• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

玉米/豆科作物间作系统中不同互作因子对群体产量的影响

Crop-yields of Maize and Legume under Intercropping Cultivation

  • 摘要:
      目的  明确在间作条件下不同互作因子(地上部互作、根系竞争、土壤环境改良)对不同复合群体的生态效应。
      方法  以玉米/大豆和玉米/花生间作组合为研究对象,设置了间作无隔、间作网隔、间作全隔和3种作物的单作处理,比较分析不同间作处理的种间竞争关系和互作因子的产量贡献率。
      结果  玉米/大豆和玉米/花生间作均能提高群体产量,其中玉米增产起到主要作用,不同作物的竞争力排序为玉米>大豆>花生;地上部互作效应主要体现在提高了两种间作组合中玉米的产量,其产量贡献率分别为15.83%(玉米/大豆)和15.98%(玉米/花生),但却显著抑制了花生的产量(−11.42%);根系竞争对玉米/大豆间作组合的单一作物和群体产量均起到负效应(玉米−2.87%、大豆−5.35%、群体−4.52%),而对玉米/花生间作组合的玉米和群体产量起到正效应(5.88%和0.80%);土壤环境改良对两种间作组合中各作物产量均表现出正效应,可显著提高间作系统的产量和稳定性。
      结论  不同间作组合之间,由于作物在形态和生理上的差异,各互作因子对间作群体产量的贡献率存在差异,其中土壤环境改良对玉米/豆科间作系统的增产及稳产起到主要作用。通过量化不同互作因子对间作作物产量形成的生态效应,可为优化间作的田间作物配置和管理提供依据。

     

    Abstract:
      Objective  To clarify the effects of different interaction factors (aboveground interaction, root competition, soil environment improvement) on crop-yields under maize and legumes intercropping systems.
      Method  Maize/soybean and maize/peanut were intercropped with no separation, with a net-barrier or with a physical barrier to completely separate the involved maize and legume plants. In addition, maize, soybean, and peanut were also planted as monocrop at the testing fields for comparison. Interspecies competition or synergy, such as the aboveground plant interactions and underground root competition, and soil improvements induced by the treatments on crop-yields of the two systems were analyzed.
      Result  Intercropping maize and legume plants increased the combined crop-yield over the monocropping, despite the treatment differences. In an intercropping system, maize was most competitive of the 3 crops with respect to the aboveground growth, while peanut the least. The maize yield under the maize/soybean system increased with a contribution rate of 15.83% by the aboveground interactions, and 15.98% under the maize/peanut cultivation. The peanut yield, meanwhile, was suppressed by 11.42% when intercropped with maize. In contrast to the aboveground plant interactions, the root competition exerted negative effects on the yields of both species under the maize/soybean system that resulted in a reduction of 2.87% on maize, 5.35% on soybean, and 4.52% on total yield. For the intercropped maize and peanut plants, the root competition raised the maize yield by 5.88% and 0.8% on the combined yield. The intercropping improved soil conditions that facilitated crop-yield and production stability in both systems.
      Conclusion  The morphology and physiology of the maize, soybean, and peanut plants appeared to cause the variations on the effects on crop-yield by the intercropping. Meanwhile, the soil eco-system was improved by the practice contributing significantly to the yield and production stability. A quantified relationship between intercropping and crop-yield as illustrated by this study could be applied to optimize other agricultural planning and management as well.

     

/

返回文章
返回