• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

种植密度对烤烟15N吸收与分配利用的影响

Effect of Planting Density on Absorption, Distribution and Utilization of 15N by Flue-cured Tobacco

  • 摘要: 以烤烟品种K326为材料,设置D1(16 592株·hm-2)、D2(18 182株·hm-2)、D3(20 202株·hm-2)3个种植密度处理,采用15N标记技术,研究烤烟对氮素吸收与分配的特点,以及种植密度的调节效应,结果表明:圆顶期烟株各部位吸收的肥料氮(Ndff)比例表现为下部叶>中部叶>茎秆>上部叶>根系,说明在圆顶期烟株下部叶和中部叶对来自肥料的15N的征调能力较强,但随着烟株的发育和成熟衰老,各部位对肥料氮的吸收征调能力逐渐下降。种植密度对烟株不同部位的Ndff比例具有显著影响,增加种植密度提高了圆顶期各部位的Ndff比例,但到了中后期,随着种植密度增大,烟株的Ndff比例明显下降,表明种植密度过大,不利于烟株生育中后期维持对氮素的征调能力。烟株各部位的15N分配率,圆顶期表现为下部叶>中部叶>上部叶>茎秆>根系,烟株吸收的15N平均76.95%分配到叶片、15.36%分配到茎秆、7.68%分配到根系,表明在生长发育前期烟株吸收的15N大部分向叶片分配,在D2处理的种植密度下烟株圆顶期15N向根、茎的分配率较高,有利于根、茎发育,形成健壮植株;在下部、中部叶片成熟采收后,叶片中的15N分配率降低,根、茎中的15N分配率上升,但直到生育后期仍以叶片的分配率较高。总体上氮肥利用率随着生育进程而降低,但各个时期均以D2处理的氮肥利用率最高,生育后期D2处理、D3处理之间的差异不显著。在试验设置的种植密度处理中,随着种植密度增大,烟叶产量增加,但上等烟的比例明显降低,以D2处理的单位面积产值最高,其后依次为D3处理和D1处理,说明适宜的种植密度为18 182株·hm-2,其对氮肥的利用率,以及烤烟品质和生产效益均较高。

     

    Abstract: Characteristics of nitrogen absorption, utilization and distribution as well as effect of planting density, of flue-cured tobacco were studied using a 15N tracer. The experiment employed K326 (a cultivar of Nicotiana tabacum) for the cultivation with 3 planting densities, i.e., D1 (16 592 plants·hm-2), D2 (18 182 plants·hm-2) and D3 (20 202 plants·hm-2).The results showed that nitrogen derived from fertilizer(Ndff, %) in different parts of a plant was in the order of lower leaves > middle leaves > stem > upper leaves > roots at round top stage. It was indicated that lower and middle leaves had higher ability to absorb and transport nitrogen fertilizer. However, with the development and maturity of tobacco plants, the ability of various parts to absorb and transport nitrogen fertilizer was gradually reduced.Planting density had significant effect on the Ndff ratio in different parts of the tobacco plant. Increment of planting density increased the proportion of Ndff in all parts at round top stage. However, in the middle and late period, with the increase of planting density, the Ndff ratio of tobacco plants decreased significantly, indicating that when the planting density was too large, it was not conducive to maintain the ability to absorb nitrogen in the late growth stage of tobacco plants.The 15N distribution rate of different parts was in the order of lower leaves > middle leaves > upper leaves > stem > roots at round top stage. On average, 76.95% of 15N were shown in leaves, 15.36% in the stems, and 7.68% in the roots. Harvesting the lower and middle leaves decreased the proportion of 15N in the leaves while increased those in the stems and roots. Comparatively, the 15N distribution to the roots and stem was higher than to the leaves under D2 resulting in a stronger plants.The nitrogen utilization efficiency (NUE) of flue-cured tobacco decreased as the plant aged. NUE of plants grown under D2 was the highest in various periods among all treatments, but the difference between D2 and D3 was not significant in the late growth period. As the planting density was raised, the tobacco leaf yield increased, but the percentage of high-grade leaves decreased significantly. The output value per unit area of D2 was the highest, followed by D3 and D1.

     

/

返回文章
返回