Effects of Pyrolytic Time and Temperature on Microstructure, Physical and Chemical Properties of Biochar Made from Tobacco Straws
-
摘要: 为揭示不同温度和时间炭化的生物质炭微观结构及理化性质差异,以烟秆为原料,研究炭化温度(300、450、600℃)和时间(1、3 h)对烟秆生物质炭特性及元素组成的影响。结果表明,烟秆生物质炭呈多孔、高比表面积结构,较为完整地保留了烟秆的组织结构。烟秆生物质炭pH值、有机碳含量、全钾含量和C/N比随炭化温度的升高和时间的延长而升高,而产出率和全氮含量则呈降低趋势。炭化条件对烟秆生物质炭理化性质具有明显影响,炭化温度的影响大于炭化时间。生物质炭的农业应用为烟秆无害化处理提供了新途径,但受生产成本及烟秆就地炭化水平影响,烟秆生物质炭推广应用还有一定的局限性。Abstract: Effects of temperature and duration of pyrolysis on the microstructure, physical and chemical properties of biochar made from tobacco straws were studied. Pyrolysis at 300, 450, and 600 for 1 or 3 h to produce biochar were carried out for comparison. It was found that the resulting biochar was highly porous with a considerable specific surface area, and the structure remained largely that of the tobacco straws. As the pyrolytic time and temperature increased, the biochar increased on pH, organic carbon, total potassium and C/N ratio, while declined on output and total nitrogen. Conditions of the pyrolysis also significant affected the physical and chemical properties of the biochar, particularly, the temperature. Biochar for agriculture applications was a new venue to utilize tobacco straws. Nonetheless, the production cost, technology development, and on-site operation were some of the obstacles yet to be overcome before it could be feasibly applied for common practices.
-
Key words:
- pyrolysis /
- temperature /
- duration /
- tobacco straws /
- biochar /
- microstructure /
- physical and chemical properties
-
表 1 炭化温度和时间对烟秆生物质炭养分含量的影响
Table 1. Effects of pyrolytic time and temperature on chemical composition of biochar
炭化温度
/℃炭化时间
/h有机碳
/%全氮
/(g·kg-1)全钾
/(g·kg-1)C/N比 300 1 62.43±3.51bB 18.48±1.29aA 34.38±0.83dB 33.96±4.14cD 3 63.35±2.90bB 17.22±0.55aA 36.02±2.85cdB 36.81±2.12cCD 450 1 73.84±4.11aA 15.06±0.48bB 39.70±1.03bcAB 49.02±1.73bBC 3 74.19±4.65aA 14.28±0.56bB 42.97±1.36abA 52.09±5.37bB 600 1 76.92±4.21aA 10.89±1.00cB 43.97±2.94aA 71.29±7.71aA 3 80.94±3.71aA 10.62±0.42cB 44.81±2.44aA 76.21±1.21aA 注:同列数据后小写和大写字母不同分别表示达到5%和1%差异显著水平。 -
[1] ANTAL M J, GRONLIM M. The art, science and technology of charcoal production[J]. Industrial and Engineering Chemistry, 2003, 42:1619-1640. doi: 10.1021/ie0207919 [2] LEHMANN J, GAUNT J, RONDON M. Biochar Sequestration in Terrestrial Ecosystems:A review[J]. Mitigation and Adaptation Strategies for Global Change, 2006(11):395-419. https://ideas.repec.org/r/spr/masfgc/v11y2006i2p395-419.html [3] WOOLF D, AMONETTE J E, STREET-PERROTT F A, et al. Sustainable Biochar to Mitigate Global Climate Change[J]. Nature Communications, 2010, 1(3):118-124. http://www.wenkuxiazai.com/doc/a51c21562f60ddccda38a0c7-3.html [4] 潘根兴, 张阿凤, 邹建文, 等.农业废弃物生物质炭转化还田作为低碳农业途径的探讨[J].生态与农村环境学报, 2010, 26(4):394-400. http://www.cnki.com.cn/Article/CJFDTOTAL-NCST201004029.htm [5] 乔志刚, 付嘉英, 郑金伟, 等.不同炭基肥对青椒生长、品质和氮素农学利用率的影响[J].土壤通报, 2014, 45(1):185-191. http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201401029.htm [6] 才吉卓玛, 翟丽梅, 习斌, 等.生物炭对不同类型土壤中Olsen-P和CaCl2-P的影响[J].土壤通报, 2014, 45(1):173-178. http://www.cqvip.com/QK/91157X/201401/48388515.html [7] 杜臻杰, 齐学斌, 陈效民, 等.生物质炭和猪场沼液对潮土水力特征参数的影响[J].水土保持学报, 2014, 28(1):189-192. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201401036.htm [8] 吴志丹, 尤志明, 江福英, 等.生物黑炭对酸化茶园土壤的改良效果[J].福建农业学报, 2012, 27(2):167-172. http://www.fjnyxb.cn/CN/abstract/abstract1831.shtml [9] 张祥, 王典, 姜存仓, 等.生物炭对我国南方红壤和黄棕壤理化性质的影响[J].中国生态农业学报, 2013, 21(8):979-984. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201308011.htm [10] 吴志丹, 江福英, 王峰, 等.生物黑炭茶园应用技术试验示范效果[J].福建农业学报, 2014, 29(6):550-554. http://www.fjnyxb.cn/CN/abstract/abstract2453.shtml [11] 夏广洁, 宋萍, 邱宇平.牛粪源和木源生物炭对Pb(Ⅱ)和Cd(Ⅱ)的吸附机理研究[J].农业环境科学学报, 2014, 33(3):569-575. doi: 10.11654/jaes.2014.03.025 [12] BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L. Effects of Biochar and Green Waste Compost Amendments on Mobility, Bio-Availability and Toxicity of Inorganic and Organic Contaminants in a Multi-Element Polluted Soil[J]. Environmental Pollution, 2010, 158(6):2282-2287. doi: 10.1016/j.envpol.2010.02.003 [13] 袁敏, 姜军, 赵安珍, 等. 4种温度条件下制备的稻草炭对丙氨嗪的吸附特征[J].生态与农村环境学报, 2012, 28(6):712-717. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ncsthj201206017 [14] 许燕萍, 谢祖彬, 朱建国, 等.制炭温度对玉米和小麦生物质炭理化性质的影响[J].土壤, 2013, 45(1):73-78. http://www.cnki.com.cn/Article/CJFDTOTAL-TURA201301011.htm [15] WANG H C, FENG L Y, CHENG Y G. Advances in Biochar Production from Wastes and Its Applications[J]. Chemical Industry and Engineering Progress, 2012, 31(4):907-914. http://www.hgjz.com.cn/EN/abstract/abstract12320.shtml [16] 张晶, 苏德纯.秸秆炭化后还田对不同镉污染农田土壤中镉生物有效性和赋存形态的影响[J].农业环境科学学报, 2012, 31(10):1927-1932. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201210012.htm [17] 王成己, 王义祥, 林宇航, 等.生物黑炭输入对果园土壤性状及活性有机碳的影响[J].福建农业学报, 2012, 27(2):196-199. http://www.fjnyxb.cn/CN/abstract/abstract1835.shtml [18] 秦海芝, 刘莹莹, 李恋卿, 等.人居生活废弃物生物黑炭对水溶液中Cd2+的吸附研究[J].生态与农村环境学报, 2012, 28(2):181-186. [19] 邵玲玲, 邹平, 杨生茂, 等.不同土壤改良措施对冷浸田温室气体排放的影响[J].农业环境科学学报, 2014, 33(6):1240-1246. doi: 10.11654/jaes.2014.06.027 [20] 吴志丹, 尤志明, 江福英, 等.不同温度和时间炭化茶树枝生物炭理化特征分析[J].生态与农村环境学报, 2015, 31(4):583-588. doi: 10.11934/j.issn.1673-4831.2015.04.022 [21] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000. [22] 杨兴, 黄化刚, 王玲烟, 等.烟秆生物质炭热解温度优化及理化性质分析[J].浙江大学学报:农业与生命科学版, 2016, 42(2):245-255. http://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY201602014.htm [23] 姚红宇, 唐光木, 葛春辉, 等.炭化温度和时间与棉秆炭特性及元素组成的相关关系[J].农业工程学报, 2013, 29(7):199-206. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201307028.htm [24] 李宏光, 赵正雄, 杨勇, 等.施肥量对烟田土壤氮素供应及烟叶产质量的影响[J].西南师范大学学报(自然科学版), 2007, 32(4):37-42. http://www.cnki.com.cn/Article/CJFDTOTAL-XNZK200704010.htm [25] 王岩, 刘国版.绿肥中养分释放规律及对烟叶品质的影响[J].土壤学报, 2006, 43(2):273-279. doi: 10.11766/trxb200501180216 [26] 陈庆荣, 王成己, 陈曦, 等.施用烟秆生物黑炭对红壤性稻田根际土壤微生物的影响[J].福建农业学报, 2016, 31(2):184-188. http://www.fjnyxb.cn/CN/abstract/abstract2874.shtml [27] 王成己, 陈庆荣, 陈曦, 等.烟秆生物质炭对烟草根际土壤养分及细菌群落的影响[J].中国烟草科学, 2017, 38(1):42-47. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV201701007.htm