• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

头季氮肥不同施用量对再生稻生长发育及产量的影响

Effects of Nitrogen Fertilization on Growth and Grain Yield of Ratoon-rice, Tianyouhuazhan

  • 摘要: 以天优华占为材料,头季设置5个氮肥水平(N0:0 kg·hm-2、N1:69.00 kg·hm-2、N2:138.00 kg·hm-2、N3:207.00 kg·hm-2、N4:276.00 kg·hm-2),再生季统一施用氮肥160.50 kg·hm-2,研究其对再生稻头季光合物质生产、两季产量及其构成因素的影响。结果表明,施用氮肥增加头季分蘖数和干物质积累,促进贮藏物质向籽粒的转运,过量施用氮肥会降低氮素农学利用效率。与N0处理相比,施用氮肥处理头季产量增加了12.12%~23.35%,N3处理最高。穗数随氮肥用量增加而增加,穗粒数则先增加后减少。再生季产量N4处理较0 kg·hm-2氮肥处理减少4.73%,其余处理产量增加1.61%~5.54%。再生季产量结构表现为穗数随头季氮肥增加呈减少趋势,穗粒数逐渐增加。试验表明,在福建中部山区条件下,天优华占再生季施用氮肥160.50 kg·hm-2条件下,头季氮肥用量为174.12 kg·hm-2最佳,可以充分发挥头季产量潜力,同时对再生季产量无显著影响,实现两季高产目标。

     

    Abstract: A ratoon-rice, Tianyouhuazhan, was used to study the effects of N application rates on the photosynthetic products and grain yield of the first-season and ratoon crops. Five rates of N fertilization, i.e., N0 at 0 kg·hm-2 (control), N1 at 69.00 kg·hm-2, N2 at 138.00 kg·hm-2, N3 at 207.00 kg·hm-2, and N4 at 276.00 kg·hm-2, were applied on the first crop. The fields were followed with a 160.50 kg·hm-2 application rate for the ratooning. The results showed that higher N fertilizations increased the tiller number, dry matter accumulation, and transporting of storage substances to the grains, but large amount nitrogen use decreased the N agricultural use efficiency (NAUE) on the first crop. The grain yields increased by 12.12% to 23.35% over that of N0 due to the fertilizations, with the greatest production achieved by N3. The panicle count and spikelets per panicle increased with the rate increases before reaching N4 level. For the ratoon crop, the increases on grain yield ranged from 1.61% to 5.54% as compared with N0. N4 also caused a yield reduction of 4.73% over control. The panicle count of the ratoon crop decreased with rising N application, while the spikelets per panicle increased. It appeared that a N fertilization of 174.12 kg·hm-2 for the first crop followed by 160.50 kg·hm-2 for the ratoon crop could maximize the combined grain production.

     

/

返回文章
返回