Relationship between Environmental Factors and Diversity of Culturable Yeasts in Rhizosphere Soil of Rice Field on Tibetan Plateau
-
摘要:
目的 开展林芝市察隅县水稻根际土壤可培养酵母菌多样性研究,并探究其与土壤理化因子的相关性。 方法 采用稀释涂布法分离纯化酵母菌,并采用rRNA ITS区域序列分析与经典分类法对酵母菌菌株进行鉴定。采用R 3.6.1 分析可培养酵母菌多样性及其与土壤理化因子之间的关系。 结果 从林芝市察隅县水稻根际土壤中共分离得到352株酵母菌,分属于10个属13个种,优势种为Cryptococcus podzolicus。Pearson相关系数显示,全氮和全磷与酵母菌种数及属数呈极显著正相关,全氮与酵母菌Shannon-Wiener多样性指数、Simpson多样性指数呈极显著正相关,与Pielou均匀度指数呈显著正相关,全磷与Shannon-Wiener多样性指数呈显著正相关;全氮与Candida pseudolambica、Goffeauzyma gastrica、Papiliotrema aspenensis以及Solicoccozyma terricola呈显著正相关;全磷与Goffeauzyma gastrica和Solicoccozyma terricola呈极显著正相关,与Candida pseudolambica呈显著正相关;含水量与Papiliotrema aspenensis呈极显著正相关。 结论 不同土壤理化因子对水稻根际酵母菌的影响程度不同,其中全氮和全磷是影响水稻根际酵母菌群落结构的主要因素。 Abstract:Objective Diversity of culturable yeasts in rhizosphere soil of rice fields at Zayü County, Nyingchi City, Tibet was determined and its correlation with the environmental factors analyzed. Method Yeasts from the soil samples were isolated by dilution with a streaking plate method and identified by sequencing ITS domains of rRNA gene and conventional classification. Software R 3.6.1 was used to examine correlations between the yeast diversity and environmental factors. Result A total of 352 yeast strains of 10 genera and 13 species dominated by Cryptococcus podzolicus were isolated. The numbers extremely significantly correlated with the contents of total nitrogen (TN) and total phosphorus (TP) in the habitat rhizosphere soil. TN extremely significantly correlated to both Shannon-Wiener and Simpson diversity indices and significantly correlated to Pielou evenness index, but TP only significantly correlated to Shannon-Wiener diversity index. At species level, the abundance of Candida pseudolambica, Goffeauzyma gastrica, Papiliotrema aspenensis, and Solicoccozyma terricola significantly correlated to TN, G. gastrica and S. terricola extremely significantly and C. pseudolambica significantly correlated to TP, and P. aspenensis extremely significantly correlated to the water content (WC) in soil. Conclusion Different environmental factors affected differently on the rhizosphere yeast community on rice fields in the region. TN and TP in soil appeared to play a prominent role in that respect. -
Key words:
- Tibetan Plateau /
- rice field /
- rhizosphere soil /
- yeast /
- diversity /
- environmental factors
-
图 3 林芝市察隅县各样点水稻根际土壤可培养酵母菌多样性指数差异性分析
注:A:酵母菌物种数和属数;B:酵母菌总丰度;C:酵母菌多样性指数;H’:Shannon-Wiener多样性指数;D:Simpson多样性指数;J’:Pielou均匀度指数。不同字母标记的数据表明不同样点之间的差异显著(P<0.05)。
Figure 3. Diversity indices of culturable yeasts at sampling sites
Note: A: numbers of yeast species and genera; B: yeast counts; C: yeast diversity indices; H’: Shannon index; D: Simpson index; J’: Pielou evenness index; data marked with different letters indicate significant difference between sites at P<0.05.
图 5 林芝市察隅县各样点水稻根际土壤理化因子与可培养酵母菌多样性指数Pearson相关性分析
注:*:在0.05水平上显著相关;**:在0.01水平上极显著相关。
Figure 5. Pearson correlation coefficients between culturable yeast diversity indices and physiochemical properties of rhizosphere soil at sampling sites
Note: * indicates significant correlation at P<0.05; ** indicates significant correlation at P<0.01.
图 6 林芝市察隅县各样点水稻根际土壤理化因子与不同酵母菌物种Pearson相关性分析
注:*:在0.05水平上显著相关;**:在0.01水平上极显著相关。
Figure 6. Pearson correlation coefficients between culturable yeast species and physiochemical properties of rhizosphere soil at sampling sites
Note: * indicates significant correlation at P<0.05; ** indicates significant correlation at P<0.01.
表 1 林芝市察隅县各样点水稻根际土壤可培养酵母菌种水平分布情况
Table 1. Distribution of culturable yeasts at sampling sites
种
Species1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 出现频率
Occurrence frequency相对丰度
Relative abundance拟郎比可假丝酵母 Candida pseudolambica 6 4 0.12 0.03 变容假丝酵母 Candida vartiovaarae 53 22 4 3 0.24 0.23 Cryptococcus podzolicus 10 10 11 13 8 17 7 11 14 17 7 0.65 0.36 土星形塞伯林德纳氏酵母 Cyberlindnera saturnus 12 0.06 0.03 Goffeauzyma gastrica 3 5 2 0.18 0.03 Neoascochyta exitials 13 6 0.12 0.05 Papiliotrema aspenensis 2 2 0.12 0.01 Papiliotrema laurentii 7 1 0.12 0.02 大仁红酵母 Rhodotorula dairenensis 1 2 0.12 0.01 Saitozyma podzolica 18 4 0.12 0.06 甲酚斯鲁夫酵母 Slooffia cresolica 8 0.06 0.02 Solicoccozyma aeria 1 0.06 0.00 Solicoccozyma terricola 8 26 10 1 2 1 0.35 0.14 -
[1] 罗鑫, 张海燕, 刘明元, 等. 稻田土壤微生物群落多样性研究进展 [J]. 安徽农业科学, 2018, 46(21):42−43, 47. doi: 10.3969/j.issn.0517-6611.2018.21.012LUO X, ZHANG H Y, LIU M Y, et al. Study review on microbial community diversity in paddy soils [J]. Journal of Anhui Agricultural Sciences, 2018, 46(21): 42−43, 47.(in Chinese) doi: 10.3969/j.issn.0517-6611.2018.21.012 [2] 刘畅, 黄雅丹, 张莹, 等. 培养条件下双酚A对稻田土壤微生物群落特征的影响 [J]. 环境科学, 2016, 37(11):4380−4388.LIU C, HUANG Y D, ZHANG Y, et al. Effects of bisphenol A on characteristics of paddy soil microbial community under different cultural conditions [J]. Environmental Science, 2016, 37(11): 4380−4388.(in Chinese) [3] 李荣田, 高士童, 高祎, 等. Bt早粳稻对土壤微生物数量影响及其外源基因的转移 [J]. 中国农学通报, 2020, 36(9):56−64. doi: 10.11924/j.issn.1000-6850.casb20191000720LI R T, GAO S T, GAO Y, et al. Effect of Bt early Japonica rice on soil microorganism quantity and transfer of exogenous genes of rice [J]. Chinese Agricultural Science Bulletin, 2020, 36(9): 56−64.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb20191000720 [4] LIESACK W, SCHNELL S, REVSBECH N P. Microbiology of flooded rice paddies [J]. FEMS Microbiology Reviews, 2000, 24(5): 625−645. doi: 10.1111/j.1574-6976.2000.tb00563.x [5] 蔡元锋, 吴宇澄, 王书伟, 等. 典型淹水稻田土壤微生物群落的基因转录活性及其主要生理代谢过程 [J]. 微生物学报, 2014, 54(9):1033−1044.CAI Y F, WU Y C, WANG S W, et al. Microbial metabolism in typical flooded paddy soils [J]. Acta Microbiologica Sinica, 2014, 54(9): 1033−1044.(in Chinese) [6] 王青霞, 李美霖, 陈喜靖, 等. 秸秆还田下氮肥运筹对水稻各生育期土壤微生物群落结构的影响 [J]. 应用生态学报, 2020, 31(3):935−944.WANG Q X, LI M L, CHEN X J, et al. Effects of nitrogen management on soil microbial community structure at different growth stages under straw returning in paddy soils [J]. Chinese Journal of Applied Ecology, 2020, 31(3): 935−944.(in Chinese) [7] 褚海燕. 高寒生态系统微生物群落研究进展 [J]. 微生物学通报, 2013, 40(1):123−136.CHU H Y. Microbial communities in high latitudes and high altitudes ecosystems [J]. Microbiology China, 2013, 40(1): 123−136.(in Chinese) [8] 李鸿波, 吴朝晖. 水稻根际微生物的影响因素研究进展 [J]. 杂交水稻, 2018, 33(4):1−6, 54.LI H B, WU Z H. Research progress on factors influencing rhizosphere microorganisms of rice [J]. Hrbrid Rice, 2018, 33(4): 1−6, 54.(in Chinese) [9] 吴朝晖, 刘清术, 孙继民, 等. 基于高通量测序的超级稻不同生育期土壤细菌和古菌群落动态变化 [J]. 农业现代化研究, 2018, 39(2):342−351.WU Z H, LIU Q S, SUN J M, et al. Variations of soil bacterial and archaeal communities during super hybrid rice cultivation based on high throughput sequencing [J]. Research of Agricultural Modernization, 2018, 39(2): 342−351.(in Chinese) [10] 理鹏, 吴建强, 沙晨燕, 等. 粪肥和有机肥施用对稻田土壤微生物群落多样性影响 [J]. 环境科学, 2020, 41(9):4262−4272.LI P, WU J Q, SHA C Y, et al. Effects of manure and organic fertilizer application on soil microbial community diversity in paddy fields [J]. Environmental Science, 2020, 41(9): 4262−4272.(in Chinese) [11] 方萍, 方素萍. 接种微生物肥料对土壤及水稻根际细菌数量变化的影响 [J]. 耕作与栽培, 2000(4):35−37.FANG P, FANG S P. Effect of microbial fertilizer on the number of bacteria in soil and rice rhizosphere [J]. Tillage and Cultivation, 2000(4): 35−37.(in Chinese) [12] 崔月贞, 吴玉红, 郝兴顺, 等. 汉中盆地水稻产量和土壤微生物对新型肥料的响应 [J]. 西南农业学报, 2019, 32(11):2592−2599.CUI Y Z, WU Y H, HAO X S, et al. Response of rice yield and soil microorganisms to new fertilizations in Hanzhong basin [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(11): 2592−2599.(in Chinese) [13] 卓晨, 陈琪, 苏增强, 等. 微生物缓解镉对水稻的毒害研究进展 [J]. 应用与环境生物学报, 2020, 26(5):1154−1160.ZHUO C, CHEN Q, SU Z Q, et al. Advances in microbial mitigation of cadmium toxicity in rice [J]. Chin J Appl Environ Biol, 2020, 26(5): 1154−1160.(in Chinese) [14] 张奇, 张清旭, 陈尧, 等. 稗草根系分泌物诱导下水稻化感抑草潜力及根际土壤微生物多样性变化 [J]. 应用与环境生物学报, 2020, 26(4):936−942.ZHANG Q, ZHANG Q X, CHEN Y, et al. Changes in the of allelopathic potential and microbial diversity in of rhizosphere soils of rice under induction of barnyard grass root exudates [J]. Chin J Appl Environ Biol, 2020, 26(4): 936−942.(in Chinese) [15] 陆红飞. 枯草芽孢杆菌和酵母菌配施对再生水灌溉土壤生境和水稻生理生化的影响[D]. 北京: 中国农业科学院, 2020.LU H F. Effects of Bacillus subtilis and saccharomyces cerevisiae on soil habitat and rice physiology and biochemistry under reclaimed water irrigation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese) [16] 杨祎. 青藏高原高寒草地生态承载力研究[D]. 石家庄: 河北师范大学, 2019.YANG Y. Study on ecological carrying capacity of alpine grassland on Qinghai-Tibet Plateau[D]. Shijiazhuang: Hebei Normal University, 2019. (in Chinese) [17] 李缔华. 察隅县近32年气候变化情况的简要分析 [J]. 西藏科技, 2014(1):44−46. doi: 10.3969/j.issn.1004-3403.2014.01.018LI D H. Analysis of climate change in Zayü County in recent 32 years [J]. Tibet Science and Technology, 2014(1): 44−46.(in Chinese) doi: 10.3969/j.issn.1004-3403.2014.01.018 [18] 张铎, 薛敬丽, 李照青, 等. 察隅县云南松群落物种组成及多样性研究 [J]. 高原农业, 2019, 3(6):597−605.ZHANG D, XUE J L, LI Z Q, et al. Study on community composition and species diversity of Pinus yunnanensis community in Chayu County [J]. Journal of Plateau Agriculture, 2019, 3(6): 597−605.(in Chinese) [19] 沈萍, 范秀容, 李广武. 微生物学实验[M]. 3版. 北京: 高等教育出版社, 1999: 49−95. [20] 王芸. β-葡聚糖诱导提高Cryptococcus podzolicus对苹果青霉病的防治效力及其机制研究[D]. 镇江: 江苏大学, 2018.WANG Y. Exploring the effect of β-glucan on the biocontrol activity of Cryptococcus podzolicus against postharvest decay of apples and the possible mechanisms involved[D]. Zhenjiang: Jiangsu University, 2018. (in Chinese) [21] SARAVANAKUMAR D, SPADARO D, GARIBALDI A, et al. Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent [J]. European Journal of Plant Pathology, 2009, 123(2): 183−193. doi: 10.1007/s10658-008-9355-5 [22] 孙翠. 酵母细胞壁对梨和番茄果实采后病原真菌抗性的诱导作用及相关机理研究[D]. 杭州: 浙江大学, 2019.SUN C. Effect of cell wall of yeast on inhibiting postharvest pathogenic fungi by inducing resistance in pear and tomato fruits and the possible defense mechanisms involved[D]. Hangzhou: Zhejiang University, 2019. (in Chinese) [23] 李鸿毅. 中国典型区域水稻土微生物生态多样性及其与溶解性有机质化学多样性的生态关联[D]. 杭州: 浙江大学, 2018.LI H Y. The biodiversity of paddy soil microbial community and its correlations with the chemodiversity of dissolved organic matter across typical regions in China[D]. Hangzhou: Zhejiang University, 2018. (in Chinese) [24] 郭小芳, 熊宁, 郝兆, 等. 拉鲁湿地土壤理化因子与酵母菌多样性及产胞外酶活性相关性分析 [J]. 西藏大学学报 (自然科学版), 2016, 31(2):1−9.GUO X F, XIONG N, HAO Z, et al. Analysis on the correlations between yeast diversity, extracellular enzyme activity and physicochemical factors of soil in Lhalu Wetland, Lhasa [J]. Journal of Tibet University, 2016, 31(2): 1−9.(in Chinese) [25] 张爱娣, 郑仰雄, 吴碧珊, 等. 滨海湿地土壤微生物群落多样性及其影响因素 [J]. 水土保持研究, 2020, 27(3):8−14, 22.ZHANG A D, ZHENG Y X, WU B S, et al. Soil microbial community diversity and its influencing factors in coastal wetland [J]. Research of Soil and Water Conservation, 2020, 27(3): 8−14, 22.(in Chinese) [26] BECKERS B, OP DE BEECK M, WEYENS N, et al. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8): 2312−2317. doi: 10.1073/pnas.1523264113 [27] CHAPARRO J M, SHEFLIN A M, MANTER D K, et al. Manipulating the soil microbiome to increase soil health and plant fertility [J]. Biology and Fertility of Soils, 2012, 48(5): 489−499. doi: 10.1007/s00374-012-0691-4 [28] 王孝林, 王二涛. 根际微生物促进水稻氮利用的机制 [J]. 植物学报, 2019, 54(3):285−287. doi: 10.11983/CBB19060WANG X L, WANG E T. NRT1.1B Connects root microbiota and nitrogen use in rice [J]. Chinese Bulletin of Botany, 2019, 54(3): 285−287.(in Chinese) doi: 10.11983/CBB19060