carbon source by most LAB, sucrose and glucose could obtain the higher utilization rate and lactic acid amount, and glucose could obtain higher lactic acid efficiency. For efficient and effective application of LAB to obtain extended shelf-life silage, it was imperative that careful selection of microbe strains and carbon source be exercised.
  • loading
  • [1]
    张志飞, 王青兰. 牧草青贮乳酸菌研究进展 [J]. 湖南生态科学学报, 2021, 8(1):70−76. doi: 10.3969/j.issn.2095-7300.2021.01.010

    ZHANG Z F, WANG Q L. Research progress of lactic acid bacteria in forage silage [J]. Journal of Hunan Ecological Science, 2021, 8(1): 70−76. (in Chinese) doi: 10.3969/j.issn.2095-7300.2021.01.010
    [2]
    杨俊峰, 沈向华, 金曙光. 乳酸菌在饲料青贮中的应用及研究进展 [J]. 浙江畜牧兽医, 2011, 36(5):9−11. doi: 10.3969/j.issn.1005-7307.2011.05.005

    YANG J F, SHEN X H, JIN S G. Application and research progress of lactic acid bacteria in feed silage [J]. Zhejiang Journal Animal Science and Veterinary Medicine, 2011, 36(5): 9−11. (in Chinese) doi: 10.3969/j.issn.1005-7307.2011.05.005
    [3]
    李新一, 程晨, 尹晓飞, 等. 中外草牧业发展历程、重点与中国草牧业发展措施 [J]. 草原与草业, 2020, 32(4):6−13. doi: 10.3969/j.issn.2095-5952.2020.04.007

    LI X Y, CHENG C, YIN X F, et al. Comparative analysis and enlightening countermeasures of Chinese and foreign grass and husbandry development [J]. Grassland and Prataculture, 2020, 32(4): 6−13. (in Chinese) doi: 10.3969/j.issn.2095-5952.2020.04.007
    [4]
    杨楠, 邹苏燕, 戚如鑫, 等. 青贮微生物制剂及优良青贮菌种筛选的研究进展 [J]. 动物营养学报, 2020, 32(2):578−585. doi: 10.3969/j.issn.1006-267x.2020.02.013

    YANG N, ZOU S Y, QI R X, et al. Research progress on microbial preparations of silage and selection of optimum strains for silage preparing [J]. Chinese Journal of Animal Nutrition, 2020, 32(2): 578−585. (in Chinese) doi: 10.3969/j.issn.1006-267x.2020.02.013
    [5]
    吕竑建, 郭香, 陈德奎, 等. 植物乳酸菌和贮藏温度对辣木叶青贮品质的影响 [J]. 草业学报, 2021, 30(3):121−128. doi: 10.11686/cyxb2020152

    LV H J, GUO X, CHEN D K, et al. Effect of lactic acid bacteria and storage temperature on the quality of Moringa oleifera leaf silage [J]. Acta Prataculturae Sinica, 2021, 30(3): 121−128. (in Chinese) doi: 10.11686/cyxb2020152
    [6]
    CAI Y M, BENNO Y, OGAWA M, et al. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation [J]. Applied and Environmental Microbiology, 1998, 64(8): 2982−2987. doi: 10.1128/AEM.64.8.2982-2987.1998
    [7]
    蔡红英. 植物乳杆菌对小鼠肝脏脂代谢的调控与作用机制[D]. 北京: 中国农业科学院, 2020.

    CAI H Y. Effects and Mechanisms of Hepatic Lipid Regulation in Mice by Lactobacillus Plantarum[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
    [8]
    LINDOW S E, BRANDL M T. Microbiology of the phyllosphere [J]. Applied and Environmental Microbiology, 2003, 69(4): 1875−1883. doi: 10.1128/AEM.69.4.1875-1883.2003
    [9]
    MERCIER J, LINDOW S E. Role of leaf surface sugars in colonization of plants by bacterial epiphytes [J]. Applied and Environmental Microbiology, 2000, 66(1): 369−374. doi: 10.1128/AEM.66.1.369-374.2000
    [10]
    郝永伟, 吕蕾. 植物乳杆菌增菌培养基碳源优化 [J]. 齐鲁工业大学学报, 2014, 28(1):36−38.

    HAO Y W, LV L. Optimization of carbon of culture medium for accumulating Lactobacillus plantarum [J]. Journal of Qilu University of Technology, 2014, 28(1): 36−38. (in Chinese)
    [11]
    金玉洁, 何国庆. 植物乳杆菌ZU018增殖培养基的优化[J]. 食品工业科技, 2020, 41(14): 94-100.

    JIN Y J, HE G Q. Optimization of Lactobacillus plantarum ZU018 proliferation medium[J]. Science and Technology of Food Industry, 2020, 41(14): 94-100. (in Chinese)
    [12]
    洪梅, 刁其玉, 闫贵龙, 等. 响应面法优化青贮饲料乳酸菌的培养条件 [J]. 动物营养学报, 2010, 22(5):1307−1313. doi: 10.3969/j.issn.1006-267x.2010.05.027

    HONG M, DIAO Q Y, YAN G L, et al. Optimization of culture conditions for silage lactic acid bacteria via a response surface technique [J]. Chinese Journal of Animal Nutrition, 2010, 22(5): 1307−1313. (in Chinese) doi: 10.3969/j.issn.1006-267x.2010.05.027
    [13]
    CHEN X Z, ZHUANG Y F, DONG Z X, et al. Factors influencing the distribution of lactic acid bacteria on Pennisetum grasses [J]. Grassland Science, 2017, 63(3): 150−158. doi: 10.1111/grs.12161
    [14]
    范佳硕, 杨鑫, 陈博, 等. 植物乳杆菌发酵培养基优化及工艺开发 [J]. 发酵科技通讯, 2020, 49(1):21−26.

    FAN J S, YANG X, CHEN B, et al. Optimization of Lactobacillus plantarum fermentation medium and process development [J]. Bulletin of Fermentation Science and Technology, 2020, 49(1): 21−26. (in Chinese)
    [15]
    ZHANG J, TANAKA O, UEGAKI R, et al. The effect of inoculation and additives on D (–) - and L(+)-lactic acid production and fermentation quality of guineagrass (Panicum maximum Jacq) silage [J]. Journal of the Science of Food and Agriculture, 2000, 80(15): 2186−2189. doi: 10.1002/1097-0010(200012)80:15<2186::AID-JSFA767>3.0.CO;2-1
    [16]
    陈绮, 雷文平, 肖茜, 等. 植物乳杆菌XN1904E产胞外多糖发酵条件优化 [J]. 乳业科学与技术, 2020, 43(3):1−5.

    CHEN Q, LEI W P, XIAO Q, et al. Optimization of fermentation conditions for exopolysaccharide production by Lactobacillus plantarum XN1904E [J]. Journal of Dairy Science and Technology, 2020, 43(3): 1−5. (in Chinese)
    [17]
    陶静, 许赛信, 孟德俊, 等. 乳酸菌发酵生产胞外多糖条件优化研究 [J]. 食品工业, 2017, 38(1):28−31.

    TAO J, XU S X, MENG D J, et al. The conditions optimization of Lactobacillus exopolysaccharides fermentation [J]. The Food Industry, 2017, 38(1): 28−31. (in Chinese)
    [18]
    刘金玲, 李嘉文, 张含雪, 等. 罗伊乳杆菌增殖培养基中碳源氮源的优化 [J]. 中国微生态学杂志, 2016, 28(5):533−537.

    LIU J L, LI J W, ZHANG H X, et al. Optimization of carbon and nitrogen sources of enrichment culture medium for Lactobacillus reuteri [J]. Chinese Journal of Microecology, 2016, 28(5): 533−537. (in Chinese)
    [19]
    季海蕊, 郭尚旭, 姜静, 等. 乳酸明串珠菌(Leuconostoc lactis)L2体内耐受性及产胞外多糖条件研究 [J]. 黑龙江大学自然科学学报, 2020, 37(5):580−587.

    JI H R, GUO S X, JIANG J, et al. The in vivo tolerance of Leuconostoc lactis L2 and its condition study on exopolysaccharide production [J]. Journal of Natural Science of Heilongjiang University, 2020, 37(5): 580−587. (in Chinese)
    [20]
    李想, 王然, 程建军, 等. 植物乳杆菌培养基的优化 [J]. 东北农业大学学报, 2008, 39(9):96−99. doi: 10.3969/j.issn.1005-9369.2008.09.023

    LI X, WANG R, CHENG J J, et al. Optimization of culture medium for L. plantarum [J]. Journal of Northeast Agricultural University, 2008, 39(9): 96−99. (in Chinese) doi: 10.3969/j.issn.1005-9369.2008.09.023
    [21]
    岳苗苗, 汪岚, 唐国建, 等. 青贮用乳酸菌的高效保存方法研究 [J]. 饲料研究, 2020, 43(10):73−77.

    YUE M M, WANG L, TANG G J, et al. Research on efficient preservation of lactic acid bacteria as silage additive [J]. Feed Research, 2020, 43(10): 73−77. (in Chinese)
    [22]
    刘毓锋, 曾嘉锐, 黄文琪, 等. 外源碳源对葡萄酵素微生物生长代谢及生物活性的调节作用 [J]. 食品工业科技, 2020, 41(8):104−110,116.

    LIU Y F, ZENG J R, HUANG W Q, et al. Regulating effect of exogenous carbon source on microbial growth and metabolism in grape fermentation and its bioactivity [J]. Science and Technology of Food Industry, 2020, 41(8): 104−110,116. (in Chinese)
    [23]
    程方方, 杨连玉, 许雪魁, 等. 糖蜜和乳酸菌对光叶紫花苕青贮品质的影响 [J]. 草地学报, 2012, 20(5):947−951.

    CHENG F F, YANG L Y, XU X K, et al. Effect of adding molasses and lactic acid bacteria on the silage quality of smooth vetch [J]. Acta Agrestia Sinica, 2012, 20(5): 947−951. (in Chinese)
    [24]
    荣辉, 余成群, 李志华, 等. 添加糖蜜和尿素对象草青贮发酵品质的影响 [J]. 草地学报, 2012, 20(5):940−946.

    RONG H, YU C Q, LI Z H, et al. Effects of adding molasses and urea on fermentation quality of Napier grass silage [J]. Acta Agrestia Sinica, 2012, 20(5): 940−946. (in Chinese)
    [25]
    YOKOTA H, KIM J H, OKAJIMA T, et al. Nutritional quality of wilted Napier grass (Pennisetum purpureum Schum. ) ensiled with or without molasses [J]. Asian-Australasian Journal of Animal Sciences, 1992, 5(4): 673−679. doi: 10.5713/ajas.1992.673
    [26]
    郭金双, 赵广永, 杨雅芳, 等. 添加蔗糖对大麦青贮品质及中、酸性洗涤纤维瘤胃降解率的影响 [J]. 中国畜牧杂志, 2000, 36(4):18−20. doi: 10.3969/j.issn.0258-7033.2000.04.007

    GUO J S, ZHAO G Y, YANG Y F, et al. Effect of sugar supplementation on the quality of barley silage and NDF and ADF degradation in the rumen of cattle [J]. Chinese Journal of Animal Science, 2000, 36(4): 18−20. (in Chinese) doi: 10.3969/j.issn.0258-7033.2000.04.007
    [27]
    万里强, 李向林. 乳酸菌复合添加剂糖分浓度对不同含水量苜蓿青贮效果的影响 [J]. 中国草地, 2005, 27(1):45−51.

    WAN L Q, LI X L. Influence of sugar contents in lactic bacteria compound additives on different moisture alfalfa silage [J]. Grassland of China, 2005, 27(1): 45−51. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(5)

    Article Metrics

    Article views (116) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return