• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PGPR微胶囊菌剂研发及其对玉米的促生效果评价

刘文佳 刘天一 张俐敏 徐畅 莫继先

刘文佳,刘天一,张俐敏,等. PGPR微胶囊菌剂研发及其对玉米的促生效果评价 [J]. 福建农业学报,2024,39(3):1−10
引用本文: 刘文佳,刘天一,张俐敏,等. PGPR微胶囊菌剂研发及其对玉米的促生效果评价 [J]. 福建农业学报,2024,39(3):1−10
LIU W J, LIU T Y, ZHANG L M, et al. Microencapsulated Rhizosphere Bacteria for Promoting Growth of Corn Plants [J]. Fujian Journal of Agricultural Sciences,2024,39(3):1−10
Citation: LIU W J, LIU T Y, ZHANG L M, et al. Microencapsulated Rhizosphere Bacteria for Promoting Growth of Corn Plants [J]. Fujian Journal of Agricultural Sciences,2024,39(3):1−10

PGPR微胶囊菌剂研发及其对玉米的促生效果评价

基金项目: 黑龙江省省属高等学校基本科研业务费项目(135409420);黑龙江省大学生创新创业训练计划项目(S202310232017)
详细信息
    作者简介:

    刘文佳(1999 —),女,硕士研究生,主要从事资源环境微生物学研究,E-mail:1740203063@qq.com

    通讯作者:

    莫继先(1982 —),男,博士,教授,主要从事资源环境微生物学研究,E-mail:mojixian8208@sina.com

  • 中图分类号: S541

Microencapsulated Rhizosphere Bacteria for Promoting Growth of Corn Plants

  • 摘要:   目的  为了提高植物根际促生菌(Plant growth-promoting rhizobacteria, PGPR)对作物促生作用的稳定性,研制出以PGPR复合菌液为原料的微胶囊菌剂,探究其对玉米的促生效果。  方法  从玉米根际土壤中分离得到2株PGPR菌株并制备成复合液体菌液。分别用海藻酸钠(SA)和CaCl2作为包埋剂和交联剂,对复合菌液进行包埋以制备微胶囊菌剂。以复合微胶囊菌剂制备的难易程度和菌株包埋率、增殖前活菌数及增殖后活菌数为评价指标,确定微胶囊菌剂制备的最优条件。通过分析微胶囊菌剂在不同聚乙二醇含量、温度、pH、存储时间以及盐含量下的菌株生长及其对玉米生长和根系形态的影响确定PGPR微胶囊菌剂的特性。  结果  分离得到了2株PGPR菌株,具有多种植物促生功能。使用1%SA-3%CaCl2制备的微胶囊菌剂稳定性较好,包埋率达91.27%,增殖后的微胶囊活菌数达到8.73×109 cfu·g−1,增殖7.79倍。微胶囊菌剂在不同干旱、温度、pH、存储时间和盐浓度条件下对PGPR菌株具有较好的保护作用。PGPR微胶囊菌剂对玉米有显著的促生作用,施用微胶囊菌剂使玉米株高、苗干重和根干重分别增加91.83%、81.82%和29.57%。同时微胶囊菌剂也显著提高了玉米总根长、根表面积、根平均直径、根体积和根尖数。  结论  探明了一种PGPR微胶囊菌剂的制备方法,施用该PGPR微胶囊剂能够显著促进玉米生长、改善玉米根系形态,对玉米的促生效果优于液体菌剂。
  • 图  1  菌株P1和K5的菌间拮抗试验

    Figure  1.  Interbacterial antagonism between P1 and K5

    图  2  菌株 P1(a)和K5(b)的显微形态

    Figure  2.  Microscopic morphology of P1 (a) and K5 (b)

    图  3  菌株P1的系统进化树

    Figure  3.  Phylogenetic tree of P1

    图  4  菌株K5的系统进化树

    Figure  4.  Phylogenetic tree of K5

    图  5  菌株P1和K5的生长曲线

    Figure  5.  Growth curves of P1 and K5

    图  6  SA1%-CaCl23%微胶囊颗粒形态

    Figure  6.  Morphology of 1% SA-3% CaCl2 microcapsules

    图  7  不同环境条件对两种剂型菌株生长的影响

    *表示两组之间差异显著(P<0.05)

    Figure  7.  Effect of environmental conditions on proliferation of PGPRs in two different dosages

    *indicates significant difference (P<0.05).

    图  8  不同剂型PGPR对玉米生长的影响

    a:株高;b:苗干重;c:根干重;不同小写字母表示不同组别间差异显著(P<0.05)。

    Figure  8.  Effect of PGPR dosage on growth of corn plants

    a: plant height; b: dry weight; c: root dry weight; data with different letters indicate significant differences (P<0.05).

    图  9  不同剂型PGPR对玉米根系形态的影响

    a:根长;b:根总表面积;c:根平均直径;d:根尖数;e:根体积;不同字母表示不同组别间差异显著(P<0.05)

    Figure  9.  Effect of PGPR dosage on root morphology of corn plants

    a: root length; b: total root surface area; c: average root diameter; d: number of root tips; e: root volume; data with different letters indicate significant differences (P<0.05).

    表  1  玉米根际土壤中筛选的具有促生特性的菌株及促生特性分析

    Table  1.   Strains and properties of corn growth-promoting bacteria from rhizosphere soill

    菌株
    Strains
    解磷量
    Phosphate solubilizing/
    (μg·mL−1)
    解钾量
    Potassium releasing/
    (μg·mL−1)
    固氮量
    Nitrogen fixation/
    (μg·mL−1)
    吲哚乙酸
    Indoleacetic acid/
    (μg·mL−1)
    铁载体活性
    Siderophore activity/%
    ACC含量
    ACC content/
    (μg·mL−1)
    P1 33.50±0.37a 1.44±0.16b 78.06±0.51a 55.72±0.67a 0.19±0.07e
    P2 31.49±0.51b 65.74±1.61b 44.19±0.94d 0.30±0.07b
    P3 31.34±0.58b 49.12±0.35b 0.27±0.05c
    P4 30.85±0.59b 46.47±0.27c 0.22±0.14d
    P5 30.12±0.03c 46.23±3.25d 40.48±0.44e 0.14±0.07f
    P6 31.13±0.04b 39.65±0.38e 0.20±0.06e
    N1 1.96±0.35a 33.5±0.527f 0.27±0.11c
    N2 1.27±0.21b 0.14±0.02f
    N3 1.23±0.10b 0.22±0.03d
    K1 1.22±0.09b 55.63±0.54c 31.52±0.39g 0.14±0.02f
    K2 1.17±0.07b 0.30±0.06b
    K3 1.26±0.07b 29.34±0.35g 0.25±0.13cd
    K4 1.35±0.28b 0.18±0.07e
    K5 2.26±0.07a 63.43±2.9b 50.46±0.71b 0.34±0.05a
    同列数据后不同字母表示差异显著(P<0.05);—表示无此项促生功能。
    Data with different letters on same column indicate significant differences (P<0.05); —indicate no growth-promoting function.
    下载: 导出CSV

    表  2  菌株P1和K5的生理生化特性

    Table  2.   Physiological and biochemical characteristics of P1 and K5

    试验
    项目
    Items
    淀粉水解
    实验
    Starch
    hydrolysis
    蔗糖发酵
    实验
    Sucrose
    fermentation
    乳糖发酵
    实验
    Lactose
    fermentation
    葡萄糖发酵
    实验
    Glucose
    fermentation
    甲基红实验
    Methyl red
    experiment
    柠檬酸盐
    实验
    Citrate
    experiment
    吲哚实验
    Indole
    experiment
    革兰氏染色
    实验
    Gram staining
    experiment
    触酶实验
    Catalase
    experiment
    伏-普实验
    Volt-P
    experiment
    菌株
    Strains
    P1 + + + + + +
    K5 + + + +
    +:阳性;−:阴性;
    +: positive; −: negative.
    下载: 导出CSV

    表  3  SA-CaCl2不同质量浓度配比下微胶囊的操作性和成球性

    Table  3.   Microencapsulation of PGPRs with varied SA-CaCl2 combinations

    配比组合
    Varied combination
    操作性
    Operation
    成球性
    Sphericity
    1%SA 2%CaCl2
    Easy
    较好,拖尾,无黏连
    Better, trailing, no sticking
    3%CaCl2
    Easy
    较好,拖尾,少量黏连
    Better, trailing, few sticks
    4%CaCl2
    Easy
    较好,拖尾,少量黏连
    Better, trailing, few sticks
    2%SA 2%CaCl2
    Easy
    较好,拖尾,无黏连
    Better, trailing, no sticking
    3%CaCl2
    Easy
    较好,拖尾,少量黏连
    Better, trailing, few sticks
    4%CaCl2
    Easy
    较好,拖尾,少量黏连
    Better, trailing, few sticks
    3%S 2%CaCl2
    Difficult
    较差,无拖尾,少量破碎
    Bad, no tailing, few fragile
    3%CaCl2
    Difficult
    较差,拖尾,少量黏连
    Bad, trailing, few sticks
    4%CaCl2
    Difficult
    差,拖尾,少量破碎,易黏连
    Poor, trailing, few fragile, sticks
    下载: 导出CSV

    表  4  微胶囊菌剂颗粒的理化性质

    Table  4.   Physicochemical properties of microcapsules

    配比组合
    Varied combination
    直径
    Diameter/mm
    机械强度
    Mechanical Strength/g
    增殖前胶囊活菌数
    Number of viable cells
    before proliferation/
    (×109 cfu·g−1)
    包埋率
    Embedding rate/%
    增殖后胶囊活菌数
    Number of viable cells
    in after proliferation/
    (×109 cfu·g−1)
    增殖倍数
    Multiplication ratio
    SA1%-CaCl22% 3.14±0.13b 3.29±0.16b 1.01±0.11b 85.60±2.25b 5.68±0.37b 5.62
    SA1%-CaCl23% 3.11±0.07c 3.21±0.13c 1.12±0.03c 91.27±1.05c 8.73±0.50c 7.79
    SA2%-CaCl22% 3.22±0.04a 3.35±0.03a 1.20±0.03a 81.17±1.91a 6.91±0.49a 5.76
    同列数据后不同字母表示差异显著(P<0.05)
    Data with different letters on same column indicate significant differences (P<0.05).
    下载: 导出CSV
  • [1] MAHAPATRA S, YADAV R, RAMAKRISHNA W. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde [J]. Journal of Applied Microbiology, 2022, 132(5): 3543−3562. doi: 10.1111/jam.15480
    [2] KESAVAN P C, SWAMINATHAN M S. Modern technologies for sustainable food and nutrition security [J]. Current Science, 2018, 115(10): 1876. doi: 10.18520/cs/v115/i10/1876-1883
    [3] RAKLAMI A, BECHTAOUI N, TAHIRI A I, et al. Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility [J]. Frontiers in Microbiology, 2019, 10: 1106. doi: 10.3389/fmicb.2019.01106
    [4] WU Z S, GUO L N, QIN S H, et al. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions [J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(2): 317−327.
    [5] 项郑昊, 周化岚, 张建国. 海藻酸钠微胶囊制备及其在微生物包埋中的应用 [J]. 工业微生物, 2021, 51(1):43−49. doi: 10.3969/j.issn.1001-6678.2021.01.007

    XIANG Z H, ZHOU H L, ZHANG J G. Preparation of alginate microcapsules and its application in industrial microbiology [J]. Industrial Microbiology, 2021, 51(1): 43−49. (in Chinese) doi: 10.3969/j.issn.1001-6678.2021.01.007
    [6] 董羽嘉, 何艳慧, 武占省. 微胶囊化植物根际促生菌剂的研究进展 [J]. 生物加工过程, 2021, 19(4):404−412.

    DONG Y J, HE Y H, WU Z S. Research progress of microencapsulated plant growth promoting rhizobacteria [J]. Chinese Journal of Bioprocess Engineering, 2021, 19(4): 404−412. (in Chinese)
    [7] 徐致远, 郭本恒, 陈卫. 乳酸菌微胶囊技术的研究进展 [J]. 乳业科学与技术, 2005, 28(5):198−201. doi: 10.3969/j.issn.1671-5187.2005.05.002

    XU Z Y, GUO B H, CHEN W. The development of micro-encapsulation technology applied in LAB production [J]. Journal of Dairy Science and Technology, 2005, 28(5): 198−201. (in Chinese) doi: 10.3969/j.issn.1671-5187.2005.05.002
    [8] 陈妮娜, 朱亚燕, 阳丽媛, 等. 海藻酸钠-果胶改性复合膜的制备及表征 [J]. 中国食品添加剂, 2018, (4):154−163. doi: 10.3969/j.issn.1006-2513.2018.04.025

    CHEN N N, ZHU Y Y, YANG L Y, et al. Preparation and characterization of cross-linking composite films based on sodium alginate and pomelo pectin [J]. China Food Additives, 2018(4): 154−163. (in Chinese) doi: 10.3969/j.issn.1006-2513.2018.04.025
    [9] 张琳, 尚校兰, 李秋玲, 等. 海藻酸钠-多聚赖氨酸复合益生菌微胶囊的构建及性能评价 [J]. 饲料博览, 2023, (2):30−35.

    ZHANG L, SHANG X L, LI Q L, et al. Construction and performance evaluation of sodium alginate poly-L-lysine compound probiotics microcapsule [J]. Feed Review, 2023(2): 30−35. (in Chinese)
    [10] 靳海洋, 王慧, 张燕辉, 等. 基于基因组的一株土壤固氮菌分离菌株鉴定及其促生作用 [J]. 微生物学报, 2021, 61(10):3249−3263.

    JIN H Y, WANG H, ZHANG Y H, et al. Genome-based identification and plant growth promotion of a nitrogen-fixing strain isolated from soil [J]. Acta Microbiologica Sinica, 2021, 61(10): 3249−3263. (in Chinese)
    [11] 黄臣, 杨凯元, 高鹏, 等. 达乌里胡枝子根际解磷细菌的筛选、鉴定及特性研究 [J]. 草地学报, 2022, 30(9):2345−2355.

    HUANG C, YANG K Y, GAO P, et al. Screening, identification and characteristics of phosphate-solubilizing microorganisms in Lespedeza daurica [J]. Acta Agrestia Sinica, 2022, 30(9): 2345−2355. (in Chinese)
    [12] 孟丽媛, 邱涵, 谢瑾, 等. 解磷菌、解钾菌和固氮菌的分离筛选与鉴定 [J]. 生物灾害科学, 2022, 45(2):241−246.

    MENG L Y, QIU H, XIE J, et al. Isolation, screening and identification of phosphorus-solubilizing bacteria, potassium-solubilizing bacteria and nitrogen-fixing bacteria [J]. Biological Disaster Science, 2022, 45(2): 241−246. (in Chinese)
    [13] 陈越, 李虎林, 朱诗苗, 等. 产吲哚乙酸(IAA)促生菌的分离鉴定及对烟草种子萌发和幼苗生长发育的影响 [J]. 作物杂志, 2020, (2):176−181.

    CHEN Y, LI H L, ZHU S M, et al. Isolation and identification of IAA-producing rhizobacteria and its effects on seed germination and seedling growth of tobacco [J]. Crops, 2020(2): 176−181. (in Chinese)
    [14] 葛淼淼, 薄永琳, 刘宸, 等. 土壤产铁载体细菌的筛选及其对铁氧化物的活化与利用 [J]. 微生物学通报, 2023, 50(3):1062−1072.

    GE M M, BO Y L, LIU C, et al. Screening of soil siderophore-producing bacteria and their activation and utilization of iron oxide [J]. Microbiology China, 2023, 50(3): 1062−1072. (in Chinese)
    [15] 韩坤, 田曾元, 刘珂, 等. 具有ACC脱氨酶活性的海滨锦葵(Kosteletzkya pentacarpos)内生细菌对小麦耐盐性的影响 [J]. 植物生理学报, 2015, 51(2):212−220.

    HAN K, TIAN Z Y, LIU K, et al. Effect of endophytic bacteria with ACC deaminase activity in kostel etzkya pentacarpos on wheat salt tolera nce [J]. Plant Physiology Journal, 2015, 51(2): 212−220. (in Chinese)
    [16] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 364-379.
    [17] 韩梅, 李天华, 彭帅, 等. 微生物肥料的包埋固定化研究 [J]. 植物营养与肥料学报, 2012, 18(4):999−1005.

    HAN M, LI T H, PENG S, et al. Immobilization of microbial fertilizer in small spherical particles by embedding [J]. Plant Nutrition and Fertilizer Science, 2012, 18(4): 999−1005. (in Chinese)
    [18] 薛伟明, 于炜婷, 刘袖洞, 等. 载细胞海藻酸钠/壳聚糖微胶囊的化学破囊方法研究 [J]. 高等学校化学学报, 2004, 25(7):1342−1346.

    XUE W M, YU W T, LIU X D, et al. Chemical method of breaking the cell-loaded sodium alginate/chitosan microcapsules [J]. Chemical Research In Chinese Universities, 2004, 25(7): 1342−1346. (in Chinese)
    [19] 李琦, 姚拓, 阿不满, 等. 根际促生菌微胶囊剂研发及对苜蓿、燕麦促生效果评价 [J]. 草地学报, 2019, 27(5):1392−1399.

    LI Q, YAO T, A B M, et al. Development of plant growth promoting rhizobacteria microcapsules and evaluation of its growth promotion effects on alfalfa and oats [J]. Acta Agrestia Sinica, 2019, 27(5): 1392−1399. (in Chinese)
    [20] 韩梅. 大豆复合微生物肥料功能菌系的构建及包埋固定化研究[D]. 沈阳: 沈阳农业大学, 2013

    HAN M. Studies on Construction and Immobilization of Functional Flora for Compound Microbial Fertilizer in Soybean[D]. Shenyang: Shenyang Agricultural University, 2013. (in Chinese)
    [21] 朱峰, 许春丽, 曹立冬, 等. 农药微囊剂及其制备技术研究进展 [J]. 现代农药, 2018, 17(2):12−16,33. doi: 10.3969/j.issn.1671-5284.2018.02.003

    ZHU F, XU C L, CAO L D, et al. Research advances of pesticide microcapsule and its preparative technique [J]. Modern Agrochemicals, 2018, 17(2): 12−16,33. (in Chinese) doi: 10.3969/j.issn.1671-5284.2018.02.003
    [22] BASU A, PRASAD P, DAS S N, et al. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects [J]. Sustainability, 2021, 13(3): 1140. doi: 10.3390/su13031140
    [23] AINI N, YAMIKA W, ULUM B. Effect of nutrient concentration, PGPR and AMF on plant growth, yield, and nutrient uptake of hydroponic lettuce [J]. International Journal of Agriculture and Biology, 2019, 21(1): 175−183
    [24] GAMEZ R, CARDINALE M, MONTES M, et al. Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla) [J]. Microbiological Research, 2019, 220: 12−20. doi: 10.1016/j.micres.2018.11.006
    [25] KUMARI G, KUMAR D, SINGH D, et al. Characterization of microbial inoculants and its different formulation for mass production [J]. International Journal of Current Microbiology and Applied Sciences, 2020, 9(7): 621−627. doi: 10.20546/ijcmas.2020.907.070
    [26] 车永梅, 刘广超, 郭艳苹, 等. 一种耐盐复合菌剂的制备和促生作用研究 [J]. 生物技术通报, 2023, 39(11):217−225.

    CHE Y M, LIU G C, GUO Y P, et al. Preparation of compound halotolerant bioinoculant and study on its growth-promoting effect [J]. Biotechnology Bulletin, 2023, 39(11): 217−225. (in Chinese)
    [27] ANZUAY M S, CIANCIO M G R, LUDUEÑA L M, et al. Growth promotion of peanut (Arachis hypogaea L. ) and maize (Zea mays L. ) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides [J]. Microbiological Research, 2017, 199: 98−109. doi: 10.1016/j.micres.2017.03.006
    [28] 沙月霞, 邢敏, 李明洋, 等. 微生物菌剂拌土对玉米茎基腐病的预防和促生效果 [J]. 安徽农业科学, 2021, 49(4):141−144,154.

    SHA Y X, XING M, LI M Y, et al. Preventive and promoting efficacy of microbial agents mixed with soil against the maize stem basal rot in Ningxia [J]. Journal of Anhui Agricultural Sciences, 2021, 49(4): 141−144,154. (in Chinese)
    [29] 王礼, 杨光, 杨波, 等. 海藻酸钠微球的制备优化及其吸附模型 [J]. 食品与生物技术学报, 2023, 42(8):103−111.

    WANG L, YANG G, YANG B, et al. Optimization of preparation of sodium alginate microspheres and its adsorption behavior modeling [J]. Journal of Food Science and Biotechnology, 2023, 42(8): 103−111. (in Chinese)
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  30
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-22
  • 修回日期:  2024-02-07
  • 网络出版日期:  2024-03-28

目录

    /

    返回文章
    返回