• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百香果叶片镉胁迫响应转录组分析

张立杰 张小艳 谢丽雪 王建超 黄镜浩 李韬

张立杰,张小艳,谢丽雪,等. 百香果叶片镉胁迫响应转录组分析 [J]. 福建农业学报,2024,39(8):938−945 doi: 10.19303/j.issn.1008-0384.2024.08.007
引用本文: 张立杰,张小艳,谢丽雪,等. 百香果叶片镉胁迫响应转录组分析 [J]. 福建农业学报,2024,39(8):938−945 doi: 10.19303/j.issn.1008-0384.2024.08.007
ZHANG L J, ZHANG X Y, XIE L X, et al. Transcriptome of Passiflora edulis Leaves under Cadmium Stress [J]. Fujian Journal of Agricultural Sciences,2024,39(8):938−945 doi: 10.19303/j.issn.1008-0384.2024.08.007
Citation: ZHANG L J, ZHANG X Y, XIE L X, et al. Transcriptome of Passiflora edulis Leaves under Cadmium Stress [J]. Fujian Journal of Agricultural Sciences,2024,39(8):938−945 doi: 10.19303/j.issn.1008-0384.2024.08.007

百香果叶片镉胁迫响应转录组分析

doi: 10.19303/j.issn.1008-0384.2024.08.007
基金项目: 福建省科技计划公益类专项(2021R1028002);福建省农业科学院农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021006);福建省农业科学院科技创新团队建设项目(CXTD2021003-3)
详细信息
    作者简介:

    张立杰(1981 —),男,硕士,助理研究员,主要从事果树栽培生理与生物技术研究,E-mail:zhanglijie0111@163.com

    通讯作者:

    李韬(1969 —),男,副研究员,主要从事果树种质资源与分子生物学研究,E-mail: leetao06@163.com

  • 中图分类号: S667.9

Transcriptome of Passiflora edulis Leaves under Cadmium Stress

  • 摘要:   目的  百香果对镉(Cd)具较强的吸收富集能力,严重影响果实的品质与商品价值,本研究通过模拟Cd胁迫的方法探讨百香果叶片响应Cd胁迫的分子机理,为百香果的安全生产和遗传育种改良提供依据。  方法  通过水培方式进行Cd中度胁迫(50 μmol·L−1)处理,采集不同处理时间的百香果叶片进行转录组测序,并采用qRT-PCR对测序的结果进行验证。  结果  与对照相比, Cd胁迫处理24、48、72 h后差异表达基因分别有346512622039个,获得63个特异性调控百香果响应镉胁迫的相关转录因子及蛋白。qRT-PCR 分析表明转录组测序结果有较高的可靠性。转录组GO功能富集和KEGG代谢通路分析结果表明,差异基因主要富集在细胞结构、催化活性及转录调节等功能组以及光合作用和碳水化合物代谢通路。  结论  Cd胁迫诱导的百香果叶片差异表达基因主要富集在代谢和生物合成相关途径,研究结果为百香果叶片响应Cd胁迫的分子网络研究提供依据。
  • 图  1  样品相关性分析

    Figure  1.  Correlations on samples

    图  2  差异基因分析

    Figure  2.  DEGs analysis

    图  3  差异表达基因的 GO 功能注释

    A:T24 vs T0差异表达基因的GO功能注释散点图;B:T48 vs T0差异表达基因的GO功能注释散点图;C:T72 vs T0差异表达基因的GO功能注释散点图。富集因子代表富集到 GO功能注释 DEG 数量与 DEGs 总数的比值。

    Figure  3.  Go functional annotation of DEGs

    A: GO function annotation scatter plot of T24 vs. T0 DEGs enrichment; B: GO function annotation scatter plot of T48 vs. T0 DEGs enrichment;C: GO function annotation scatter plot of T72 vs. T0 DEGs enrichment. Rich factor indicated ratio of number of enriched DEGs in GO function annotations to total number of DEGs.

    图  4  KEGG 富集散点图

    A:T24 vs T0差异表达基因的KEGG富集散点图;B:T48 vs T0差异表达基因的KEGG富集散点图; C:T72 vs T0差异表达基因的KEGG富集散点图。富集因子表示富集到 KEGG 通路的 DEG 数量与 DEGs 总数的之比。

    Figure  4.  KEGG enrichment scatter plot

    A: KEGG pathway scatter plot of T24 vs. T0 DEGs enrichment; B: KEGG pathway scatter plot of T48 vs. T0 DEGs enrichment;C: KEGG pathway scatter plot of T72 vs. T0 DEGs enrichment. Rich factor indicated ratio of number of enriched DEGs in KEGG pathways to total number of DEGs.

    图  5  不同时间点 Cd 处理下的连续性差异表达基因及部分转录因子的差异表达基因

    A:不同时间点Cd处理下的差异表达基因韦恩图;B和C :部分差异表达基因的表达热图。

    Figure  5.  Continuous and partial DEGs under Cd stress at different times

    A: Venn diagram of DEGs treated with Cd at different time point; B, C: heat map of partial DEGs.

    图  6  部分差异表达基因的 qRT-PCR 验证

    *:P < 0.05 水平差异显著; **: P < 0.01 水平差异极显著。

    Figure  6.  Verification of DEGs by qRT-PCR

    *: significant difference at P<0.05; **: extremely significant difference at P<0.01.

    表  1  实时荧光定量PCR的引物序列

    Table  1.   Sequences of qRT-PCR primers applied

    基因代码
    Gene ID
    正向序列
    Forward sequences (5′–3′)
    反向序列
    Reverse sequences (5′–3′)
    60S AGGTGGGTAACAGGATTATC TGGCTGTCTTTTGGTGCTG
    WRKY31 CAGGTTCAACGTTGTGCAGA AGCAAGGAAGGATGGCTCTT
    NAC100 AAAGCCTCTGATCAACCCCA TGCAGCTTCTCCATGACAGA
    MYB306 TGCAGGCTTAGATGGACCAA GTCTTGTGTCAGAGGGTCCA
    bHLH87 GCCGAACGTTCATCCAAAGA TTCTGGGTCAGCTGGTTCTT
    HMA3 AGTGGTAGGAACAATCGCCA CCGGTTTCTGCTATGACTGC
    下载: 导出CSV
  • [1] 王翔宇, 安昌, 秦源, 等. 百香果遗传育种及栽培生产研究进展 [J]. 亚热带植物科学, 2022, 51(6):505−514. doi: 10.3969/j.issn.1009-7791.2022.06.012

    WANG X Y, AN C, QIN Y, et al. Research progress on the genetic breeding and cultivation of passion fruit(Passiflora edulis) [J]. Subtropical Plant Science, 2022, 51(6): 505−514. (in Chinese) doi: 10.3969/j.issn.1009-7791.2022.06.012
    [2] 董鹏程, 袁泽, 刘晗, 等. 基于比较转录组学分析菜用甘薯对重金属镉响应的分子机制 [J]. 江苏师范大学学报(自然科学版), 2023, 41(3):21−29,2.

    DONG P C, YUAN Z, LIU H, et al. The molecular mechanism with comparative transcriptomic analysis on the response of vegetable sweetpotatoes to cadmium [J]. Journal of Jiangsu Normal University (Natural Science Edition), 2023, 41(3): 21−29,2. (in Chinese)
    [3] 许文宝, 曾新萍, 蔡晓东, 等. 西番莲对镉、铅的吸收累积特性 [J]. 亚热带植物科学, 2010, 39(3):1−3. doi: 10.3969/j.issn.1009-7791.2010.03.001

    XU W B, ZENG X P, CAI X D, et al. Absorption and accumulation of cadmium and lead in passionfruit [J]. Subtropical Plant Science, 2010, 39(3): 1−3. (in Chinese) doi: 10.3969/j.issn.1009-7791.2010.03.001
    [4] 刘辉, 卢扬, 叶夕苗, 等. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析 [J]. 生物技术通报, 2023, 39(5):177−191.

    LIU H, LU Y, YE X M, et al. Comparative transcriptome analysis of cadmium stress response induced by exogenous sulfur in Tartary buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177−191. (in Chinese)
    [5] 黄奇娜, 徐有祥, 林光号, 等. 硅对镉胁迫下水稻苗期抗氧化酶系统及镉离子吸收和转运相关基因表达水平的影响 [J]. 中国水稻科学, 2023, 37(5):486−496.

    HUANG Q N, XU Y X, LIN G H, et al. Effects of silicon on antioxidant enzyme system and expression levels of genes related to Cd2+ uptake and transportation in rice seedlings under cadmium stress [J]. Chinese Journal of Rice Science, 2023, 37(5): 486−496. (in Chinese)
    [6] 韩俊艳, 王敬言, 刘诗琦, 等. 重金属镉胁迫对大豆种子萌发与幼苗生长的影响 [J]. 沈阳大学学报(自然科学版), 2023, 35(2):108−115.

    HAN J Y, WANG J Y, LIU S Q, et al. Effects of cadmium stress on seed germination and seedling growth of soybean [J]. Journal of Shenyang University (Natural Science), 2023, 35(2): 108−115. (in Chinese)
    [7] 吴月莹, 邓思情, 刘松芹, 等. 镉胁迫对不同品种玉米幼苗生长及生理特性的影响 [J]. 湖南农业大学学报(自然科学版), 2023, 49(5):509−515.

    WU Y Y, DENG S Q, LIU S Q, et al. Effects of cadmium stress on the growth and physiological characteristics of maize seedlings from different varieties [J]. Journal of Hunan Agricultural University (Natural Sciences), 2023, 49(5): 509−515. (in Chinese)
    [8] 宋兰萍, 徐晓阳, 洪婉悦, 等. 镉耐性菌对黑麦草生长特性及镉吸收的影响 [J]. 中国环境科学, 2023, 43(3):1386−1396. doi: 10.3969/j.issn.1000-6923.2023.03.040

    SONG L P, XU X Y, HONG W Y, et al. Effect of cadmium-tolerant bacteria on Lolium perenne growth and its cadmium enrichment [J]. China Environmental Science, 2023, 43(3): 1386−1396. (in Chinese) doi: 10.3969/j.issn.1000-6923.2023.03.040
    [9] 黄卫, 庄荣浩, 刘辉, 等. 农田土壤镉污染现状与治理方法研究进展 [J]. 湖南师范大学自然科学学报, 2022, 45(1):49−56. doi: 10.7612/j.issn.1000-2537.2022.1.hnsfdx-zr202201006

    HUANG W, ZHUANG R H, LIU H, et al. Recent advances of the current situation and remediation methods of cadmium contamination in paddy soil [J]. Journal of Natural Science of Hunan Normal University, 2022, 45(1): 49−56. (in Chinese) doi: 10.7612/j.issn.1000-2537.2022.1.hnsfdx-zr202201006
    [10] RIZWAN H M, WAHEED A, MA S F, et al. Comprehensive Genome-wide identification and expression profiling of Eceriferum (CER) gene family in passion fruit (Passiflora edulis) under Fusarium kyushuense and drought stress conditions [J]. Frontiers in Plant Science, 2022, 13: 898307. doi: 10.3389/fpls.2022.898307
    [11] 王海洋, 韩玲, 谢丹妮, 等. 矿区周边农田土壤重金属分布特征及污染评价 [J]. 环境科学, 2022, 43(4):2104−2114.

    WANG H Y, HAN L, XIE D N, et al. Distribution characteristics of heavy metals in farmland soils around mining areas and pollution assessment [J]. Environmental Science, 2022, 43(4): 2104−2114. (in Chinese)
    [12] 倪显春, 任建国, 庞玉新, 等. 转录组测序分析艾纳香对镉胁迫响应机制[J/OL]. 分子植物育种, 2023-01-19, 1–21. https://kns-cnki-net.webvpn.fafu.edu.cn:880/kcms/detail/46.1068.S.20230119.0907.002.html.

    NI X C, REN J G, PANG Y X, et al. Transcriptome sequencing analysis of the response mechanism of Blumea balsamifera Dc to cadmium stress[J/OL]. Molecular Plant Breeding, 2023-01-19, 1–21. https://kns-cnki-net.webvpn.fafu.edu.cn:880/kcms/detail/46.1068.S.20230119.0907.002.html. (in Chinese)
    [13] 于文慧, 杨明川, 王雅利, 等. 高粱幼苗响应镉离子胁迫的转录组分析[J/OL]. 分子植物育种, 2022-11-30, 1–15. https://kns-cnki-net.webvpn.fafu.edu.cn:880/kcms/detail/46.1068.S.20221130.0928.002.html.

    YU W H, YANG M C, WANG Y L, et al. Transcriptome analysis of sorghum aeedlings in response to cadmium stress [J/OL]. Molecular Plant Breeding, 2022-11-30, 1–15. https://kns-cnki-net.webvpn.fafu.edu.cn:880/kcms/detail/46.1068.S.20221130.0928.002.html. (in Chinese)
    [14] HASAN M K, AHAMMED G J, YIN L L, et al. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L [J]. Frontiers in Plant Science, 2015, 6: 601. doi: 10.3389/fpls.2015.00601
    [15] KHANNA K, KOHLI S K, OHRI P, et al. Agroecotoxicological aspect of Cd in soil-plant system: Uptake, translocation and amelioration strategies [J]. Environmental Science and Pollution Research International, 2022, 29(21): 30908−30934. doi: 10.1007/s11356-021-18232-5
    [16] WAADT R, SELLER C A, HSU P K, et al. Plant hormone regulation of abiotic stress responses [J]. Nature Reviews Molecular Cell Biology, 2022, 23(10): 680−694. doi: 10.1038/s41580-022-00479-6
    [17] 魏婷, 罗辰瑶, 李红, 等. 外源茉莉酸甲酯对番茄幼苗生长及镉抗性的影响 [J]. 陕西科技大学学报, 2021, 39(4):15−20. doi: 10.3969/j.issn.1000-5811.2021.04.003

    WEI T, LUO C Y, LI H, et al. Effects of exogenous methyl jasmonate on growth and Cd tolerance of tomato seedlings [J]. Journal of Shaanxi University of Science & Technology, 2021, 39(4): 15−20. (in Chinese) doi: 10.3969/j.issn.1000-5811.2021.04.003
    [18] CHEN H F, ZHANG Q, LV W, et al. Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice [J]. Environmental Pollution, 2022, 302: 119063. doi: 10.1016/j.envpol.2022.119063
    [19] HAYAT S, ALI B, AIMAN HASAN S, et al. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea [J]. Environmental and Experimental Botany, 2007, 60(1): 33−41. doi: 10.1016/j.envexpbot.2006.06.002
    [20] CHEN H, YANG R X, ZHANG X, et al. Foliar application of gibberellin inhibits the cadmium uptake and xylem transport in lettuce (Lactuca sativa L.) [J]. Scientia Horticulturae, 2021, 288: 110410. doi: 10.1016/j.scienta.2021.110410
    [21] MOREL M, CROUZET J, GRAVOT A, et al. AtHMA3, a P1B-ATPase allowing Cd/Zn/co/Pb vacuolar storage in Arabidopsis [J]. Plant Physiology, 2009, 149(2): 894−904. doi: 10.1104/pp.108.130294
    [22] CHEN Y Y, CHAO Z F, JIN M, et al. A heavy metal transporter gene ZmHMA3a promises safe agricultural production on cadmium-polluted arable land [J]. Journal of Genetics and Genomics, 2023, 50(2): 130−134. doi: 10.1016/j.jgg.2022.08.003
    [23] MACCAFERRI M, HARRIS N S, TWARDZIOK S O, et al. Durum wheat genome highlights past domestication signatures and future improvement targets [J]. Nature Genetics, 2019, 51(5): 885−895. doi: 10.1038/s41588-019-0381-3
    [24] CAI Y M, WANG M E, CHEN B D, et al. Effects of external Mn2+ activities on OsNRAMP5 expression level and Cd accumulation in indica rice [J]. Environmental Pollution, 2020, 260: 113941. doi: 10.1016/j.envpol.2020.113941
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  20
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-25
  • 修回日期:  2024-07-03
  • 网络出版日期:  2024-11-13
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回