Studies on Molecular Mechanism of Plant Seed Dormancy
-
摘要: 种子休眠为种子推迟萌发进而躲避不良环境条件提供了重要的生存机制,是由基因和外界环境共同决定的复杂性状。休眠的破除受环境和内源信号的协调控制,具有协同效应与竞争效应。植物激素脱落酸(ABA)促进休眠的诱导和维持,而赤霉素(GA)则打破休眠,促进种子萌发。近年来一些影响种子休眠的分子因素被发现,包括休眠特异性基因、染色质因子和非酶促过程等。本文综述了种子休眠相关分子机制的研究现状,讨论参与休眠诱导与破除的各种调节因子以及环境因素。最后,提出种子休眠研究未来可能的发展方向。Abstract: Dormancy of seeds is an essential mechanism for plants to deal with conditions that are not ideal for the survival of its offspring by delaying the germination. The mechanism is a complex process maneuvered genetically by the plants and affected substantially by the environmental factors. The onset of seed dormancy is regulated by a combination of endogenous and external signals, which can be either synergistic or antagonistic. Plant hormones, such as abscisic acid (ABA), induce and maintain dormancy, whereas gibberellin (GA) interrupts dormancy and stimulates germination. Recently, additional elementsthat affect the seed dormancy, including dormancy specific genes, chromatin factors and non-enzymatic processes, have been identified. This article presents an overview on the molecular mechanism that controls the seed dormancy, current understandings on the science, new research approaches, as well as the regulators involving in and environmental factors affecting the induction and termination of dormancy. Direction and suggestions for further studies in the field are discussed.
-
Key words:
- seed /
- dormancy /
- abscisic acid (ABA) /
- gibberellin (GA) /
- molecular mechanism
-
表 1 调控种子休眠相关基因[4]
Table 1. Genes relevant to dormancy regulation of plant seeds
基因 编码蛋白 生物功能 植物 成熟相关调控因子 ABI3/VP1 B3 TF 成熟相关调控 拟角芥、水稻 FUS3 B3 TF 成熟相关调控 拟角芥 LEC1 HAP3 subunit of NF-Y TF 成熟相关调控 拟角芥 LEC2 B3 TF 成熟相关调控 拟角芥 VP8/PLA3/GO/AMP1 Glutamate carboxypeptidase 拟角芥、水稻、玉米 SUA Splicing factor ABI3可变的剪切 拟角芥 激素相关调控因子 PYR, PYL/RCAR ABA receptors ABA的获取 拟角芥 ABI1, ABI2, HAB1, AHG3 Protein phosphatase 2C ABA信号的负调控 拟角芥 SnRK2.2, 2.3, 2.6 Protein kinase ABA信号的正调控 拟角芥 KAI1/MAX2 F-Box protein 独角金内酯 拟角芥 其他休眠相关基因 DOG1 Unknown protein 拟角芥 Sdr4 Unknown protein 水稻 qSD7-1/qPC7/Rc/TT8 bHLH TF 类黄酮合成 拟角芥、水稻 DEP C3HC4 RING nger 拟角芥 AtHB20 Homeobox TF 拟角芥 CBF AP2 TF 冷反应 拟角芥 MFT Phosphatidylethanolamine-bindingprotein 拟角芥、小麦 FLC MADS-box TF 抑制转录 拟角芥 表观遗传调控因子 HUB1, HUB2 C3HC4 RING nger H2B白蛋白泛素化 拟角芥 RDO2 Transcription elongation factor SⅡ 转录延伸 拟角芥 VIP4, VIP5, ELF7, ELF8, ATXR7 PAF1 components 翻译 拟角芥 EFS Histone H3 methyltransferase H3K9甲基化作用 拟角芥 FIE Component of PRC2 H3K27二甲基化作用 拟角芥 KYP/SUVH4, SUVH5 Histone methyltransferase H3K9甲基化作用 拟角芥 解除休眠 SPT bHLH TF 冷信号集成转化GA信号 拟角芥 PIL5 bHLH TF 冷信号集成转化GA信号 拟角芥 AtrbohB NADPH-oxidase 产生活性氧 拟角芥 PRT6, ATE Targeted proteolysis ABA信号失活 拟角芥 -
[1] FINCH-SAVAGE W E, LEUBNER-METZGER G. Seed dormancy and the control of germination[J]. New Phytologist, 2006, 171(3):501-523. doi: 10.1111/nph.2006.171.issue-3 [2] DONOHU K, DORN L, GRIFFITH C, et al. Environmental and genetic in influences uences on the germination of Arabidopsis thaliana in the field[J]. Evolution, 2005, 59(4):740-757. doi: 10.1007/s00344-014-9454-9 [3] HUANG X, SCHMITT J, DORN L, et al. The earliest stages of adaptation in an experimental plant population:strong selection on QTLs for seed dormancy[J]. Molecular Ecology, 2010, 19(7):1335-1351. doi: 10.1111/mec.2010.19.issue-7 [4] GRAEBER K A I, NAKABAYASHI K, MIATTON E, et al. Molecular mechanisms of seed dormancy[J]. Plant, Cell & Environment, 2012, 35(10):1769-1786. https://pure.royalholloway.ac.uk/portal/en/publications/molecular-mechanisms-of-seed-dormancy(01c8b29d-c622-4aa5-8d3b-9073b7ceac4e).html [5] LINKIES A, GRAEBER K, KNIGHT C, et al. The evolution of seeds[J]. New Phytologist, 2010, 186(4):817-831. doi: 10.1111/j.1469-8137.2010.03249.x [6] BETHKE P C, LIBOUREL I G L, AOYAMA N, et al. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy[J]. Plant Physiology, 2007, 143(3):1173-1188. doi: 10.1104/pp.106.093435 [7] ENDO A, TATEMATSU K, HANADA K, et al. Tissue-specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis and defense responses are activated in the endosperm of germinating Arabidopsis thalianaseeds[J]. Plant and Cell Physiology, 2011, 53(1):16-27. https://academic.oup.com/pcp/article/53/1/1/1823594/Seed-Biology-in-the-21st-Century-Perspectives-and [8] YE H, FENG J, ZHANG L, et al. Map-Based Cloning of Seed Dormancy 1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice[J]. Plant physiology, 2015, 169(3):2152-2165. http://www.plantphysiol.org/content/169/3/2152.short?cited-by=yes&legid=plantphysiol;169/3/2152 [9] BASKIN J M, BASKIN C C. A Classification system for seed dormancy[J]. Seed Science Research, 2004, 14(01):1-16. [10] 卢丙越. 水稻品种N22强休眠性QTL定位及遗传解析[D]. 南京农业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10307-1012271200.htm [11] HILHORST H W M. Definitions and hypotheses of seed dormancy[J]. Annual Plant Reviews:Seed Development, Dormancy and Germination, 2007, 27:50-71. [12] FOOTITT S, DOUTERELO-SOLER I, CLAY H, et al. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways[J]. Proceedings of the:National Academy of Sciences, 2011, 108(50):20236-20241. doi: 10.1073/pnas.1116325108 [13] CHIANG GCK, BARTSCH M, BARUA D, et al. DOG1 expression is predicted by the seed maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana[J]. Molecular Ecology, 2011, 20(16):3336-3349. doi: 10.1111/mec.2011.20.issue-16 [14] KENDALL Sl, HELLWEGE Aell, MARRIOT P, et al. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and cBF transcription factors[J]. Plant cell, 2011, 23(7):2568-2580. doi: 10.1105/tpc.111.087643 [15] HILHORST H W M. The regulation of secondary dormancy. The membrane hypothesis revisite[J]. Seed Science Research, 1998, 8(2):77-90. https://www.narcis.nl/publication/RecordID/oai%3Alibrary.wur.nl%3Awurpubs%2F41717 [16] ROBERTS E H. Temperature and seed germination[J]. Symposia of the Society for Experimental Biology, 1987, 42:109-132. https://www.studyblue.com/notes/note/n/temperature-and-seed-germination/deck/885814 [17] ROBERTS E H.Dormancy of Rice Seed[J]. Journal of Experimental Botany, 1961, 12(2):319-329. doi: 10.1093/jxb/12.2.319 [18] 中山包.发芽生理学[M].北京:中国农业出版社, 1988:98. [19] MIYOSHI K, SATO T. The effects of ethanol on the germination of seeds of japonica and indica rice (Oryza sativa L.) under anaerobic and aerobic conditions[J]. Annals of Botany, 1997, 79(4):391-395. doi: 10.1006/anbo.1996.0364 [20] WANG L, CHENG J, LAI Y, et al.Identification of QTLs with additive, epistatic and QTL×development interaction effects for seed dormancy in rice[J].Planta, 2014, 239(2):411-420. doi: 10.1007/s00425-013-1991-0 [21] MIYOSHI K, SATO T, TAKAHASHI. Differences in the effects of dehusking during formation of seeds on the germination of seeds of indica and japonica rice (Oryza sativa L.)[J]. Annals of botany, 1996, 77(6):599-604. doi: 10.1093/aob/77.6.599 [22] NGUYEN THU-PHUONG, KEIZER PAUL, VAN EEUWIJK FRED, et al. Natural variation for seed longevity and seed dormancy are negatively correlated in Arabidopsis[J]. Plant Physiology, 2012, 160(4):2083-2092. doi: 10.1104/pp.112.206649 [23] NGNYEN T P, KEIZER P, VAN EEUWIJK F, et al.Natural variation for seed longevity and seed dormancy are negatively correloted in Arabidopsis[J].Plant Physiology, 2012, 160(4):2083-2092. doi: 10.1104/pp.112.206649 [24] PARCY F, VALON C, RAYNAL M, et al. Regulation of gene expression programs during Arabidopsis seed development:roles of the ABI3 locus and of endogenous abscisic acid[J]. The Plant Cell, 1994, 6(11):1567-1582. doi: 10.1105/tpc.6.11.1567 [25] SUZUKI M, LATSHAW S, SATO Y, et al. The maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development[J]. Plant Physiology, 2008, 146(3):1193-1206. doi: 10.1104/pp.107.114108 [26] KAWAKATSU T, TARAMINO G, ITOH J I, et al. PLASTOCHRON3/GOLIATH encodes a glutamate carboxypeptidase required for proper development in rice[J]. The Plant Journal, 2009, 58(6):1028-1040. doi: 10.1111/tpj.2009.58.issue-6 [27] GRIFFITHS J, BARRERO J M, TAYLOR J, et al. ALTERED MERISTEM PROGRAM 1 is involved in development of seed dormancy in Arabidopsis[J]. PLoS One, 2011, 6(5):e20408. doi: 10.1371/journal.pone.0020408 [28] 张建奎, 张海峰, 巩桂芳, 等.小麦种子穗发芽化学防治研究[J].种子, 1998, (1):32-35. http://www.cqvip.com/QK/90095X/199801/2941534.html [29] BEWLEY J D. Seed Germination and Dormancy[J]. The Plant cell, 1997, 9(7):1055. doi: 10.1105/tpc.9.7.1055 [30] LIN P C, HWANG S G, ENDO A, et al. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance[J]. Plant Physiology, 2007, 143(2):745-758. http://www.plantphysiol.org/content/143/2/745.abstract?papetoc=c143/2/745&cited-by=yes&legid=plantphysiol;143/2/745 [31] NAMBARA E, MARION-POLL A. ABA action and interactions in seeds[J]. Trends in plant science, 2003, 8(5):213-217. doi: 10.1016/S1360-1385(03)00060-8 [32] FINKELSTEIN R, GAMPALA S, ROCK C. Abscisic acid signaling in seeds and seedlings[J]. The plant cell, 2002, 14(1):15-45. http://www.plantcell.org/content/plantcell/14/suppl_1/S15.full.pdf [33] LEFEBVRE V, NORTH H, FREY A, et al. Functional analysis of ArabidopsisNCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy[J]. The Plant Journal, 2006, 45(3):309-319. doi: 10.1111/tpj.2006.45.issue-3 [34] CADMAN CS, TOOROP PE, HILHORST HW, et al. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism[J]. The Plant Journal, 2006, 46(5):805-822. doi: 10.1111/tpj.2006.46.issue-5 [35] MILLAR A A, JACOBSEN J V, ROSS J J, et al. Seed dormancy and ABA metabolism in Arabidopsis and barley:the role of ABA 8-hydroxylase[J]. The Plant Journal, 2006, 45(6):942-954. doi: 10.1111/tpj.2006.45.issue-6 [36] BENTSINK L, HANSON J, HANHART C J, et al. Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways[J]. Proceedings of the National Academy of Sciences, 2010, 107(9):4264-4269. doi: 10.1073/pnas.1000410107 [37] BENTSINK L, JOWETT J, HANHART C J, et al. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2006, 103(45):17042-17047. doi: 10.1073/pnas.0607877103 [38] SUGIMOTO K, TAKEUCHI Y, EBANA K, et al. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice[J]. Proceedings of the National Academy of Sciences, 2010, 107(13):5792-5797. doi: 10.1073/pnas.0911965107 [39] 周玉亮, 刘春保, 潘招远, 等.水稻种子休眠的QTL定位研究进展[J].中国科技论文, 2016, 11(24):2837-2844. doi: 10.3969/j.issn.2095-2783.2016.24.017 [40] COOKE J E K, ERIKSSON M E, JUNTTILA O. The dynamic nature of bud dormancy in trees:environmental control and molecular mechanisms[J]. Plant, Cell & Environment, 2012, 35(10):1707-1728. [41] VAN ZANTEN M, KOINI M A, GEYER R, et al. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation[J]. Proceedings of the National Academy of Sciences, 2011, 108(50):20219-20224. doi: 10.1073/pnas.1117726108 [42] LIU Y, KOORNNEEF M, SOPPE W J J. The absence of histone H2B mono-ubiquitination in the Arabidopsis hub1(rdo4) mutant reveals a role for chromatin remodeling in seed dormancy[J]. The Plant Cell, 2007, 19(2):433-444. doi: 10.1105/tpc.106.049221 [43] LIU Y, GEYER R, VAN ZANTEN M, et al. Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy[J]. PLoS One, 2011, 6(7):e22241. doi: 10.1371/journal.pone.0022241 [44] PROBERT R J. The role of temperature in the regulation of seed dormancy and germination[J]. Seeds:the ecology of regeneration in plant communities, 2000, 2:261-292. https://www.cabi.org/cabebooks/ebook/20083076657 [45] PENFIELD S, JOSSE E, KANNANGARA R, et al. Cold and light control seed germination through the bHLH transcription factor SPATULA[J]. Current Biology, 2005, 15(22):1998-2006. doi: 10.1016/j.cub.2005.11.010 [46] OH E, YAMAGUCHI S, HU J, et al. PIL5, aphytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds[J]. The Plant Cell, 2007, 19(4):1192-1208. doi: 10.1105/tpc.107.050153 [47] TYLER L, THOMAS S G, HU J, et al. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis[J]. Plant physiology, 2004, 135(2):1008-1019. doi: 10.1104/pp.104.039578 [48] CADMAN C S, TOOROP P E, HILHORST H W, et al. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism[J]. The Plant Journal, 2006, 46(5):805-822. doi: 10.1111/tpj.2006.46.issue-5 [49] FINCK-SAVAGE W E, CADMAN C S, TOOROP P E, et al. Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing[J]. The Plant Journal, 2007, 51(1):60-78. doi: 10.1111/j.1365-313X.2007.03118.x [50] LEUBNER-METZGER G. β-1, 3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening[J]. The Plant Journal, 2005, 41(1):133-145. http://en.journals.sid.ir/Reference.aspx?ID=474002 [51] HENDERSON J T, LI H C, RIDER S D, et al. PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses[J]. Plant Physiology, 2004, 134(3):995-1005. doi: 10.1104/pp.103.030148 [52] GAZZARRINI S, TSUCHIYA Y, LUMBA S, et al. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid[J]. Developmental Cell, 2004, 7(3):373-385. doi: 10.1016/j.devcel.2004.06.017 [53] BEAUDOIN N, SERIZET C, GOSTI F, et al. Interactions between abscisic acid and ethylene signaling cascades[J]. Plant Cell, 2000, 12(7):1103-1115. doi: 10.1105/tpc.12.7.1103 [54] CHOI H I, PARK H J, PARK J H, et al. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity[J]. Plant Physiology, 2005, 139(4):1750-1761. doi: 10.1104/pp.105.069757 [55] GHASSEMIAN M, NAMBARA E, CUTLER S, et al. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis[J]. Plant Cell, 2000, 12(7):1117-1126. doi: 10.1105/tpc.12.7.1117 [56] CLOUSE S D, SASSE J M. Brassinosteroids:Essential regulators of plant growth and development[J]. Annual review of plant biology, 1998, 49(1):427-451. doi: 10.1146/annurev.arplant.49.1.427 [57] STEBER C, MC COURT P. A role for brassinosteroids in germination in Arabidopsis[J]. Plant Physiology, 2001, 125(2):763-769. doi: 10.1104/pp.125.2.763 [58] LEUBNER-METZGER G. Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways[J]. Planta, 2001, 213(5):758-763. doi: 10.1007/s004250100542 [59] GODA H, SHIMADE Y, ASAMI T, et al. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis[J]. Plant Physiology, 2002, 130(3):1319-1334. doi: 10.1104/pp.011254 [60] ALBORESI A, GESTIN C, LEYDECKER MT, et al. Nitrate, a signal relieving seed dormancy in Arabidopsis[J]. Plant Cell Environment, 2005, 28(4):500-512. doi: 10.1111/pce.2005.28.issue-4 [61] BETHKE P C, LIBOUREL I G, AOYAMA N, et al. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy[J]. Plant Physiology, 2007, 143(3):1173-1188. doi: 10.1104/pp.106.093435 [62] BETHKE P C, LIBOUREL I G, JONES R L, et al. Nitric oxide in seed dormancy and germination[M].Oxford:Blackwell Publishing Ltd, 2007:153-175. [63] FINCH-SAVAGE W E, CADMAN C S, TOOROP P E, et al. Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing[J]. The Plant Journal, 2007, 51(1):60-78. doi: 10.1111/j.1365-313X.2007.03118.x