• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转录组和代谢组联合分析茶树对茶饼病病原菌的防御反应

姚玉仙 张明泽 舒烨 罗福丹 全昌彬 刘荣 向志攀 梅鑫

姚玉仙,张明泽,舒烨,等. 转录组和代谢组联合分析茶树对茶饼病病原菌的防御反应 [J]. 福建农业学报,2024,39(X):1−16
引用本文: 姚玉仙,张明泽,舒烨,等. 转录组和代谢组联合分析茶树对茶饼病病原菌的防御反应 [J]. 福建农业学报,2024,39(X):1−16
YAO Y X, ZHANG M Z, SHU Y, et al. Transcriptome and Metabolome Analysis of Tea Leaves in Response to Tea Blister Blight [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−16
Citation: YAO Y X, ZHANG M Z, SHU Y, et al. Transcriptome and Metabolome Analysis of Tea Leaves in Response to Tea Blister Blight [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−16

转录组和代谢组联合分析茶树对茶饼病病原菌的防御反应

基金项目: 贵州省基础研究(自然科学)项目(黔科合基础〔2020〕1Y120);贵州省教育厅自然科学基金项目(黔教合KY字〔2019〕211);贵州省教育厅贵州省高等学校茶树特征性成分研究重点实验室项目(黔教技〔2023〕027号);贵州省大学生创新创业训练计划项目(S202210670021)
详细信息
    作者简介:

    姚玉仙(1988 —),女,硕士,讲师,主要从事植物分子生物学研究,E-mail:yaoyuxian0520@126.com

    通讯作者:

    张明泽(1986 —),男,博士,副教授,主要从事植物分子遗传学研究,E-mail: zhangmingze20@163.com

  • 中图分类号: S435.711

Transcriptome and Metabolome Analysis of Tea Leaves in Response to Tea Blister Blight

  • 摘要:   目的  探明茶树对茶饼病菌的抗性分子机制,挖掘抗病相关基因,为茶树抗性育种提供依据。  方法  通过转录组测序和代谢组分析,比较茶树健康叶片(CK)和感染茶饼病的叶片(TB)中的差异表达基因(DEGs)和差异代谢物(DAMs)。  结果  转录组数据显示,样品CK和TB之间共有1009个 DEGs;GO 富集分析表明,差异基因参与了细胞壁代谢及调控几丁质酶活性、氧化还原酶活性和木葡聚糖:木葡基转移酶活性;KEGG 代谢途经分析表明,DEGs显著富集在“类黄酮生物合成”“苯丙素生物合成”“氨基糖和核苷糖代谢”“甘油酯代谢”和“芪类,二芳基庚烷和姜酚生物合成”途径;DEGs 中包含47个转录因子,分属21个转录因子家族,主要包括bHLH、SBP、AP2/ERF-AP2和MYB等,这些转录因子可能是茶树抵御茶饼病侵染过程中重要的调控基因。利用广泛靶向代谢组学技术分析,共发现353个DAMs,DAMs主要富集于“类黄酮生物合成”“赖氨酸生物合成”和“丙氨酸、天门冬氨酸和谷氨酸代谢”途径。利用转录组联合代谢组分析发现,显著共同富集的途径是“类黄酮生物合成”“苯丙素生物合成”和“芪类,二芳基庚烷和姜酚生物合成”;筛选了与苯丙素类及类黄酮生物合成途径相关的20个DEGs和15个DAMs,其中,CSS00117414CL)、CSS0002940DFR)、CSS0015968DFR)和CSS0010687ANS)等DEGs在感病叶中上调表达,根皮素、根皮苷、4-羟基苯乙烯、对香豆酰喹啉酸、二氢杨梅素、表没食子儿茶素和芍药素-3-O葡萄糖苷等DAMs在感病叶中积累。  结论  “苯丙素类生物合成”和“类黄酮生物合成”等代谢途径中的 DEGs在茶树响应茶饼病侵染中发挥重要作用,根皮素、根皮苷以及表没食子儿茶素等DAMs可能是茶树抵御茶饼病侵染的重要次生代谢产物。
  • 图  1  样本相关性热图及各样本间的主成分分析

    A. 转录组样本相关性热图;B. 转录组各样本间的主成分分析;C. 代谢组样本相关性热图;D. 代谢组各样本间的主成分分析。

    Figure  1.  Heatmap of the Pearson correlation between samples and principal component analysis plots of samples

    A. Heatmap of the Pearson correlation between samples in transcriptome; B. Principal component analysis plots of samples in transcriptome; C. Heatmap of the Pearson correlation between samples in metabolome; D. Principal component analysis plots of samples in metabolome.

    图  2  样品CK和TB中的差异表达基因

    Figure  2.  Differentially expressed genes in CK vs. TB

    图  3  差异表达基因的GO富集分析

    A. 生物学过程;B. 细胞组分;C. 分子功能。

    Figure  3.  GO enriched analysis of differentially expressed genes

    A. Biological process; B. Cellular component; C. Molecular function.

    图  4  差异表达基因的KEGG富集分析

    A. KEGG代谢通路分类统计;B. KEGG前20条显著性富集代谢通路。

    Figure  4.  KEGG enrichment analysis of differentially expressed genes

    A. Classification statistical diagram of KEGG metabolic pathway; B. The top 20 metabolic pathways of KEGG were significantly enriched.

    图  5  茶树感染茶饼病菌后转录因子变化情况

    A. 转录因子类别及数量统计;B. 转录因子表达热图。

    Figure  5.  Changes of transcription factors in tea plants infected with E. vexans

    A. Classification and quantity statistics of transcription factors; B. The expression heatmap of transcription factors.

    图  6  CK vs. TB的差异代谢物火山图

    Figure  6.  Differential metabolite volcano map of CK vs. TB

    图  7  差异代谢物KEGG通路富集分析

    Figure  7.  Enriched KEGG pathways of differentially metabolites

    图  8  前20个差异代谢物差异倍数柱状图

    Figure  8.  Histogram of fold change for the first 20 differential metabolites

    图  9  转录-代谢KEGG共有富集通路气泡图

    A. Venn 图;B. 代谢通路分析。圆点代表DEGs, 三角形代表DAMs。-lg (P value) 越大,富集可信度越高。

    Figure  9.  Bubble diagram of enriched pathways shared by transcriptome and metabolome through KEGG analysis

    A. Venn diagram; B. Metabolic pathway analysis. Triangles are DEGs and dots are DAMs. The bigger the -lg (P value) is, the more reliable the enrichment is.

    图  10  苯丙素类和类黄酮生物合成途径的关键DEGs和DAMs

    流程图中红色方框表示TB中的上调代谢物,绿色方框表示TB中的下调代谢物。

    Figure  10.  The key DEGs and DAMs of the phenylpropanoid and flavonoid biosynthesis pathway

    The red boxes in the flow chart represent up-regulated metabolites in TB, and the green boxes represent down-regulated metabolites in TB.

    图  11  部分差异表达基因的qRT-PCR验证分析

    “*” 和“**”分别代表CK与TB相比差异显著(P<0.05)和差异极显著(P<0.01)。

    Figure  11.  qRT-PCR verification analysis of partial differentially expressed genes

    "*" and "**" represent significant differences (P<0.05) and extremely significant differences (P<0.01) between CK and TB, respectively.

    表  1  qRT-PCR基因及引物

    Table  1.   Genes and primers for qRT-PCR

    基因
    Gene
    正向引物
    Forward primer (5'-3')
    反向引物
    Reverse primer (5'-3')
    CSS0007745 CCAAGAGTGTGGAAGGGTATG CAGAGGGAGGCCAAATCTTATG
    CSS0013831 CATTGCTTCTTGGCCCTACTA TGACAGTGCCATCACCATAAA
    CSS0038049 GATGCCATGGCTTATGGATTTG GACCTATGCGGTAGACAGTTTC
    CSS0008562 AGTGCCTCATCAACCATCAC AGGAAGAAGAAGAGGAGGTAGAG
    CSS0042430 GAGACTCAGAGGACTCGAAAGA CAGACTCGGACGCCTTTATG
    CSS0005594 AATATGGGTGCCGGGTATTG TCTTCTCCTCCGATGGTACTT
    CsEF1KA280301.1 TTGGACAAGCTCAAGGCTGAACG ATGGCCAGGAGCATCAATGACAGT
    下载: 导出CSV

    表  2  样本测序数据的质量控制分析

    Table  2.   Analysis of quality control for transcriptome sequencing data

    样本
    Sample
    过滤序列
    Clean reads
    过滤碱基
    Clean bases/G
    Q20/% Q30/% GC含量
    GC Content /%
    匹配序列(比对效率/%)
    Mapped reads (Efficiency/%)
    CK1 40107608 6.00 98.87 96.51 45.31 35374239 (88.20)
    CK2 40805448 6.10 98.72 96.33 45.11 35890315 (87.95)
    CK3 40738514 6.10 98.48 95.89 44.84 35837746 (87.97)
    TB1 41033002 6.14 98.77 96.24 45.42 36088623 (87.95)
    TB2 40766338 6.10 98.87 96.54 45.25 35886380 (88.03)
    TB3 41144588 6.16 98.71 96.28 45.21 36124713 (87.80)
    总计 Total 244595498 36.59
    下载: 导出CSV

    表  3  显著差异的黄酮类物质

    Table  3.   Flavonoids with significant differences

    编号
    code
    代谢物名称
    Compound
    差异倍数
    Fold_change
    P
    P-value
    变量重要性投影
    VIP
    差异类型
    Type
    NEG_q122 二氢杨梅素 Dihydromyricetin 1.10 0.00 1.33 上调 Up
    NEG_q260 对香豆酰奎宁酸 P-Coumaroyl quinic Acid 1.22 0.00 1.38
    NEG_q264 根皮素 Phloretin 1.56 0.02 1.27
    NEG_q265 根皮苷 Phlorizin 1.29 0.04 1.28
    POS_q141 (-)-表没食子儿茶素 Epigallocatechin 1.05 0.02 1.29
    NEG_q79 芹菜素 Apigenin 0.65 0.01 1.37 下调 Down
    NEG_q94 儿茶素没食子酸酯 Catechin Gallate 0.95 0.03 1.30
    NEG_q160 没食子儿茶素没食子酸酯 Gallocatechin Gallate 0.95 0.02 1.30
    NEG_q145 表儿茶素没食子酸酯 (-)-Epicatechin Gallate 0.73 0.01 1.27
    NEG_q92 儿茶素 Catechin 0.65 0.00 1.38
    NEG_q98 绿原酸 Chlorogenic Acid 0.68 0.00 1.36
    NEG_q120 二氢山奈酚 Dihydrokaempferol 0.57 0.00 1.35
    NEG_q158 (+)-没食子儿茶素 Gallocatechin 0.91 0.01 1.32
    NEG_q240 柚皮素查耳酮 Naringenin Chalcone 0.66 0.00 1.38
    NEG_q241 柚皮苷 Naringin 0.76 0.00 1.32
    NEG_q307 花旗松素 Taxifolin 0.80 0.00 1.35
    下载: 导出CSV
  • [1] 孙云南, 许燕, 冉隆珣, 等. 茶树叶片响应茶饼病侵染的转录组分析 [J]. 茶叶科学, 2020, 40(1):113−124.

    SUN Y N, XU Y, RAN L X, et al. Transcriptome analysis of the tea leaves (Camellia sinensis var. assamica) infected by tea blister blight [J]. Journal of Tea Science, 2020, 40(1): 113−124. (in Chinese)
    [2] NISHA S N, PRABU G, MANDAL A K A. Biochemical and molecular studies on the resistance mechanisms in tea[Camellia sinensis (L. ) O. Kuntze]against blister blight disease [J]. Physiology and Molecular Biology of Plants, 2018, 24(5): 867−880. doi: 10.1007/s12298-018-0565-9
    [3] 张瑾, 孙晓玲, 肖强. 茶树嫩叶上的“白馒头”: 茶饼病 [J]. 中国茶叶, 2021, 43(4):32−34.

    ZHANG J, SUN X L, XIAO Q. The white bread shaped blister in tea plantation—Blister blight disease [J]. China Tea, 2021, 43(4): 32−34. (in Chinese)
    [4] 杨运良, 李建勋, 马革农. 基于转录组测序的火龙果果肉不同发育时期淀粉和蔗糖代谢途径相关基因差异表达分析 [J]. 热带作物学报, 2021, 42(6):1520−1530.

    YANG Y L, LI J X, MA G N. Differential expression analysis of genes related to starch and sucrose metabolism pathway in different developmental stages of dragon fruit pulp based on transcriptome [J]. Chinese Journal of Tropical Crops, 2021, 42(6): 1520−1530. (in Chinese)
    [5] WANG L, WANG Y C, CAO H L, et al. Transcriptome analysis of an anthracnose-resistant tea plant cultivar reveals genes associated with resistance to Colletotrichum camelliae [J]. PLoS One, 2016, 11(2): e0148535. doi: 10.1371/journal.pone.0148535
    [6] JAYASWALL K, MAHAJAN P, SINGH G, et al. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze) [J]. Scientific Reports, 2016, 6: 30412. doi: 10.1038/srep30412
    [7] BHORALI P, GOHAIN B, GUPTA S, et al. Molecular analysis and expression profiling of blister blight defenserelated genes in tea [J]. Indian Journal of Genetics and Plant Breeding, 2012, 72(2): 226−233.
    [8] ZHANG Q Q, GUO N N, ZHANG Y H, et al. Genome-wide characterization and expression analysis of pathogenesis-related 1 (PR-1) gene family in tea plant (Camellia sinensis (L. ) O. Kuntze) in response to blister-blight disease stress [J]. International Journal of Molecular Sciences, 2022, 23(3): 1292. doi: 10.3390/ijms23031292
    [9] SINGH G, SINGH G, SETH R, et al. Functional annotation and characterization of hypothetical protein involved in blister blight tolerance in tea (Camellia sinensis (L) O. Kuntze) [J]. Journal of Plant Biochemistry and Biotechnology, 2019, 28(4): 447−459. doi: 10.1007/s13562-019-00492-5
    [10] 龙亚芹, 冉隆珣, 夏丽飞, 等. 茶饼病诱导感、抗茶树品种的基因表达谱分析 [J]. 分子植物育种, 2021, 19(18):6020−6034.

    LONG Y Q, RAN L X, XIA L F, et al. Gene expression profiling analysis of resistant and susceptible tea cultivars in response to tea blister blight [J]. Molecular Plant Breeding, 2021, 19(18): 6020−6034. (in Chinese)
    [11] ZHOU X L, HOANG N H, TAO F, et al. Transcriptomics and phytohormone metabolomics provide comprehensive insights into the response mechanism of tea against blister blight disease [J]. Scientia Horticulturae, 2024, 324: 112611. doi: 10.1016/j.scienta.2023.112611
    [12] ZHOU X L, HU L H, HOANG N H, et al. The changes in metabolites, quality components, and antioxidant activity of tea (Camellia sinensis) infected with Exobasidium vexans by applying UPLC-MS/MS-based widely targeted metabolome and biochemical analysis [J]. Phytopathology, 2024, 114(1): 164−176. doi: 10.1094/PHYTO-03-23-0105-R
    [13] 薛守宇, 朱涛, 李冰冰, 等. 转录组和代谢组联合分析在植物中的应用研究 [J]. 山西农业大学学报(自然科学版), 2022, 42(3):1−13.

    XUE S Y, ZHU T, LI B B, et al. Application research of combined transcriptome with metabolome in plants [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(3): 1−13. (in Chinese)
    [14] XIA E H, LI F D, TONG W, et al. Tea Plant Information Archive: A comprehensive genomics and bioinformatics platform for tea plant [J]. Plant Biotechnology Journal, 2019, 17(10): 1938−1953. doi: 10.1111/pbi.13111
    [15] WANG F, GE S F, XU X X, et al. Multiomics analysis reveals new insights into the apple fruit quality decline under high nitrogen conditions [J]. Journal of Agricultural and Food Chemistry, 2021, 69(19): 5559−5572. doi: 10.1021/acs.jafc.1c01548
    [16] LI S P, DENG B L, TIAN S, et al. Metabolic and transcriptomic analyses reveal different metabolite biosynthesis profiles between leaf buds and mature leaves in Ziziphus jujuba Mill. [J]. Food Chemistry, 2021, 347: 129005. doi: 10.1016/j.foodchem.2021.129005
    [17] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [18] 赵晓珍, 王勇, 任亚峰, 等. 茶饼病病原— Exobasidium vexans侵染茶树叶片过程的形态学观察 [J]. 中国农学通报, 2018, 34(5):117−122.

    ZHAO X Z, WANG Y, REN Y F, et al. The morphology observation of infection process for the pathogen Exobasidium vexans of tea blister blight against tea leaf [J]. Chinese Agricultural Science Bulletin, 2018, 34(5): 117−122. (in Chinese)
    [19] CHANDRA S, CHAKRABORTY N, CHAKRABORTY A, et al. Induction of defence response against blister blight by calcium chloride in tea [J]. Archives of Phytopathology and Plant Protection, 2014, 47(19): 2400−2409. doi: 10.1080/03235408.2014.880555
    [20] 肖景惠, 李美玉, 孙淼, 等. 一种几丁质酶基因的克隆表达及酶解产物分析 [J]. 微生物学通报, 2016, 43(10):2179−2186.

    XIAO J H, LI M Y, SUN M, et al. Cloning and expression of a novel chitinase gene and the analysis of its hydrolysis products [J]. Microbiology China, 2016, 43(10): 2179−2186. (in Chinese)
    [21] 李惠敏, 李璐璐, 陈玉梅, 等. 罗汉果几丁质酶基因家族的生物信息学分析 [J]. 生物信息学, 2019, 17(3):167−174.

    LI H M, LI L L, CHEN Y M, et al. Bioinformatics analysis of chitinase gene family in Siraitia grosvenorii [J]. Chinese Journal of Bioinformatics, 2019, 17(3): 167−174. (in Chinese)
    [22] 李晓丽, 罗榴彬, 周斌雄, 等. 基于共聚焦显微拉曼的真菌菌丝中几丁质的原位检测研究 [J]. 光谱学与光谱分析, 2016, 36(1):119−124.

    LI X L, LUO L B, ZHOU B X, et al. In vivo study of chitin in fungal hyphae based on confocal Raman microscopy [J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 119−124. (in Chinese)
    [23] CHEN A, SUN J M, VILJOEN A, et al. Genetic mapping, candidate gene identification and marker validation for host plant resistance to the race 4 of Fusarium oxysporum f. sp. cubense using Musa acuminata ssp. malaccensis [J]. Pathogens, 2023, 12(6): 820. doi: 10.3390/pathogens12060820
    [24] 冉隆珣, 肖星, 殷丽琼, 等. 水杨酸和茉莉酸诱导茶树抗茶饼病研究初报 [J]. 陕西农业科学, 2022, 68(4):32−35.

    RAN L X, XIAO X, YIN L Q, et al. Effect of salicylic acid and jasmonic acid on inducement of tea plants against Exobasidium vexans massee [J]. Shaanxi Journal of Agricultural Sciences, 2022, 68(4): 32−35. (in Chinese)
    [25] LIU S Y, ZHANG Q Q, GUAN C F, et al. Transcription factor WRKY14 mediates resistance of tea plants (Camellia sinensis (L. ) O. Kuntze) to blister blight [J]. Physiological and Molecular Plant Pathology, 2021, 115: 101667. doi: 10.1016/j.pmpp.2021.101667
    [26] CHEN S L, ZHANG L P, CAI X M, et al. (E)-Nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants [J]. Horticulture Research, 2020, 7(1): 52. doi: 10.1038/s41438-020-0275-7
    [27] FICK A, SWART V, BOMBARELY A, et al. Comparative transcriptional analysis of Persea americana MYB, WRKY and AP2/ERF transcription factors following Phytophthora cinnamomi infection [J]. Molecular Plant Pathology, 2024, 25(4): e13453. doi: 10.1111/mpp.13453
    [28] AHUJA I, KISSEN R, BONES A M. Phytoalexins in defense against pathogens [J]. Trends in Plant Science, 2012, 17(2): 73−90. doi: 10.1016/j.tplants.2011.11.002
    [29] XU D D, DENG Y Z, XI P G, et al. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism [J]. Food Chemistry, 2019, 286: 226−233. doi: 10.1016/j.foodchem.2019.02.015
    [30] ZHANG P, ZHU Y Q, ZHOU S J. Comparative analysis of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L. ) varieties to reveal the metabolic responses to Sphaerotheca fuliginea infection [J]. BMC Plant Biology, 2021, 21(1): 24. doi: 10.1186/s12870-020-02797-3
    [31] 贺军花, 马利菁, 周会玲. 根皮苷对苹果采后灰霉病的影响 [J]. 食品科学, 2018, 39(15):190−196.

    HE J H, MA L J, ZHOU H L. Effect of phlorizin treatment on postharvest gray mold of apples [J]. Food Science, 2018, 39(15): 190−196. (in Chinese)
    [32] HAN S, XU X, YUAN H, et al. Integrated transcriptome and metabolome analysis reveals the molecular mechanism of rust resistance in resistant (youkang) and susceptive (Tengjiao) Zanthoxylum armatum cultivars [J]. International Journal of Molecular Sciences, 2023, 24(19): 14761. doi: 10.3390/ijms241914761
    [33] 刘亚军, 王培强, 蒋晓岚, 等. 茶树单体和聚合态儿茶素生物合成的研究进展 [J]. 茶叶科学, 2022, 42(1):1−17.

    LIU Y J, WANG P Q, JIANG X L, et al. Research progress on the biosynthesis of monomeric and polymeric catechins in Camellia sinensis [J]. Journal of Tea Science, 2022, 42(1): 1−17. (in Chinese)
    [34] 张琦琦. 茶饼病对茶树叶片形态、生理指标和品质成分的影响[D]. 杨凌: 西北农林科技大学, 2022.

    ZHANG Q Q. Effects of tea blister blight on leaf morphology, physiological indices and quality components of tea plant [D]. Yangling: Northwest A & F University, 2022. (in Chinese)
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-07-18
  • 网络出版日期:  2024-11-11

目录

    /

    返回文章
    返回