Effects of Potassium Fertilization on Sugar Metabolism and Related Enzymatic Activities in Ficus carica
-
摘要:目的 通过研究不同施钾水平对无花果果实糖代谢的内在调控机制,为无花果合理施肥,提高无花果果实品质和产量提供理论依据。方法 以2年生的‘波姬红’无花果为试材,在常规栽培管理前提下,增施4个水平的K2SO4,施钾量分别为:CK(0 g·株−1)、K1(125 g·株−1)、K2(250 g·株−1)、K3(375 g·株−1),进行对照试验。测定各个施钾水平下无花果果实的可溶性糖、淀粉含量及糖代谢相关酶活性等各项指标,并分析不同指标之间的相关性。结果 (1)果糖与葡萄糖是无花果中主要的可溶性糖,其含量随着果实的发育逐渐上升。淀粉含量与可溶性糖含量的变化趋势相反,整体呈下降趋势;(2)与对照相比,增施钾肥能显著提高无花果果实中可溶性糖及各糖组分含量,降低果实发育中后期淀粉含量。施钾量在250 g·株−1(K2)时可溶性糖含量增幅最大,为最适用量;(3)适量施钾显著提高了无花果果实发育早期和末期AI和SS(分解方向)的活性,对NI影响较小,但极显著地提高了NI在果实发育成熟期的活性,促进了果实中果糖和葡萄糖含量的积累。适量施钾使α-淀粉酶和β-淀粉酶活性逐渐上升,且一直保持在较高水平,促进了淀粉向可溶性糖的转化。适量施钾提高了无花果发育各个时期的SPS活性,但对SS(合成方向)的影响较小,促进了蔗糖的积累。结论 适量施钾可以提高糖代谢相关酶活性,促进果实中淀粉的分解和可溶性糖的积累。Abstract:Objective To optimize the fertilization for improving fig quality and yield, the internal regulation mechanism of potassium (K) on sugar metabolism of the fruit was studied.Method Two-year-old Bojihong fig (Ficus carica) plants were cultivated under common practice, except that 4 levels of K2SO4 were applied on the soil for the experimentation. The K applications included CK at 0g.plant−1, K1 at 125 g.plant−1, K2 at 250 g.plant−1, and K3 at 375 g.plant−1. Contents of soluble sugars and starch as well as activities of enzymes related to the sugar metabolism of the fruits were determined for a correlation analysis.Result (1) Fructose and glucose were the main soluble sugars contained in the fruit with the contents increased as the fruit was developing. The combined starch and soluble sugars content decreased with fruit maturation, and the starch declined while the sugars on the rise. (2) With the K applications, both the contents and the compositions of the of soluble sugars in the figs significantly increased, while starch decreased during the mid and late stages of the fruit development. K2 produced the greatest soluble sugars increase among all treatments. (3) The K applications significantly rose the activities of AI and SS (in the starch degradation direction), but not on NI, in the early and late stages of the fruit development. However, they extremely significantly enhanced the NI activity as the fruits matured resulting in fructose and glucose accumulations in the figs. They also boosted, and maintained at high level, on the activities of α- and β-amylases facilitating the conversion of starch to sugars. In addition, the K applications promoted SPS activity in all developmental stages but exerted little effect on SS (in the synthesis direction) that encouraged the sucrose formation n the fruit.Conclusion The K applications increased activities of the enzymes related to sugar metabolism and promoted starch degradation that benefitted the accumulation of desirable soluble sugars in figs.
-
Keywords:
- Ficus carica /
- potassium /
- soluble sugars /
- sugar metabolism /
- enzyme activity
-
马铃薯Solanum tuberosum L.属喜光、喜阴凉作物,其幼芽的适宜生长温度为10~12℃。在非生物逆境胁迫中,低温是影响马铃薯生长发育的重要因子,在马铃薯生长期间,低温可导致严重减产甚至绝收[1-3]。低温包括冷害和冻害,冷害通常指0~15℃,水分子未结冰对作物造成的伤害,冻害指水分子结冰,0℃以下对作物造成的伤害。研究表明当环境温度在-0.8~-0.5℃时,马铃薯植株会发生冷害,-1.5℃时会发生冻害,当温度达到-3℃时植株冻死[4-6]。利用冬闲田进行马铃薯生产的南方冬作区常常遇到早霜和晚霜的危害。近年来,我国南方倒春寒天气经常发生,导致马铃薯严重减产,甚至绝收。我国2008年的特大低温霜冻灾害天气,特别是南方马铃薯受到毁灭性的灾害,受灾面积达40.93万hm2,直接经济损失达10亿元,给马铃薯生产造成了严重的经济损失[7]。
福建省是国内最早种植马铃薯的省份之一,其中利用冬闲田种植的冬种马铃薯种植面积占全省马铃薯种植面积的85%(福建省统计年鉴),是南方冬作马铃薯的主产区。由于生产上具有气候、季节、市场、区位等优势,因此种植效益明显。福建冬作马铃薯的播种至萌发期为10月至翌年1月,马铃薯生长旺盛期为2~3月,正值全年气温最低的季节,在这一时期马铃薯易受到低温冷害和冻害的影响,冷害严重影响马铃薯光合作用而抑制马铃薯植株的生长,严重的冻害甚至造成大面积马铃薯植株冻死,严重影响马铃薯产量[8-10]。由于福建省马铃薯规模种植起步晚,产业基础薄弱,缺乏适宜于福建省低温、弱光逆境生态条件的优良冬作马铃薯品种。因此筛选和鉴定出较为抗寒的马铃薯材料,可为福建马铃薯适栽品种的引种与选育提供参考。
目前评价植物抗寒性方法有电导率鉴定法、形态学鉴定法、自然霜冻鉴定法、叶绿素荧光分析法、同工酶分析法、电阻分析法等[11]。其中电导率测定法配合Logistic方程是目前鉴定植物耐寒性较为可靠的方法,已广泛应用到马铃薯耐寒性鉴定[7, 12-14]。本研究采用电导率法鉴定不同马铃薯材料的半致死温度,评价各育成马铃薯品种及后代品系的耐寒性,筛选出较为抗寒的马铃薯品种及后代品系,为福建省马铃薯生产、品种推广提供理论依据,为抗寒育种提供优良亲本。
1. 材料与方法
1.1 材料
本实验室保存的品种资源及后代品系,其中引自国内育种单位育成品种及CIP引进资源18份,及后代品系47份。试验材料与2015年1月份种植于福建省农科院作物研究所基地,出苗后生长40 d,取顶端大小一致的叶片进行低温处理及电导率测定,试验材料均未进行低温驯化(低温驯化是指将试验材料放入白天4℃、晚上2℃低温环境下处理数周以提高其耐寒性为目的)处理。
1.2 方法
1.2.1 电导率测定
马铃薯耐寒性鉴定方法参照李飞等的方法[7]。将供试离体叶片进行低温处理,首先取成熟叶片用加冰的蒸馏水冲洗后,将叶片放入带盖的试管(25 mm×150 mm)底部,每管放1片叶片(每个样品24管)并盖盖密封,(每个样品24管)。对照试管立即放入冰中,其余试管放入冷循环低温水浴锅中(水浴锅中的媒介为50%乙二醇)。水浴锅的初始温度设为0℃,保持30 min降到-0.5℃再保持30 min,降温速度为0.5℃/30 min。温度从-0.5℃降到-1℃保持1 h,-1℃保持30 min时在每个试管中加入一小块冰,再保持30 min,第1次取样,取样后温度降到-1.5℃,-1.5℃保持1 h后温度降到-2℃保持30 min后第2次取样,每次去3管。温度从-2℃降到-7℃,每降1℃保持30 min后分别取样,取样后将试管插入冰中,4℃条件下解冻过夜。将解冻后的叶片剪成小块放入试管中,每个试管加入25 mL蒸馏水。用真空泵以0.1 MPa的真空抽气5 min,在恒温摇床上以220 r·min-1的速率震动1 h,静置后15 min后测其电导率R1。将测定好的试管放入高压灭菌锅中121℃处理20 min,冷却至室温后测电脑率R2。电解质渗出率(%)=R1/R2×100%。
1.2.2 半致死温度
将每个温度对应的3次电导率的平均值与Logistic方程进行非线性拟合,方程拐点即为材料的半致死温度点(LT50),即材料的抗寒能力。Logistic方程y=1/(l+eB(C-x))其中,y代表相对电导率;x代表处理的温度;B代表方程在拐点的斜率,C代表LT50值[7]。
1.3 数据处理
抗寒性分析及聚类分析采用统计软件SPSS17.0软件,作图采用Sigmaplot 10.0进行分析处理。
2. 结果与分析
2.1 低温胁迫下马铃薯电导率的变化
以09173074和郑薯6号的离体叶片为试验材料,经低温胁迫处理后对应的电导率拟合Logistic方程为代表,电导率达到50%对应的温度就为该材料的LT50,即为该材料的抗寒能力,根据拟合曲线可知09173074经低温处理到-2℃时,电解质渗透率显著的增加,电解质渗透率达到了68.08%(表 1),分析得LT50值为-1.0℃,09173074表现出对低温敏感,抗寒性较低。分析各个水平观测值与Logistic拟合方程为y=88.965/[1+e(0.959-1.173x)],相关系数R2较大为0.989,达极显著水平。
表 1 09328145和郑薯6号电解质渗出率平均值Table 1. Average electrolyte leaching rates of detached leaves fromNo. 09328145 and Zheng-shu No. 6 at low temperatures (n=3)(单位/%)
处理温度
/℃材料 09137047 郑薯6号 0 31.74 11.34 -1 44.06 23.23 -2 68.08 34.26 -3 75.15 43.59 -4 78.05 57.45 -5 80.29 87.04 -6 84.68 88.25 -7 85.21 90.31 郑薯6号经低温处理到-3℃时,电解质渗出率为43.59%(表 1),分析可知其LT50值为-3.8℃,郑薯6号表现出比09173074较强的抗低温能力,其抗寒性在所有材料中最强,分析观测值与Logistic拟合方程为y=100.944/[1+e(3.167-0.835x)],相关系数R2较大为0.987,达极显著水平。
2.2 马铃薯品种电导率Logistic回归模型的建立及LT50的确定
以抗寒能力较强的郑薯6号及抗寒能力较弱的品系09173074为对照,分析47份后代材料和18份品种资源在不同低温胁迫处理后的电导率求得的Logistic方程、相关系数及半致死温度LT50(图 1、表 2)。结果表明,47份材料LT50介于-3.2~-1.0℃,其中有4份材料0712801、09178056、D540和0719017的LT50<-3.0℃,抗寒能力较强,占47份供试材料的8.5%,其中09173074、09328145、09365324、09173074的LT50只有-1.0℃,抗寒能力最差,占47份供试材料的8.5%,39份后代材料介于-3.0~-1.0℃,占47份供试材料的83%。18份品种资源LT50介于-3.8℃和-1.3℃(表 3),郑薯6号的抗寒性最强,LT50达-3.8℃,郑薯6号和桂农薯1号的LT50<-3.0℃,占18份供试材料的11.1%。在供试材料中抗寒能力较强的材料的电导率与Logistic方程的拟合度均达极显著水平,抗寒能力较弱的材料离体叶片经不同低温处理后叶片变黑、萎蔫。
表 2 47份马铃薯后代品系未驯化电导率的Logistic回归方程及半致死温度LTTable 2. Logistic equation onrelative electric conductivities of leaves from 47 potato strains vs. LT 50编号 品系 回归方程 相关系数 致死温度
/℃1 0712801 y=188.843/[1+e (1.56-0.25 x)] 0.961 ** -3.2 2 09178056 y=94.007/[1+e (1.650-0.569 x)] 0.975 ** -3.1 3 D540 y=271.379/[1+e (2.489-0.325 x)] 0.984 ** -3.1 4 0719017 y=128.125/[1+e (1.759-0.444 x)] 0.971 ** -3.0 5 D564 y=76.8339/[1+e (1.697-0.808 x)] 0.981 ** -2.9 6 201208012 y=192.029/[1+e (2.450-0.440 x)] 0.959 ** -2.8 7 09424039 y=110.847/[1+e (1.743-0.549 x)] 0.982 ** -2.8 8 09364411 y=158.96/[1+e (1.782-0.350 x)] 0.998 ** -2.7 9 09179006 y=85.914/[1+e (1.624+0.766 x)] 0.937* -2.6 10 2011-47056 y=206.026/[1+e (1.809-0.263 x)] 0.986 ** -2.6 11 0711103 y=258.313/[1+e (2.149-0.286 x)] 0.978 ** -2.5 12 D613 y=89.294/[1+e (2.090-0.942 x)] 0.932* -2.5 13 D597 y=87.280/[1+e (1.667-0.813 x)] 0.881 -2.4 14 201207008 y=89.986/[1+e (1.429-0.693 x)] 0.976 ** -2.4 15 2011-47001 y=94.986/[1+e (1.529-0.639 x)] 0.971 ** -2.4 16 201211002 y=94.986/[1+e (1.529-0.693 x)] 0.971 ** -2.4 17 201221013 y=94.986/[1+e (1.529-0.693 x)] 0.986 ** -2.4 18 201209270 y=129.445/[1+e (1.540-0.462 x)] 0.966 ** -2.3 19 201212024 y=96.236/[1+e (1.529-0.693 x)] 0.971 ** -2.3 20 2011-47027 y=96.980/[1+e (1.236-0.583 x)] 0.977 ** -2.2 21 201207004 y=108.290/[1+e (1.166-0.469 x)] 0.973 ** -2.2 22 D576 y=120.378/[1+e (1101-0.365 x)] 0.956 ** -2.1 23 D549 y=110.533/[1+e (1.000-0.390 x)] 0.979 ** -2.1 24 09319320 y=192.029/[1+e (1.56-0.250 x)] 0.949 ** -2.1 25 17514 y=88.890/[1+e (0.912-0.579 x)] 0.971 ** -2.0 26 17549 y=100.11/[1+e (1.001-0.507 x)] 0.972 ** -2.0 27 2014-4 y=139.213/[1+e (1.457-0.46 x)] 0.981 ** -1.9 28 20121008 y=119.117/[1+e (1.432-0.602 x)] 0.939 ** -1.8 29 201209031 y=94.576/[1+e (0.642-0.414 x)] 0.995 ** -1.8 30 NFJ55 y=106.441/[1+e (1.029-0.516+ x)] 0.971 ** -1.8 31 2011-46087 y=374.338/[1+e (2.391-0.628 x)] 0.981 ** -1.7 32 2014-1 y=86.68/[1+e (0.918-0.730 x)] 0.92* -1.7 33 201205032 y=87.700/[1+e (1.710-1.356 x)] 0.997 ** -1.4 34 2011-47015 y=95.837/[1+e (0.845-0.652 x)] 0.977 ** -1.4 35 201201013 y=96.117/[1+e (0.632-0.502 x)] 0.979 ** -1.4 36 2011-46026 y=91.277/[1+e (1.443-1.172 x)] 0.941* -1.4 37 108-1 y=98.693/[1+e (1.453-1.028 x)] 0.935* -1.4 38 09407078 y=151.77/[1+e (0.979-0.965 x)] 0.971 ** -1.3 39 201207008 y=181.127/[1+e (0.410-0.696 x)] 0.983 ** -1.3 40 D508 y=80.906/[1+e (0.710-0.950 x)] 0.97 ** -1.3 41 20122018 y=104.891/[1+e (1.014-0.762 x)] 0.979 ** -1.2 42 2011-47063 y=90.354/[1+e (0.661-0.725 x)] 0.983 ** -1.2 43 09365417 y=82.66/[1+e (1.098-1.403 x)] 0.986 ** -1.1 44 09173074 y=74.610/[1+e (0.424-1.086 x)] 0.853 -1.0 45 09365324 y=83.057/[1+e 1.324-1.684 x)] 0.994 ** -1.0 46 09328145 y=88.965/[1+e (0.959-1.173 x)] 0.989 ** -1.0 47 09330143 y=90.1215/[1+e (0.831-1.023 x)] 0.993 ** -1.0 表 3 18份马铃薯品种资源未驯化电导率的Logistic回归方程及半致死温度LTTable 3. Logistic equation on relative electric conductivities of 18 potato cultivarsvs. LT 50编号 品系 回归方程 相关系数 致死温度 1 郑薯6号 y=100.944/[1+e (3.167-0.835 x)] 0.987 ** -3.8 2 桂农薯1号 y=111.738/[1+e (1.806-0.470)] 0.916 ** -3.4 3 克新1号 y=130.593/[1+e (1.826-0.499 x)] 0.963 ** -2.7 4 中薯6号 y=104.354/[1+e (1.513-0.556 x)] 0.966 ** -2.6 5 KW-59 y=136.143/[1+e (1.673-0.448 x)] 0.983 ** -2.5 6 391585.167 y=147.102/[1+e (1.818-0.475 x)] 0.957 ** -2.4 7 中薯18 y=88.183/[1+e (2.670-1.221 x)] 0.944 ** -2.4 8 KW-36 y=138.203/[1+e (1.696-0.473 x)] 0.925 ** -2.4 9 米拉 y=85.69/[1+e (1.750-0.880 x)] 0.899* -2.4 10 E33 y=289.66/[1+e (2.116-0.232 x)] 0.968 ** -2.4 11 费乌瑞它 y=119.617/[1+e (1.404-0.461 x)] 0.967 ** -2.3 12 中薯19 y=114.467/[1+e (1.490-0.533 x)] 0.959 ** -2.3 13 KW-25 y=100.341/[1+e (1.954-0.863 x)] 0.967 ** -2.3 14 郑薯1号 y=191.9/[1+e (1.834-00.364 x)] 0.998 ** -2.2 15 紫花851 y=108.290/[1+e (1.166-0.469 x)] 0.986 ** -2.1 16 中薯3号 y=95.711/[1+e (1.197-0.611 x)] 0.956 ** -2.1 17 紫云1号 y=98.693/[1+e (0.453-1.028 x)] 0.829 -1.4 18 闽薯1号 y=90.962/[1+e (1.491-1.33 x)] 0.948 ** -1.3 2.3 马铃薯材料LT50聚类分析
根据表 2各个材料的半致死温度进行聚类分析,结果表明(图 2),47份后代品系中,在平均距离为0.12时将47份材料分为3类:第一类对低温较为敏感,LT50范围在-1.0~1.5℃,包括09330143、09365324、09173074、20122018等15份材料,占供试材料的31.9%;第二类的LT50范围在-2.5~-1.6℃,包括0711103、2011-47056、201207008、201207004等24份材料,占供试材料的51.1%;第三类材料LT50在-3.2~-2.7℃,有0719017、09178056、07128012等8份材料,占供试材料的17.0%。聚类结果表明,所测定的材料中有91.5%的LT50>-3.0℃,属于不耐低温型,只有4份后代材料LT50<-3.0℃,表现为抗寒能力较强。
18份品种资源聚类分析结果表明(图 3),在平均距离为0.55可将18份材料种分为3类:第1类对低温较为敏感,LT50范围在高于-1.5℃,包含闽薯1号和紫云1号2份材料,占供试材料的11.1%;第2类的LT50范围在-2.1~-2.7℃,包含紫花851、中薯3号、克新1号、中薯19号和费乌瑞它等14份材料,占供试材料的77.8%;第3类材料LT50在-3.4~-3.8℃,包含桂农薯1号、郑薯6号2份材料,占供试材料的11.1%。聚类结果表明,引进育成品种耐寒性均较差,鉴定材料中有88.9%的材料LT50>-3.0℃,属于不耐低温品种。从18份材料中筛选出桂农薯1号和郑薯6号较为耐寒品种。
3. 讨论与结论
马铃薯耐寒性鉴定通常采用室内电导率法和田间自然鉴定法,田间自然鉴定法简单、快捷,适合大批材料的鉴定,Vega等对2600多份不同种的马铃薯材料进行了田间自然霜冻评价,建立了田间马铃薯自然霜冻评价标准,此后该方法广泛应用于马铃薯耐寒性鉴定[15-18],但由于田间自然鉴定法依赖于室外环境的温度,该方法应用受到一定的限制。室内电导率鉴定方法是根据细胞外渗液导电性的差异确定膜透性的大小推测膜的受伤程度和对寒冷的抗性强弱,Sukumaran等在研究马铃薯耐寒性时提出以电解质50%的温度作为半致死温度,此后的研究表明电导率结合Logistic方程计算出植物的半致死温度更能准确地反映植物的耐寒性,研究结果表明,相对电导率与处理温度呈“S”曲线变化,可以直观反映植物的耐寒能力,目前已被广泛应用于植物耐寒性鉴定[19]。本研究以18份马铃薯资源和47份马铃薯后代品系为材料,经过低温胁迫马铃薯离体叶片,测定其导率变化情况,并结合Logistic方程分析了马铃薯材料的耐寒性,结果表明,随着处理温度的降低,马铃薯的相对电导率升高,呈典型的“S”曲线,与前人结果一致,初步确定不同马铃薯材料的耐寒性性,为马铃薯耐寒性评价提供依据。
马铃薯分为野生种和栽培种,研究表明马铃薯野生种耐低温,能适应低温霜冻条件,栽培种对低温较为敏感,不能适应低温霜冻条件, 李飞研究野生马铃薯耐寒性结果表明野生马铃薯较常规栽培种有较强的耐寒性,魏亮对我国马铃薯主栽品种进行了研究,结果表明绝大多数品种(85.3%)都不耐低温霜冻,品种间抗寒性差异很小,可能是因为我国马铃薯育种以常规育种为主,审定品种遗传组成差异小。本试验所鉴定的马铃薯材料均属马铃薯栽培种,其LT50最高为-1℃,最低为-3.8℃,绝大多数属不耐寒品种(品系),聚类分析将供试材料分为低温敏感型、中间型、耐寒性较强3类。试验筛选出耐寒性强的2份资源桂农薯1号和郑薯6号及4份后代品系(0712801、09178056、D540、0719017),为抗寒育种提供优良亲本。
-
表 1 不同发育时期施钾水平与无花果果实糖代谢酶的相关性分析
Table 1 Correlation between sugar metabolic enzymes in figs and K applications at fruit development stages
项目
Item指标
Indices日期 Date (M/D) 5/23 6/8 6/23 7/8 7/23 施钾水平
K applicationAI 0.791** −0.039 0.073 0.583* 0.611* NI 0.095 0.504 0.325 0.253 0.954** SS分解方向 0.897** 0.788** −0.299 0.876** −0.1 SS合成方向 0.233 0.163 0.125 0.094 0.517 SPS 0.599* 0.581* 0.768** 0.815** 0.754** α-淀粉酶 0.738** 0.842** 0.622* 0.707* 0.641 β-淀粉酶 0.338 0.182 0.865** 0.825** 0.922** 注:*和**表示相关系数分别在0.05和0.01水平显著。表2同。
Note: * and * * indicate significant correlation coefficients at 0.05 and 0.01 levels, respectively. The same as Table 2.表 2 无花果果实中糖含量与糖代谢相关酶的相关性分析
Table 2 Correlation between sugar content and enzymes related to sugar metabolism in figs
项目
Items中性转化酶
NI酸性转化酶
AI蔗糖合酶分解方向
SS decomposition direction蔗糖合酶合成方向
SS synthesis direction蔗糖磷酸合成酶
SPSα-淀粉酶
α-amylaseβ-淀粉酶
β-amylaseCK 果糖 Fructose 0.92** 0.22 0.794** 0.588* 0.41 0.437 −0.07 葡萄糖 Glucose 0.909** 0.236 0.777** 0.589* 0.401 0.409 −0.09 蔗糖 Sucrose 0.141 −0.771** −0.146 −0.109 0.482 −0.296 0.391 淀粉 Starch −0.929** −0.162 −0.786** −0.604* −0.129 −0.33 0.438 K1 果糖 Fructose 0.913** 0.572* 0.647** 0.811** 0.681** 0.708** 0.566* 葡萄糖 Glucose 0.897** 0.527* 0.625* 0.813** 0.608* 0.634* 0.532* 蔗糖 Sucrose 0.701** 0.215 0.32 0.547** 0.148 0.138 0.241 淀粉 Starch −0.879** −0.482 −0.595* −0.82** −0.738** −0.803** −0.371 K2 果糖 Fructose 0.867** 0.821** 0.516* 0.732** 0.818** 0.897** 0.882** 葡萄糖 Glucose 0.852** 0.812** 0.528* 0.746** 0.797** 0.881** 0.823** 蔗糖 Sucrose 0.439 0.408 0.576* 0.153 −0.308 0.129 −0.026 淀粉 Starch −0.718** −0.732** −0.340 −0.456 −0.712** −0.925** −0.783** K3 果糖 Fructose 0.855** 0.535* −0.108 0.840** 0.705** 0.730** 0.754** 葡萄糖 Glucose 0.825** 0.456 −0.153 0.783** 0.703** 0.775** 0.782** 蔗糖 Sucrose 0.457 0.001 −0.054 0.386 −0.353 −0.081 −0.169 淀粉 Starch −0.842** −0.510 0.247 −0.715** −0.756** −0.750** −0.842** -
[1] BAROLO M I, RUIZ MOSTACERO N, LÓPEZ S N. Ficus carica L. (Moraceae): an ancient source of food and health [J]. Food Chemistry, 2014, 164: 119−127. DOI: 10.1016/j.foodchem.2014.04.112
[2] JOSEPH B, RAJ S J. Pharmacognostic and phytochemical properties of Ficuscarica Linn -An overview [J]. International Journal of PharmTech Research, 2010, 3(1).
[3] 孙锐, 贾眀, 杨莉, 等. 山东引种无花果氨基酸及矿物元素成分分析与评价 [J]. 食品工业科技, 2015, 36(19):352−356, 360. SUN R, JIA M, YANG L, et al. Amino acid and minerals element composition analysis and evaluation of figs in Shandong [J]. Science and Technology of Food Industry, 2015, 36(19): 352−356, 360.(in Chinese)
[4] GROSS J. Carotenoids[M]//Pigments in Vegetables. Boston, MA: Springer US, 1991: 75-278.
[5] 郭雯. 灌溉施钾对红富士苹果叶片光合特性和矿质营养及果实品质影响的研究[D]. 杨凌: 西北农林科技大学, 2009. GUO W, Effects of fertigation with potassium on photosynthetic characteristics, leaf nutrition and fruit quality of Red Fuji appleMalus pumilaMill[D]. Yangling: Northwest Agricultural and Forestry University of science and technology, 2009.
[6] LESTER G E, JIFON J L, MAKUS D J. Impact of potassium nutrition on postharvest fruit quality: Melon (Cucumis melo L) case study [J]. Plant and Soil, 2010, 335(1/2): 117−131.
[7] 王小红. ‘蜂糖李’果实糖酸组分及其积累规律[D]. 贵阳: 贵州大学, 2018. WANG X H. The sugar-acid components of ’Fengtang plum’ fruit and the regularity of them accumulation[D]. Guiyang: Guizhou University, 2018.
[8] 陈俊伟, 张上隆, 张良诚, 等. 温州蜜柑果实发育进程中光合产物运输分配及糖积累特性 [J]. 植物生理学报, 2001, 27(2):186−192. DOI: 10.3321/j.issn:1671-3877.2001.02.016 CHEN J W, ZHANG S L, ZHANG L C, et al. Characteristics of photosynthate translocation and partitioning and sugar accumulation in developing Satsuma mandarin (Citrus unshiu marc.) fruit [J]. Acta Photophysiologica Sinica, 2001, 27(2): 186−192.(in Chinese) DOI: 10.3321/j.issn:1671-3877.2001.02.016
[9] 吴岚芳, 黄绵佳. 香蕉果实发育过程中糖代谢的研究 [J]. 安徽农业科学, 2008, 36(12):4862−4863. DOI: 10.3969/j.issn.0517-6611.2008.12.030 WU L F, HUANG M J. Study on the Sugar Metabolism in the Development Course of Banana Fruit [J]. Journal of Anhui Agricultural Sciences, 2008, 36(12): 4862−4863.(in Chinese) DOI: 10.3969/j.issn.0517-6611.2008.12.030
[10] 魏长宾, 武红霞, 马蔚红, 等. 芒果成熟阶段蔗糖代谢及其相关酶类研究 [J]. 西南农业学报, 2008, 21(4):972−974. DOI: 10.3969/j.issn.1001-4829.2008.04.019 WEI C B, WU H X, MA W H, et al. Sucrose metabolism in Irwin Mango(Mangifera indica L.) during maturation [J]. Southwest China Journal of Agricultural Sciences, 2008, 21(4): 972−974.(in Chinese) DOI: 10.3969/j.issn.1001-4829.2008.04.019
[11] 张弦. 不同施钾水平对“嘎拉”苹果果实糖、酸生理代谢的影响[D]. 杨凌: 西北农林科技大学, 2016. ZHANG X. Effects of different potassium level on sugar and acid metabolism in ’Gala’ apple fruit[D]. Yangling, China: Northwest A & F University, 2016.
[12] 华明艳, 宋兰芳, 崔少杰, 等. 钾肥处理对草莓果实糖积累及相关酶活性的影响 [J]. 北方园艺, 2019(16):38−43. HUA M Y, SONG L F, CUI S J, et al. Effect of potassium fertilizer treatment on sugar accumulation and related enzyme activities in strawberry fruits [J]. Northern Horticulture, 2019(16): 38−43.(in Chinese)
[13] 齐红岩, 李天来, 陈元宏, 等. 叶面喷施磷酸二氢钾与葡萄糖对番茄光合速率和蔗糖代谢的影响 [J]. 农业工程学报, 2005, 21(S2):137−142. QI H Y, LI T L, CHEN Y H, et al. Effects of foliage applications of KH2PO4 and glucose on photosynthesis and sucrose metabolism of tomato [J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(S2): 137−142.(in Chinese)
[14] 李春丽, 柴叶茂, 王志忠, 等. 草莓果实发育过程中糖、pH值及ABA水平变化趋势 [J]. 果树学报, 2011, 28(1):72−76, 189. LI C L, CHAI Y M, WANG Z Z, et al. Changing trends of sugar, pH and ABA during strawberry fruit development [J]. Journal of Fruit Science, 2011, 28(1): 72−76, 189.(in Chinese)
[15] 王学奎. 植物生理生化实验原理和技术. 第2版[M]. 北京: 高等教育出版社, 2006. [16] 龚江美. 一个琯溪蜜柚新种质的选育与品质评价研究[D]. 福州: 福建农林大学, 2018. GONG J M. Identification and Quality Evaluation of a New Bud Mutant of Pummelo[D]. Fuzhou: Fujian Agricultural and Forestry University, 2018.
[17] KELLER F, LUDLOW M M. Carbohydrate metabolism in drought-stressed leaves of pigeonpea (Cajanus cajan) [J]. Journal of Experimental Botany, 1993, 44(8): 1351−1359. DOI: 10.1093/jxb/44.8.1351
[18] ZHOU R, CHENG L, DANDEKAR A M. Down-regulation of sorbitol dehydrogenase and up-regulation of sucrose synthase in shoot tips of the transgenic apple trees with decreased sorbitol synthesis [J]. Journal of Experimental Botany, 2006, 57(14): 3647−3657. DOI: 10.1093/jxb/erl112
[19] 赵智中, 张上隆, 徐昌杰, 等. 蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用 [J]. 园艺学报, 2001(2):112−118. DOI: 10.3321/j.issn:0513-353X.2001.02.004 ZHAO Z Z, ZHANG S L, XU C J, etal. Roles of Sucrose- Metabolizing Enzymes in Accumulation of Sugars in Satsuma Mandarin Fruit [J]. ActaHorticulturae Sinica, 2001(2): 112−118.(in Chinese) DOI: 10.3321/j.issn:0513-353X.2001.02.004
[20] BLEVINS D G. Role of Potassium in Protein Metabolism in Plants[J]. American Society of Agronomy,1985,413~424.
[21] 邹铁祥, 戴廷波, 姜东, 等. 钾素水平对小麦氮素积累和运转及籽粒蛋白质形成的影响 [J]. 中国农业科学, 2006, 39(4):686−692. DOI: 10.3321/j.issn:0578-1752.2006.04.006 ZOU T X, DAI T B, JIANG D, et al. Potassium supply affected plant nitrogen accumulation and translocation and grain protein formation in winter wheat [J]. Scientia Agricultura Sinica, 2006, 39(4): 686−692.(in Chinese) DOI: 10.3321/j.issn:0578-1752.2006.04.006
[22] RUIZ J M, ROMERO L. Relationship between potassium fertilisation and nitrate assimilation in leaves and fruits of cucumber (Cucumis sativus) plants [J]. Annals of Applied Biology, 2002, 140(3): 241−245. DOI: 10.1111/j.1744-7348.2002.tb00177.x
[23] 周敏. 刺葡萄矿质营养变化规律与钾对果实糖分积累的影响研究[D]. 长沙: 湖南农业大学, 2017. ZHOU M. Research on Nutrients Change Rule of VitisdavidiiFoёx. and Influence of Potassium to Fruit Sugar Accumulation[D]. Changsha: Hunan Agricultural University, 2017.
[24] ERSOY N. Changes in Sugar Contents of Fig Fruit (Ficuscarica l. Cv. Bursa Siyahı) During Development[J]. Süleyman Demirel niversitesi Ziraat Fakültesi Dergisi, 2007, 2(2): 22-26.
[25] WIND J, SMEEKENS S, HANSON J. Sucrose: Metabolite and signaling molecule [J]. Phytochemistry, 2010, 71(14/15): 1610−1614.
[26] MORIGUCHI T, ABE K, SANADA T, et al. Levels and role of sucrose synthase, sucrose-phosphate synthase, and acid invertase in sucrose accumulation in fruit of Asian pear [J]. Journal of the American Society for Horticultural Science, 1992, 117(2): 274−278. DOI: 10.21273/JASHS.117.2.274
[27] BATTA S K, SINGH R. Sucrose metabolism in sugar cane grown under varying climatic conditions: Synthesis and storage of sucrose in relation to the activities of sucrose synthase, sucrose-phosphate synthase and invertase [J]. Phytochemistry, 1986, 25(11): 2431−2437. DOI: 10.1016/S0031-9422(00)84484-2
[28] MORIGUCHI T, SANADA T, YAMAKI S. Seasonal fluctuations of some enzymes relating to sucrose and sorbitol metabolism in peach fruit [J]. Journal of the American Society for Horticultural Science, 1990, 115(2): 278−281. DOI: 10.21273/JASHS.115.2.278
[29] 马凤凰. 龙眼果实发育过程中糖代谢的研究[D]. 福州: 福建农林大学, 2009. MA F H. Study on sugar metabolism of Longan Fruit during its development[D]. Fuzhou: Fujian Agricultural and Forestry University, 2009.
[30] 温志静. 叶面喷施不同浓度的氮、钾肥对‘嘎拉’苹果糖代谢的影响[D]. 杨凌: 西北农林科技大学, 2017. WEN Z J. Effects of foliar spraying different concentrations of nitrogen and potassium fertilizer on sugar metabolism in ‘gala’ apple[D]. Yangling, China: Northwest A & F University, 2017.
[31] 王仁才, 夏利红, 熊兴耀, 等. 钾对猕猴桃果实品质与贮藏的影响 [J]. 果树学报, 2006, 23(2):200−204. WANG R C, XIA L H, XIONG X Y, et al. Effects of applying potassium on kiwifruit eating quality and storage life [J]. Journal of Fruit Science, 2006, 23(2): 200−204.(in Chinese)
[32] 柳洪鹃, 史春余, 张立明, 等. 钾素对食用型甘薯糖代谢相关酶活性的影响 [J]. 植物营养与肥料学报, 2012, 18(3):724−732. DOI: 10.11674/zwyf.2012.11253 LIU H J, SHI C Y, ZHANG L M, et al. Effect of potassium on related enzyme activities in sugar metabolism of edible sweet potato [J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 724−732.(in Chinese) DOI: 10.11674/zwyf.2012.11253
[33] KAACK K, PEDERSEN H L. Effects of potassium, phosphorus and nitrogen fertilization on endogenous ethylene and quality characteristics of apples (Malus DomesticaL.) [J]. Journal of Plant Nutrition, 2014, 37(7): 1148−1155. DOI: 10.1080/01904167.2013.868484
[34] ROY CHOUDHURY S, ROY S, DAS R, et al. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter [J]. Planta, 2008, 229(1): 207−223. DOI: 10.1007/s00425-008-0821-2
-
期刊类型引用(15)
1. 努尔扎代姆·麦麦提,连琼宇,姜继元,叶春秀. 电导法结合Logistic方程评价6个文冠果种质抗寒性. 现代农业科技. 2024(10): 80-83 . 百度学术
2. 韦荣昌,黄小华,刘国敏,覃维治,廖玉娇,郑虚. 桂农薯1号马铃薯冻害调查及防控技术. 热带农业科学. 2023(05): 75-78 . 百度学术
3. 姜涛,申艳红,李金花,林碧英. 筛选耐低温茄子种质资源的方法比较. 河北科技师范学院学报. 2023(03): 75-80 . 百度学术
4. 舒启琼,罗小波,李飞,罗充,冯文豪,陈明俊,曹贞菊. 马铃薯抗寒性鉴定及筛选. 种子. 2023(09): 121-126+131 . 百度学术
5. 罗文彬,李华伟,许国春,林志坚,纪荣昌,许泳清,邱思鑫,汤浩. 南方冬作区马铃薯新品种闽薯2号耐寒性鉴定. 中国蔬菜. 2022(09): 63-67 . 百度学术
6. 李扬,凌永胜,林金秀. 电导率法配合田间霜冻鉴定福建省主栽马铃薯材料耐寒性. 江苏农业科学. 2021(04): 45-50 . 百度学术
7. 舒启琼,罗小波,李飞,罗充. 马铃薯抗寒研究进展. 植物生理学报. 2021(06): 1171-1178 . 百度学术
8. 罗文彬,李华伟,许国春,许泳清,林志坚,纪荣昌,邱思鑫,汤浩. 冬作马铃薯后代品系营养品质评价. 福建农业学报. 2021(07): 742-749 . 本站查看
9. 闫臣,陈玉童,刘芯邑,张德恩,李志博. 用半致死温度法鉴定北疆不同时期主栽棉花耐寒性. 中国棉花. 2020(01): 13-18+21 . 百度学术
10. 赵孟良,郭怡婷,孙世英,任延靖. 低温胁迫下4种菊芋的耐寒性评价. 植物生理学报. 2020(07): 1419-1431 . 百度学术
11. 刘计涛,索海翠,李成晨,王丽,单建伟,安康,李小波. 马铃薯抗寒研究进展. 广东农业科学. 2020(12): 73-81 . 百度学术
12. 赵永强,樊继德,杨艳,陆信娟,刘灿玉,张碧薇,杨峰. 电导率法结合Logistic方程鉴定大蒜品种资源的耐寒性. 广西农学报. 2019(03): 18-20+32 . 百度学术
13. 刘科,张丙林,张文英,张运波,田小海. 非损伤离子流检测技术在作物逆境研究中的应用. 应用生态学报. 2018(02): 678-686 . 百度学术
14. 刘婉迪,王威,谢倩,陈清西. 9个杜鹃品种的高温半致死温度与耐热性评价. 西北林学院学报. 2018(05): 105-110+136 . 百度学术
15. 邓英毅,郑虚,覃维治,熊军,刘国敏,李韦柳,许娟,闫海峰,韦民政,唐秀桦. 冬种马铃薯生态育种技术的构建与实践. 黑龙江农业科学. 2017(09): 9-18 . 百度学术
其他类型引用(6)