• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

短时高温处理对黑点切叶野螟生长发育和繁殖的影响

Effects of Short-term High-temperature Exposure on Growth, Development and Reproduction of Herpetogramma basalis (Lepidoptera: Crambidae)

  • 摘要:
      目的  研究短时高温处理对黑点切叶野螟生长发育和繁殖的影响,为准确地评估其生防潜能提供科学依据。
      方法  将黑点切叶野螟1龄幼虫分别在2种高温(35℃和40℃)暴露4种时长(2、4、8、16 h)后,观察测定幼虫存活率、化蛹率、羽化率、蛹重、发育历期、成虫产卵量等指标。
      结果  经2种温度、不同时长的处理后,黑点切叶野螟各项生长发育和繁殖指标均受到不同程度的影响。幼虫存活率显著降低,35℃处理16 h,幼虫存活率由1龄的65.83%降为5龄的28.33%;对化蛹率和羽化率无显著影响;幼虫发育历期随温度升高而延长,2种温度(35℃和40℃)处理16 h后,幼虫历期分别比对照长0.90 d和1.74 d;对蛹期无影响;成虫寿命在经8 h和16 h处理后缩短约1 d;蛹重在8 h和16 h高温处理后略有下降;雌虫产卵量在2种温度下均为处理16 h的最低;对卵的孵化率无显著影响。
      结论  黑点切叶野螟受短时高温的影响主要体现在降低存活率和抑制发育速率,影响程度取决于高温强度和持续时间。在供试条件下,黑点切叶野螟均能完成生活史,保持种群的延续,这对生防是有益的。但是,较长时间的高温处理导致幼虫存活率显著下降,这可能是黑点切叶野螟夏季种群密度低的原因。

     

    Abstract:
      Objective  Effects of short-term high-temperature exposure on the growth, development, and reproduction of Herpetogramma basalis (Lepidoptera: Crambidae) were studied for a potential biocontrol application.
      Method  The 1st instar larvae of the insects were treated at 35℃ or 40℃ for 2 h, 4 h, 8 h or 16 h to determine the rates of larval survival, pupation, and emergence as well as the pupal weight, developmental duration, and female fecundity of the following generations.
      Result  The development and reproduction of H. basalis were affected in varying degrees under the treatments. The larval survival rate decreased significantly after the exposure, e.g., from 65.83% in the 1st instar to 28.33% in the 5th instar under 35℃/16 h. The pupation and emergence rates were hardly affected. On the other hand, when treated for 16 h, the larval development took 0.90d at 35℃, and 1.74 d at 40℃, longer than control. The pupal period was not affected, but the adult lifespan shortened by one day after a 35℃ or 40℃ exposure for 8 h or 16 h. The average individual pupal weight decreased slightly after 8 h or 16 h of the exposures. The fecundity of female adults reached its lowest level after being exposed to either of the two temperatures for 16 h, which did not significantly alter the egg hatching rate.
      Conclusion  Depending upon the severity and duration, the short-term high-temperature exposure mainly decreased the survival rate and inhibited the development of H. basalis. The moth could complete its normal development even at a relatively high temperature and maintain the population continuity, which benefits biocontrol. Nonetheless, due likely to the summer heat, the larval mortality rose and population of H. basalis declined in the season.

     

/

返回文章
返回