• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

猪传染性胃肠炎病毒 S、N基因DNA疫苗载体构建及其免疫原性

成伟伟 容维中 杨明 李元新 赵子惠 陈伯祥 王佳 周瑶

成伟伟,容维中,杨明,等. 猪传染性胃肠炎病毒 S、N基因DNA疫苗载体构建及其免疫原性 [J]. 福建农业学报,2024,39(9):1−9
引用本文: 成伟伟,容维中,杨明,等. 猪传染性胃肠炎病毒 S、N基因DNA疫苗载体构建及其免疫原性 [J]. 福建农业学报,2024,39(9):1−9
CHENG W W, RONG W Z, YANG M, et al. Vector Construction and Immunogenicity of S and N Gene DNA Vaccine for TGEV [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1−9
Citation: CHENG W W, RONG W Z, YANG M, et al. Vector Construction and Immunogenicity of S and N Gene DNA Vaccine for TGEV [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1−9

猪传染性胃肠炎病毒 S、N基因DNA疫苗载体构建及其免疫原性

基金项目: 甘肃省青年科技基金计划项目(21JR7RA719);甘肃省农业生物技术研究与应用开发项目(GNSW-2011-24);甘肃省重点研发计划项目(18YF1NA021-1)
详细信息
    作者简介:

    成伟伟(1988 —),男,硕士,副研究员,主要从事动物病原生物学与免疫学研究,E-mail:549861054@qq.com

  • 中图分类号: S855.3

Vector Construction and Immunogenicity of S and N Gene DNA Vaccine for TGEV

  • 摘要:   目的  构建猪传染性胃肠炎病毒(Transmissible gastroenteritis virus, TGEV)S、N基因的DNA疫苗载体,并进行免疫原性试验,为猪传染性胃肠炎(Transmissible gastroenteritis, TGE)的防控和DNA疫苗研究提供技术支撑和基础数据。  方法  扩增S基因的A位点、D位点和N基因,并将N基因(单独)、A位点和D位点(融合)克隆至pCDNA3.1-His-C构建重组疫苗载体,运用生物信息学软件预测分析S(A-D)蛋白、N蛋白二级结构组成、三级构像、亚细胞定位和优势B细胞抗原表位。将构建成功的重组载体分别转染至PK-15细胞进行间接免疫荧光试验,运用共聚焦检测重组蛋白的表达分布情况。将重组疫苗载体单独或联合免疫小鼠,运用间接ELISA检测IgG抗体水平。  结果  扩增出S基因的A位点、D位点和N基因,大小分别为498、606、1149 bp。构建了A位点与D位点(融合)、N基因(单独)的DNA疫苗重组载体p-S(A-D)-His和p-N-His。生物信息学软件预测分析发现TGEV感染宿主细胞时N蛋白主要定位于细胞核和线粒体,S(A-D)蛋白主要定位于细胞质和线粒体,S(A-D)蛋白具有7个优势B细胞抗原表位,N蛋白具有8个优势B细胞抗原表位。重组载体p-S(A-D)-His和p-N-His均在PK-15细胞内成功表达,且S(A-D)-His和N-His在PK-15细胞核和细胞质中均有分布。重组疫苗载体免疫小鼠后,免疫效果由高至低依次为p-N-His>p-S(A-D)-His + p-N-His>p-S(A-D)-His。  结论  本研究构建了TGEV的 S、N基因的DNA疫苗载体,免疫小鼠后均产生了较强的特异性抗体,为TGEV的核酸疫苗的研制提供了基础材料和依据。
  • 图  1  质粒p-S(A-D)-His构建模式

    A:质粒p-S(A-D)-His图谱;B:A位点与D位点连接示意图;C:A位点与D位点连接碱基序列图。

    Figure  1.  The model diagram of plasmid p-S(A-D)-His construction

    A: the plasmid p-S(A-D)-His profile; B: the diagram of the connection between site A and site D; C: the sequence diagram of connecting bases at sites A and D.

    图  2  TGEV S基因A、D位点扩增结果

    A:A位点扩增结果;M为DNA分子质量标准DL2000,1为扩增的A位点。B:D位点扩增结果;M为DNA分子质量标准DL2000,1为扩增的D位点。

    Figure  2.  Amplified A and D sites of TGEV S gene

    A: amplification results of A site; M was DNA Marker DL2000, 1 was the PCR-amplified A site. B: amplification results of D site; M was DNA Marker DL2000, 1 was the PCR-amplified D site.

    图  3  TGEV N基因扩增结果

    M:DNA分子质量标准DL2000;1、2:扩增的N基因。

    Figure  3.  Amplified N gene of TGEV

    M: DNA marker DL2000; 1, 2: PCR-amplified N gene.

    图  4  S基因A位点重组载体p-S(A)-His的构建与鉴定

    M:DNA分子质量标准DL2000;1、2:重组载体p-S(A)-His的单酶切;3、4:重组载体p-S(A)-His的双酶切。

    Figure  4.  Construction and identification of p-S (A)-His and p-S (D)-His at A and D sites of S gene

    M1: DNA marker DL2000; M2: DNA marker DL10000; 1: single enzyme digestion of recombinant vector p-S (A)-His; 2: single enzyme digestion of recombinant vector p-S (D)-His; 3 and 4: double digestion of recombinant vector p-S (A)-His; 5 and 6: double digestion of recombinant vector p-S (D)-His.

    图  5  重组载体p-S(A-D)-His的构建与鉴定

    M:DNA分子质量标准DL2000; 1:重组载体p-S(A-D)-His的单酶切;2:重组载体p-S(A-D)-His的双酶切。

    Figure  5.  Construction and identification of recombinant vectors p-S (A-D)-His

    M: DNA marker DL2000; 1: single enzyme digestion of recombinant vector p-S(A-D)-His; 2: double digestion of recombinant vector p-S (A-D)-His.

    图  6  重组载体p-N-His的构建与鉴定

    M:DNA分子质量标准DL5000;1:重组载体p-N-His的双酶切。

    Figure  6.  Construction and identification of recombinant vectors p-N-His

    M: DNA marker DL5000; 1: double digestion of recombinant vector p-N-His.

    图  7  S(A-D)蛋白、N蛋白三级结构同源建模

    A:N蛋白结构图;B:N蛋白表面构像图;C:S(A-D)蛋白结构图;D:S(A-D)蛋白表面构像图。

    Figure  7.  Homologous modeling on tertiary structures of S (A-D) and N protein

    A: Structure of N protein; B: image of N protein structure; C: image of S (A-D) protein structure; D: image of S (A-D) protein structure.

    图  8  N基因、S(A-D)片段表达的间接免疫荧光试验

    Figure  8.  Expressions of N and S (A-D) fragments verified by indirect immunofluorescence assay

    表  1  S基因A位点、D位点和N基因扩增引物序列

    Table  1.   Sequences of primers for amplifications of A and D sites and N gene

    基因
    Gene
    引物
    Primers
    序列(5′−3′)
    Sequence(5′−3′)
    酶切位点
    Restriction enzyme cutting site
    S基因A位点
    A-site in S gene
    P1 CGCGGATCCATGTTAGTTACCAAACAGCCGT Bam H I
    P2 CCGGAATTCTATTGTCCAGAAAACGTCAC Eco R I
    S基因D位点
    D-site in S gene
    P3 CCGGAATTCAAGTTGAAAACACAGCTATT Eco R I
    P4 TGCTCTAGA ACTATTATCAGACGGTACACC Xba I
    N基因
    N Gene
    P5 CGCGGATCCATGGCCAACCAGGGAC Bam H I
    P6 CCGGAATTCGTTCGTTACCTCATCAATT Eco R I
    表中加下划线的碱基序列为酶切位点序列。
    Cleavage sites are underlined.
    下载: 导出CSV

    表  2  小鼠分组及免疫程序

    Table  2.   Groups and procedures of mice immunization

    组别
    Group
    疫苗载体种类
    Vaccine carrier type
    免疫剂量
    Immunizing dose/μg
    小鼠数量
    Number of mice
    免疫时间
    Immune frequency
    免疫位置
    Immune site
    1 p-S(A-D)-His 240 6 第1、7、21天 脚底板
    2 p-N-His 240 6 第1、7、21天 脚底板
    3 p-S(A-D)-His + p-N-His 120+120 6 第1、7、21天 脚底板
    4 pCDNA3.1-His-C 240 6 第1、7、21天 脚底板
    下载: 导出CSV

    表  3  S(A-D)蛋白和N蛋白亚细胞定位预测

    Table  3.   Predicted subcellular localization of S (A-D) and N proteins

    组别
    Group
    亚细胞定位
    Subcellular localization
    可能性
    Possibility/%
    S(A-D)蛋白
    S(A-D) protein
    细胞质 Cytoplasm 34.8
    线粒体 Mitochondria 17.4
    细胞核 Cell nucleus 13.0
    质膜 Plasmalemma 13.0
    内质网 Endoplasmic reticulum 8.7
    N蛋白
    N protein
    细胞核 Cell nucleus 65.2
    线粒体 Mitochondria 17.4
    细胞质 Cytoplasm 13.0
    溶酶体 Lysosome 4.3
    下载: 导出CSV

    表  4  S(A-D)蛋白和N蛋白的B细胞抗原表位预测

    Table  4.   Predicted B cell epitope of S (A-D) and N proteins

    蛋白
    Protein
    序号
    Number
    起始位点
    Start site
    结束位点
    End site
    序列
    Amino acid sequence
    S(A-D)蛋白
    S(A-D)protein
    1 33 43 FDQCNGAVLNN
    2 55 62 TTNVQSGK
    3 86 101 DSSFFSYGEIPFGVTD
    4 195 211 NLNNGFYPVSSSEVGLV
    5 233 250 LGMKRSGYGQPIASTLSN
    6 281 295 ALWDNIFKRNCTDVL
    7 306 318 CPFSFDKLNNYLT
    N蛋白
    N protein
    1 4 32 QGQRVSWGDESTKTRGRSNSRGRKSNNIP
    2 43 87 QGSKFWNLCPRDFVPNGIGNRDQQIGYWNRQTRYRMVKGQRKELP
    3 101 108 ADAKFKDK
    4 118 146 DGAMNKPTTLGSRGANNESKALKFDGKVP
    5 150 189 QLEVNQSRDNSRSRSQSRSRSRNRSQSRGRQQSNNKKDDS
    6 201 244 LGVDTEKQQQRSRSKSKERSNSKTRDTTPKNENKHTWKRTAGKG
    7 251 271 GARSSSANFGDSDLVANGSSA
    8 316 378 DPKTEQFLQQINAYARPSEVAKEQRKRKSRSKSAERSEQEVVPDALIENYTDVFDDTQVEIID
    下载: 导出CSV

    表  5  免疫小鼠抗TGEV血清IgG间接ELISA检测

    Table  5.   Anti-TGEV serum IgG in immunized mice detected by indirect ELISA

    组别
    Group
    疫苗载体种类
    Vaccine carrier type
    免疫后不同时间抗TGEV血清IgG水平(OD450 nm
    Anti-TGEV serum IgG levels at different time after immunization (OD450 nm)
    0天
    0 days
    14天
    14 days
    28天
    28 days
    42天
    42 days
    1 p-S(A-D)-His 0.133±0.011 a 0.218±0.0075 b 0.243±0.0060 c 0.401±0.0100 c
    2 p-N-His 0.138±0.016 a 0.244±0.0025 a 0.344±0.0070 a 0.504±0.0141 a
    3 p-S(A-D)-His + p-N-His 0.142±0.0050 a 0.225±0.0021 b 0.300±0.0050 b 0.471±0.0075 b
    4 pCDNA3.1-His-C 0.134±0.0089 a 0.144±0.0076 c 0.141±0.0069 c 0.139±0.0020 d
    同列数据肩标小写字母完全不同表示差异显著(P<0.05),含相同小写字母或无肩标表示差异不显著(P>0.05)。
    Data with different lowercase letters on same column indicate significant differences at P<0.05; those with or without same lowercase letters indicate no significant differences at P>0.05.
    下载: 导出CSV
  • [1] 张羽欣, 王树茂, 段宏勇, 等. 猪传染性胃肠炎病毒TaqMan实时荧光定量PCR检测方法的建立与应用 [J]. 中国兽医科学, 2024, 54(4):479−484.

    ZHANG Y X, WANG S M, DUAN H Y, et al. Establishment and application of TaqMan real-time quantitative PCR for detection of porcine transmissible gastroenteritis virus [J]. Chinese Veterinary Science, 2024, 54(4): 479−484. (in Chinese)
    [2] JI Z Y, DONG H, JIAO R X, et al. The TGEV membrane protein interacts with HSC70 to direct virus internalization through clathrin-mediated endocytosis [J]. Journal of Virology, 2023, 97(4): e0012823. doi: 10.1128/jvi.00128-23
    [3] PU J N, CHEN D W, TIAN G, et al. All-trans retinoic acid attenuates transmissible gastroenteritis virus-induced inflammation in IPEC-J2 cells via suppressing the RLRs/NF-κB signaling pathway [J]. Frontiers in Immunology, 2022, 13: 734171. doi: 10.3389/fimmu.2022.734171
    [4] NIU Z, XU S S, ZHANG Y L, et al. Transmissible gastroenteritis virus nucleocapsid protein interacts with Na+/H+ exchanger 3 to reduce Na+/H+ exchanger activity and promote piglet diarrhea [J]. Journal of Virology, 2022, 96(22): e0147322. doi: 10.1128/jvi.01473-22
    [5] QIAN J T, LI M J, FENG Y F, et al. Genetic epidemiology of porcine transmissible gastroenteritis virus based on whole genome and S gene sequences[C]//2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB). May 25-27, 2021, Taiyuan, China. IEEE, 2021: 148-151.
    [6] 郝振业. 猪传染性胃肠炎病毒反向遗传操作系统的构建及附属蛋白3(ORF3)的定位及功能研究[D]. 哈尔滨: 东北农业大学, 2023.

    HAO Z Y. Construction of reverse genetic operating system of porcine transmissible gastroenteritis virus and study on location and function of accessory protein 3(ORF3)[D]. Harbin: Northeast Agricultural University, 2023. (in Chinese)
    [7] 王艳春. 猪传染性胃肠炎病毒S基因A位点杆状病毒表达及初步应用[D]. 扬州: 扬州大学, 2020.

    WANG Y C. Expression of baculovirus at site A of S gene of porcine infectious gastroenteritis virus and its preliminary application[D]. Yangzhou: Yangzhou University, 2020. (in Chinese)
    [8] 张海燕. PEDV和TGEV的S蛋白融合抗原表位核酸疫苗的研究[D]. 武汉: 华中农业大学, 2019.

    ZHANG H Y. Study on S protein fusion epitope nucleic acid vaccine of PEDV and TGEV[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
    [9] LI X L, LI P C, CAO L Y, et al. Porcine IL-12 plasmid as an adjuvant improves the cellular and humoral immune responses of DNA vaccine targeting transmissible gastroenteritis virus spike gene in a mouse model [J]. Journal of Veterinary Medical Science, 2019, 81(10): 1438−1444. doi: 10.1292/jvms.18-0682
    [10] 师一鸣. TGEV单克隆抗体的制备及检测方法的建立[D]. 哈尔滨: 东北农业大学, 2019.

    SHI Y M. Preparation of TGEV monoclonal antibody and establishment of detection method[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese)
    [11] 李雅静, 宫强. 铜绿假单胞菌oprH基因DNA疫苗的构建与检测 [J]. 现代畜牧兽医, 2022(11):19−23. doi: 10.3969/j.issn.1672-9692.2022.11.lnxmsy202211006

    LI Y J, GONG Q. Construction and detection of Pseudomonas aeruginosa oprH gene DNA vaccine [J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2022(11): 19−23. (in Chinese) doi: 10.3969/j.issn.1672-9692.2022.11.lnxmsy202211006
    [12] 杨鹏, 吴燕, 岳筠, 等. 绵羊肺炎支原体P113蛋白C末端基因真核表达载体的构建及其小鼠免疫应答 [J]. 中国兽医学报, 2022, 42(3):496−501, 521.

    YANG P, WU Y, YUE J, et al. Construction of eukaryotic expression vector for C terminal gene of Mycoplasma ovipneumoniae P113 protein and its immune response in mice [J]. Chinese Journal of Veterinary Science, 2022, 42(3): 496−501, 521. (in Chinese)
    [13] 姚思, 杨洁琼, 杨雨欣, 等. 结核分枝杆菌ESAT6-Fc DNA疫苗的免疫效应评价 [J]. 中国生物制品学杂志, 2023, 36(8):897−901.

    YAO S, YANG J Q, YANG Y X, et al. Evaluation of immune effect of ESAT6-Fc DNA vaccine against Mycobacterium tuberculosis [J]. Chinese Journal of Biologicals, 2023, 36(8): 897−901. (in Chinese)
    [14] 黄小波, 杨恒, 曹三杰, 等. 猪传染性胃肠炎病毒S-N融合双基因疫苗的构建及其免疫原性分析 [J]. 中国兽医科学, 2012, 42(8):848−853.

    HUANG X B, YANG H, CAO S J, et al. Construction and immunogenicity analysis of the S-N fusion gene vaccine against porcine transmissible gastroenteritis virus [J]. Chinese Veterinary Science, 2012, 42(8): 848−853. (in Chinese)
    [15] WANG G, LIANG R, LIU Z W, et al. The N-terminal domain of spike protein is not the enteric tropism determinant for transmissible gastroenteritis virus in piglets [J]. Viruses, 2019, 11(4): 313. doi: 10.3390/v11040313
    [16] 韩郁茹, 石达, 张记宇, 等. 猪急性腹泻综合征冠状病毒RT-LAMP快速检测方法的建立与应用 [J]. 中国预防兽医学报, 2021, 43(1):35−39.

    HAN Y R, SHI D, ZHANG J Y, et al. Development and application of RT-LAMP method for rapid detection of SADS-CoV [J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(1): 35−39. (in Chinese)
    [17] 樊杰. 猪传染性胃肠炎病毒N蛋白纳米抗体的制备和基于纳米抗体竞争ELISA的建立[D]. 杨凌: 西北农林科技大学, 2021.

    FAN J. Preparation of nano-antibody against N protein of transmissible gastroenteritis virus and establishment of competitive ELISA based on nano-antibody[D]. Yangling: Northwest A & F University, 2021. (in Chinese)
    [18] ZHANG Y D, ZHANG X H, LIAO X D, et al. Construction of a bivalent DNA vaccine co-expressing S genes of transmissible gastroenteritis virus and porcine epidemic diarrhea virus delivered by attenuated Salmonella typhimurium [J]. Virus Genes, 2016, 52(3): 354−364. doi: 10.1007/s11262-016-1316-z
    [19] 何雷, 董玲娟, 张彦明, 等. 猪传染性胃肠炎病毒ORF7蛋白在ST细胞中定位及其对病毒复制影响的研究 [J]. 中国预防兽医学报, 2020, 42(6):543−548.

    HE L, DONG L J, ZHANG Y M, et al. The subcellular location of transmissible gastroenteritis virus protein ORF7 and its effect on viral replication [J]. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(6): 543−548. (in Chinese)
    [20] 何雷, 贾艳艳, 郁川, 等. 稳定表达猪传染性胃肠炎病毒N蛋白的ST细胞株的构建及其亚细胞定位 [J]. 中国预防兽医学报, 2016, 38(2):101−104. doi: 10.3969/j.issn.1008-0589.2016.02.04

    HE L, JIA Y Y, YU C, et al. Establishment of stably-expressed transmissible gastroenteritis virus N protein cell line and its subcellular location [J]. Chinese Journal of Preventive Veterinary Medicine, 2016, 38(2): 101−104. (in Chinese) doi: 10.3969/j.issn.1008-0589.2016.02.04
    [21] 韩涛涛, 黎露, 唐青海, 等. 不同佐剂对猪传染性胃肠炎病毒S蛋白和猪流行性腹泻病毒S蛋白免疫原性的影响 [J]. 中国农学通报, 2020, 36(30):143−150. doi: 10.11924/j.issn.1000-6850.casb20191000740

    HAN T T, LI L, TANG Q H, et al. Different adjuvants: Effects on S protein immunogenicity of porcine transmissible gastroenteritis virus and porcine epidemic diarrhea virus [J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 143−150. (in Chinese) doi: 10.11924/j.issn.1000-6850.casb20191000740
    [22] 伊立超. PEDV和TGEV受体结合区基因在昆虫杆状病毒系统的表达与免疫原性分析[D]. 延吉: 延边大学, 2022.

    YI L C. Expression and immunogenicity analysis of PEDV and TGEV receptor binding region genes in insect baculovirus system[D]. Yanji: Yanbian University, 2022. (in Chinese)
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  27
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-03
  • 修回日期:  2024-08-23
  • 网络出版日期:  2024-10-29

目录

    /

    返回文章
    返回