• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

玉米/豆科作物间作系统中不同互作因子对群体产量的影响

李奇松, 李家俊, 叶江华, 罗晓棉, 林文雄

李奇松,李家俊,叶江华,等. 玉米/豆科作物间作系统中不同互作因子对群体产量的影响 [J]. 福建农业学报,2020,35(6):582−590. DOI: 10.19303/j.issn.1008-0384.2020.06.003
引用本文: 李奇松,李家俊,叶江华,等. 玉米/豆科作物间作系统中不同互作因子对群体产量的影响 [J]. 福建农业学报,2020,35(6):582−590. DOI: 10.19303/j.issn.1008-0384.2020.06.003
LI Q S, LI J J, YE J H, et al. Crop-yields of Maize and Legume under Intercropping Cultivation [J]. Fujian Journal of Agricultural Sciences,2020,35(6):582−590. DOI: 10.19303/j.issn.1008-0384.2020.06.003
Citation: LI Q S, LI J J, YE J H, et al. Crop-yields of Maize and Legume under Intercropping Cultivation [J]. Fujian Journal of Agricultural Sciences,2020,35(6):582−590. DOI: 10.19303/j.issn.1008-0384.2020.06.003

玉米/豆科作物间作系统中不同互作因子对群体产量的影响

基金项目: 福建省农业生态过程与安全监控重点实验室(福建农林大学)开放课题项目(NYST-2019-02);武夷学院引进人才科研启动项目(YJ201906)
详细信息
    作者简介:

    李奇松(1987−),男,博士,讲师,研究方向:作物生理与分子生态学(E-mail:liqisong0591@126.com

    通讯作者:

    林文雄(1957−),男,博士,教授,研究方向:作物生理与分子生态学(E-mail:lwx@fafu.edu.cn

  • 中图分类号: S 315

Crop-yields of Maize and Legume under Intercropping Cultivation

  • 摘要:
      目的  明确在间作条件下不同互作因子(地上部互作、根系竞争、土壤环境改良)对不同复合群体的生态效应。
      方法  以玉米/大豆和玉米/花生间作组合为研究对象,设置了间作无隔、间作网隔、间作全隔和3种作物的单作处理,比较分析不同间作处理的种间竞争关系和互作因子的产量贡献率。
      结果  玉米/大豆和玉米/花生间作均能提高群体产量,其中玉米增产起到主要作用,不同作物的竞争力排序为玉米>大豆>花生;地上部互作效应主要体现在提高了两种间作组合中玉米的产量,其产量贡献率分别为15.83%(玉米/大豆)和15.98%(玉米/花生),但却显著抑制了花生的产量(−11.42%);根系竞争对玉米/大豆间作组合的单一作物和群体产量均起到负效应(玉米−2.87%、大豆−5.35%、群体−4.52%),而对玉米/花生间作组合的玉米和群体产量起到正效应(5.88%和0.80%);土壤环境改良对两种间作组合中各作物产量均表现出正效应,可显著提高间作系统的产量和稳定性。
      结论  不同间作组合之间,由于作物在形态和生理上的差异,各互作因子对间作群体产量的贡献率存在差异,其中土壤环境改良对玉米/豆科间作系统的增产及稳产起到主要作用。通过量化不同互作因子对间作作物产量形成的生态效应,可为优化间作的田间作物配置和管理提供依据。
    Abstract:
      Objective  To clarify the effects of different interaction factors (aboveground interaction, root competition, soil environment improvement) on crop-yields under maize and legumes intercropping systems.
      Method  Maize/soybean and maize/peanut were intercropped with no separation, with a net-barrier or with a physical barrier to completely separate the involved maize and legume plants. In addition, maize, soybean, and peanut were also planted as monocrop at the testing fields for comparison. Interspecies competition or synergy, such as the aboveground plant interactions and underground root competition, and soil improvements induced by the treatments on crop-yields of the two systems were analyzed.
      Result  Intercropping maize and legume plants increased the combined crop-yield over the monocropping, despite the treatment differences. In an intercropping system, maize was most competitive of the 3 crops with respect to the aboveground growth, while peanut the least. The maize yield under the maize/soybean system increased with a contribution rate of 15.83% by the aboveground interactions, and 15.98% under the maize/peanut cultivation. The peanut yield, meanwhile, was suppressed by 11.42% when intercropped with maize. In contrast to the aboveground plant interactions, the root competition exerted negative effects on the yields of both species under the maize/soybean system that resulted in a reduction of 2.87% on maize, 5.35% on soybean, and 4.52% on total yield. For the intercropped maize and peanut plants, the root competition raised the maize yield by 5.88% and 0.8% on the combined yield. The intercropping improved soil conditions that facilitated crop-yield and production stability in both systems.
      Conclusion  The morphology and physiology of the maize, soybean, and peanut plants appeared to cause the variations on the effects on crop-yield by the intercropping. Meanwhile, the soil eco-system was improved by the practice contributing significantly to the yield and production stability. A quantified relationship between intercropping and crop-yield as illustrated by this study could be applied to optimize other agricultural planning and management as well.
  • 【研究意义】畜牧业生产中抗生素的滥用和超级耐药菌不断涌现,给畜牧业生产和我国食品安全带来很大危害。为促进畜牧业生产的发展和保障食品安全,应用微生物的功能性作用,开发具有安全高效的复合微生物菌剂,成为当前畜牧业生产的一种趋势[1-6]。而依据猪的胃肠道微生物功能而开发的微生物菌剂,在生猪的养殖中应用广泛[7-8]。【前人研究进展】有研究证实饲料中添加微生物菌剂饲喂育肥猪,平均日增重可提高6.7%,肉料比可降低11.7%,饲喂微生物添加剂的要比未饲喂的猪每头节约饲料成本21.6~27.2元,效果较显著[9];也有报道使用芽孢杆菌添加到饲料中,饲喂哺乳仔猪,提高增重22%以上,耗料指数下降1%~6%,具有较好的经济效益;还有报道证实,添加微生物菌剂,能改善小猪胃肠菌群[10],可明显减少哺乳仔猪、仔猪的拉稀[11],增强机体免疫作用[12],改善猪舍环境[13],减少粪便中有害气体的产量等[14-15]。尽管之前的研究证实微生物菌剂不仅能改善断奶小仔猪的拉稀,还能改善育肥猪的生产性能。但实际生产中的应用还是较少。一方面是因为之前的研究添加菌剂相对单一,对生猪生产性能的改善相对有限,临床应用也相对有限。另一方面,是因为微生物菌剂功能的发挥是多菌种相互配合的复杂系统,详细的作用机理尚待深入揭示,进一步限制了微生物菌剂在畜牧业生产中的应用。【本研究切入点】为进一步推动微生物菌剂在生产中的应用,改善生猪的生产性能,本研究采用多菌种的复合菌添加模式,进一步探讨复合菌剂对育肥猪的生长、发育的影响。【拟解决的关键问题】通过运用复合微生物菌(包括芽孢菌、放线菌、乳酸菌、酵母菌、粪肠菌、光合菌等多种菌),进行为期90 d的添加饲喂试验,以期揭示长期添加复合微生物菌对生猪生产性能、胃肠道绒毛和微生物结构影响,从而推动复合微生物菌剂在生猪生产中的应用。

    60日龄的杜×长×大育肥猪共300头购自福建龙岩上杭某养殖公司,体重(25.0±1.6)kg。

    本试验中复合菌华惠一号由福建省农业科学院畜牧兽医研究所和泉州华惠生物科技有限公司共同分离培养,包括1.25×108 cfu·g−1以上的芽孢菌、放线菌、乳酸菌、酵母菌、粪肠菌、光合菌等。

    饲养地点在福建龙岩上杭某养殖公司,采用常规的水泥面养殖猪舍,平均气温22℃,养殖周期90 d。育肥猪300头,随机分成2组,每组15个重复,每个重复10头。试验组饲喂添加复合微生物菌活菌饲料,对照组饲喂常规的饲料。正式饲喂试验前7 d进行预试验。饲喂管理按照自由采食方法进行,提供充足清洁饮水,每天进行一次猪舍清扫,定时观察记录试验猪的采食、体重、粪便、精神状况,常规疫苗接种。

    将复合菌液按1:12.5比列添加至玉米粉,在25~38℃密闭发酵5~7 d。试验组按基础原料组成配方:发酵玉米16 kg,玉米粉634 kg,豆粕280 kg,麦麸30 kg,预混料40 kg进行混匀饲喂。对照组则按基础原料组成配方:玉米粉650 kg,豆粕280 kg,麦麸30 kg,预混料40 kg混匀饲喂。试验饲料的原料基础日粮及其营养成分见表1

    表  1  基础日粮组成及营养成分
    Table  1.  Basic diet and nutritional composition of forage
    组成 Composition含量 Contain
    玉米 Corn/%65
    麦皮 Wheat bran/%3
    豆粕 Soybean meal/%28
    预混料 Premix/%(每千克日粮)4
    总计 Total/%100
    消化能 Digestive energy(DE)/(MJ·kg−113.87
    粗蛋白 Crude protein(CP)/%19.5
    赖氨酸 Lysine(Lys)/%1.1
    钙 Calcium(Ca)/%0.9
    有效磷 Available phosphorus(AP)/%0.45
    注:预混料组成:石粉40%,磷酸氢钙30%,碘酸钙0.25%,亚硒酸钠0.75%,一水硫酸亚铁1.85%,一水硫酸锌1.5%,五水硫酸铜2.2%,一水硫酸锰0.85%,维生素A0.05%,维生素B1(98%)0.004%,维生素B2(96%)0.02%,维生素B6(98%)0.012%,维生素B12(1%)0.005%,维生素D3 0.09%,维生素E(50%)0.1%,氯化胆碱(50%)3.5%,生物素(2%)0.013%,烟酸(99%)0.076%,叶酸(97%)0.002%,泛酸(98%)0.051%,维生素K3(25%)0.1%,食盐6.0%,蛋氨酸(99%)1.0%,赖氨酸(98%)5.0%,抗氧化剂0.1%,载体(沸石粉)6.558%。
    Note:The composition of premix is 40% stone powder, 30% calcium hydrogen phosphate, 0.25% calcium iodate, 0.75% sodium selenite, 1.85% ferrous sulfate monohydrate, 1.5% zinc sulfate monohydrate, 2.2% copper sulfate pentahydrate, 0.85% manganese sulfate monohydrate, 0.05% vitamin A, 0.004% vitamin B1 (98%), 0.02% vitamin B2 (96%), 0.012% vitamin B6 (98%), Vitamin B12 (1%) 0.005%, vitamin D3 0.09%, vitamin E (50%) 0.1%, choline chloride (50%) 3.5%, biotin (2%) 0.013%, niacin (99%) 0.076%, folic acid (97%) 0.002%, pantoic acid (98%) 0.051%, vitamin K3 (25%) 0.1%, salt 6.0%, methionine (99%) 1.0%, lysine (98%) 5.0%, antioxidant 0.1%, carrier (zeolite powder) 6.558%.
    下载: 导出CSV 
    | 显示表格

    试验前,对所有猪进行称重,然后添加复合菌,并分别在15、30、60、90 d进行称重、统计采食量,并计算每头日均增重、头均耗料以及耗料增重比,分析复合菌对育肥猪生产性能的影响。

    饲喂试验结束后,各处理分别选择18头体重相近且生长状况良好、未发生过消化道疾病的育肥猪,空腹处死,取0.25 cm的胃、结肠、盲肠,放入多聚甲醛固定,经酒精脱水,二甲苯透明,然后将已透明的组织块置于已溶化的石蜡中浸蜡、包埋;再将包埋好的组织块切片,然后脱蜡、至水、染色;染色后的切片经纯酒精脱水,再经二甲苯使切片透明;将已透明的切片滴上树胶,盖上盖玻片封固;待树胶略干后镜检。

    试验结束时,通过安乐死处理试验组和对照组猪(每组10只),分别取处死猪的胃和结肠黏液进行微生物组总DNA提取,然后通过1%琼脂糖凝胶电泳验证提取DNA的纯度,同时运用紫外分光光度方法对提取的胃和结肠黏液DNA进行定量。接着再根据肠道微生物序列中的保守片段设计引物,对肠道微生物的基因可变区(单个或连续的多个)或特定基因片段进行PCR扩增。

    PCR扩增产物通过2%琼脂糖凝胶电泳进行检测,并对目标片段进行切胶回收,回收采用AXYGEN公司的凝胶回收试剂盒。参照电泳初步定量结果,将PCR扩增回收产物进行荧光定量,荧光试剂为Quant-iT PicoGreen dsDNA Assay Kit,定量仪器为Microplate reader(BioTek,FLx800)。根据荧光定量结果,按照每个样本的测序量需求,对各样本按相应比例进行混合。

    采用Illumina公司的TruSeq Nano DNA LT Library Prep Kit试剂盒制备测序的基因文库。将验证合格的测序文库进行梯度稀释,按相应比例混合文库,混合后再采用碱变性为单链进行上机测序;使用MiSeq Reagent Kit V3 (600 cycles)和MiSeq测序仪进行2×300 bp的双端测序。

    首先进行初步筛查高通量测序的原始下机数据的序列质量;再按照引物和Barcode信息,将通过质量初筛的序列,分配入对应样本,并去除嵌合体;然后使用QIIME软件,调用UCLUST这一序列比对工具,对前述获得的序列按97%的序列相似度进行归并和OTU划分,并选取每个OTU中丰度最高的序列作为该OTU的代表序列。随后,根据每个OTU在每个样本中所包含的序列数,构建OTU在各样本中丰度的矩阵文件(即OTU table),该矩阵文件可转换为“BIOM(Biological Observation Matrix)”这一更便于传输、储存并兼容于其他分析工具的文件格式。OTU归并划分获得的序列,然后根据每个OTU的代表序列进行序列的分类地位鉴定以及系统发育学分析;接着再根据OTU在不同样本中的丰度分布,对每个样本的多样性水平进行评估,并根据样本的稀疏曲线来评估测序深度;随后根据不同分类水平分析各样本(组)并检验组间各自的统计学意义;然后对OTU丰度矩阵中的全体样本在90%的最低测序深度水平,统一进行随机重抽样(即“序列量拉平处理”),从而校正测序深度引起的多样性差异。随后,使用QIIME软件分别对每个样本计算上述4种多样性指数,再通过α和β多变量统计学分析工具,分析不同样本间及组间的菌群结构差异及与相关的物种差异;接着根据微生物肠道菌群的基因测序结果,预测各样本的菌群相关代谢功能。

    表2所示,试验组的育肥猪在15、30、60、90 d平均日增重显著高于对照组,F/G显著低于对照组。表明在育肥猪日粮中添加复合菌能提高育肥猪日增重,降低料肉比。

    表  2  添加复合菌对育肥猪生产性能的影响
    Table  2.  Effect of compound microbial agent addition in forage on weight-gain of pigs at fattening stage
    试验时间
    Time
    试验处理
    Treatments
    平均日采食量
    Average daily feed intake(ADFI)/(kg·头−1
    平均增重
    Average head gain/(kg·头−1
    平均日增重
    Average daily gain(ADG)
    /(kg·头−1
    料/肉比(F/G)
    Feed/weight gain
    F/G与对照组比较
    F/G compared with control
    15 d复合菌组 Treatment1.60±0.28 a9.5±0.48 a0.63±0.15 a2.53 a−8.38%
    对照组 Control1.60±0.39 a8.72±1.29 b0.52±0.14 b2.73 b
    30 d复合菌组 Treatment1.86±0.98 a10.01±2.84 a0.67±0.17a2.76 a−2.81%
    对照组 Control1.88±0.40 a9.92±1.48 b0.61±0.10 b2.84 b
    60 d复合菌组 Treatment2.43±0.52 a25.86±1.24 a0.86±0.15 a2.82 a−11.74%
    对照组 Control1.97±0.19 b25.08±1.29 b0.84±0.34 b3.15 b
    90 d复合菌组 Treatment3.35±0.76 a28.65±1.24 a0.95±0.15 a3.52 a−2.63%
    对照组 Control3.36±0.55 a27.78±1.29 b0.93±0.34 b3.63 b
    注:不同小写字母表示同一时间不同处理之间差异显著(P<0.05),相同字母表示差异不显著(P>0.05)。
    Note: Different letters in the same row means significant difference between treatments(P<0.05).
    下载: 导出CSV 
    | 显示表格

    添加复合菌组的猪胃壁纵肌层和横肌层较厚;胃壁绒毛比对照组长,差异极显著(P<0.01);结肠绒毛和盲肠绒毛比对照组长,差异显著(P<0.05)或极显著(P<0.01)。此外,对照组的胃壁纵肌层和横肌层较薄(图1)。说明复合微生物菌的添加促进了胃肠肠绒毛的发育,减少了损伤。

    图  1  胃肠道结构及绒毛变化
    注:箭头标注为胃肠道绒毛结构;*表示差异显著(P<0.05),**表示差异极显著(P<0.01)。
    Figure  1.  Changes on structure and villi in gastrointestinal tracts
    Note:The arrow is marked as the gastrointestinal villi structure; * indicates significant difference (P<0.05), ** indicates extremenly significant difference (P<0.01).

    试验结束时,各采集18只育肥猪的胃液和结肠的黏液进行16S rRNA基因测序。结果如图23所示:试验组育肥猪的胃黏液属水平的乳酸菌丰度(平均67.81%)比试验组高(13.54%)(P<0.05),胃黏液属水平的艰难梭菌属(4.51%)比对照低(5.55%),差异显著(P<0.05)。结肠黏液属水平的乳酸菌丰度(平均6.51%)比试验组高(3.17%),差异显著(P<0.05),结肠黏液属水平艰难梭菌属(2.32%)比对照低(3.73%),差异显著(P<0.05)。结果表明,在育肥猪日粮中添加复合菌有促进乳酸菌属丰度、降低艰难梭菌属丰度的作用。

    图  2  胃属水平菌群组成
    Figure  2.  Microbiota composition of gastric mucus with respect to genus
    图  3  结肠属水平菌群组成
    Figure  3.  Microbiota composition of colon with respect to genus

    育肥猪生产性能的改善,主要体现在日增重增加、耗料增重比的下降等多个方面。本研究结果表明,饲用复合微生物菌明显增加日增重,降低耗料增重比,与任瑞兰等[15]、马雪花等[16]、何志刚等[17]和文廷富等[18]的试验结果较为一致。此外,从15 d开始,一直持续到90 d,育肥猪的日增重明显增加,耗料增重比也明显降低。本研究中使用的复合菌剂包括了6大类菌,充分考虑到育肥猪胃肠道的不同位置对于微生物菌提供的不同生长条件,胃和十二指肠相对开放,需氧菌多于厌氧菌,而结肠和盲肠相对密闭,大部分是厌氧菌。之前很多的研究报道,都证实了微生物菌的添加功效[19-21],但极少考虑不同位置的胃肠道菌群差异,因此很多研究结果与实际应用存在一定差异。本试验充分考虑胃肠道不同位置菌群分布,通过复合菌添加,让不同菌定植于不同位置,从而保证了外来菌群能够有效影响内在菌群平衡。从研究结果看,添加复合菌剂的效果确实持续存在,具体的机理尚待进一步的研究。

    胃肠道绒毛结构影响营养物质的消化吸收,添加微生态制剂是否能改善生产性能,首要考察其对胃肠道绒毛结构生长是否有促进作用[22]。本试验比较分析添加复合菌剂组胃、结肠和盲肠的肠道形态及绒毛长度。结果发现,添加复合菌组结肠和盲肠的绒毛比对照组长,与李长军等[23]、孙媛等[24]用微生态制剂饲喂仔猪促进猪肠道绒毛发育,以及欧阳志周[25]通过添加丁酸梭菌可促进猪肠道绒毛发育的结果较接近。此外,本次试验也发现,饲喂复合微生物菌的育肥猪的胃壁肌层较厚,绒毛长度比对照组长。从胃动力学可知,胃壁肌层厚度越厚,越有利于饲料在胃里的初级消化。而胃的绒毛长度可延长营养物质在胃壁的滞留时间,同时也延长微生物在胃壁的作用时间,进一步促进了营养物质在胃里的消化吸收,从而对生产性能进行改善[26]

    育肥猪肠道微生物是宿主营养物质消化和吸收的关键,对宿主免疫及疾病等起着重要的调控作用。同时肠道微生物菌群结构又受到宿主胃肠道内环境以及日粮、品种、外界环境等的影响[27]。本试验中添加的复合微生物菌剂,明显增加胃和结肠的乳酸菌属的丰度。胃里的乳酸菌不仅可促进乳糖、蛋白质、单糖及钙、镁等营养物质的吸收,产生B族维生素等大量有益物质;同时还可增加肠道有益菌群,改善胃肠道功能,恢复肠道内菌群平衡,形成抗菌生物屏障,维护宿主健康;还可抑制腐败菌的繁殖,消解腐败菌产生的毒素,清除肠道垃圾等。因此,推测胃、结肠的乳酸菌属的丰度增加是改善育肥猪生产性能的重要因素。

    此外,本研究也证实,添加复合益生菌可减少艰难梭菌为主的有害梭菌的增殖。有害梭菌的减少可促进菌群平衡,维护肠道结构功能,提高营养物质的消化吸收,从而改善生产性能。本试验和杨红萍等[28]添加复合微生态制剂可显著增加盲肠、结肠、直肠中乳酸杆菌、双歧杆菌数量以及杜泓明等[29]添加复合益生菌培养物影响断奶仔猪的盲肠微生物区系的结果较为一致。

    复合菌剂可增加育肥猪胃、结肠和盲肠的肠壁绒毛长度,增加胃和结肠的乳酸菌属的丰度,同时减少以艰难梭菌为主的有害梭菌的增殖,维护肠道结构功能,保证菌群平衡,促进生产性能的提升,可作为饲料添加剂在生产中应用。

  • 表  1   不同处理下两种间作组合的作物产量和土地当量比(LER

    Table  1   Crop-yields and LER of two intercropping systems with varied treatments

    处理
    Treatments
    玉米/大豆间作产量
    Maize/soybean intercropping yield/(kg·hm−2
    玉米/花生间作产量
    Maize/peanut intercropping yield/(kg·hm−2
    Y1mY1sLER1Y2mY2pLER2
    NS 3 066.45±119.73 a 1 156.05±48.98 ab 1.10±0.06 ab 3 460.50±79.35 a 1 764.60±47.52 a 1.12±0.03 a
    HS 3 141.15±138.66 a 1 214.40±27.63 a 1.15±0.03 a 3 311.40±99.47 a 1 795.35±31.69 a 1.11±0.01 a
    CS 3 012.39±174.32 a 1 091.55±20.41 b 1.05±0.03 b 2 939.70±54 .00 b 1 571.70±49.62 b 0.98±0.02 b
    MS 7 802.10±229.85 1 635.00±42.38 7 604.10±342.91 2 661.30±50.70
    注:(1)NS表示无隔处理,HS表示网隔处理,CS表示全隔处理,MS表示单作处理;Y1mY1sLER1分别表示玉米/大豆间作组合中的玉米产量、大豆产量、土地当量比;Y2mY2pLER2分别表示玉米/花生间作组合中的玉米产量、花生产量、土地当量比;(2)表中数值之后无相同小写字母者表示差异达显著水平(LSD test, P<0.05, n=3)(表25同)。
    Note: NS: non-separated treatment; HS: net-separated treatment; CS: completely separated treatment; MS: monoculture treatment. Y1m, Y1s and LER1 respectively represent maize yield, soybean yield and land equivalent ratio in maize/soybean intercropping. Y2m, Y2s and LER2 respectively represent maize yield, soybean yield and land equivalent ratio in maize/peanut intercropping. Different letters show significant differences determinedby the LSD(least significant difference)test(P<0.05, n=3)(the same as table 2-5).
    下载: 导出CSV

    表  2   不同处理下两种间作组合的区域时间等价率(ATER)和农田利用效率(LUE

    Table  2   ATER and LUE of two intercropping systems with varied treatments

    处理
    Treatments
    玉米/大豆
    Maize/soybean intercropping
    玉米/花生
    Maize/peanut intercropping
    ATER1LUE1ATER2LUE2
    NS 1.01±0.05 ab 1.06±0.06 ab 1.02±0.02 a 1.07±0.02 a
    HS 1.06±0.02 a 1.10±0.03 a 1.02±0.01 a 1.06±0.01 a
    CS 0.97±0.03 b 1.01±0.03 b 0.89±0.03 b 0.94±0.03 b
    下载: 导出CSV

    表  3   不同处理下两种间作组合的相对拥挤系数(RCC

    Table  3   RCC of two intercropping systems with varied treatments

    处理
    Treatments
    玉米/大豆
    Maize/soybean intercropping
    玉米/花生
    Maize/peanut intercropping
    RCC1mRCC1sRCC1RCC2mRCC2pRCC2
    NS 1.30±0.04 a 1.21±0.11 b 1.57±0.12 b 1.67±0.07 a 0.99±0.08 a 1.69±0.19 a
    HS 1.35±0.04 a 1.44±0.02 a 1.95±0.03 a 1.54±0.09 a 1.04±0.06 a 1.58±0.05 a
    CS 1.26±0.06 a 1.00±0.02 c 1.26±0.03 c 1.26±0.04 b 0.72±0.06 b 0.91±0.10 b
    下载: 导出CSV

    表  4   不同处理下两种间作组合的种间竞争力(A

    Table  4   Competitiveness(A)of two intercropping systems with varied treatments

    处理
    Treatments
    玉米/大豆
    Maize/soybean intercropping
    玉米/花生
    Maize/peanut intercropping
    A1mA1sA2mA2p
    NS 0.12±0.04 ab −0.12±0.04 ab 0.37±0.02 a −0.37±0.02 b
    HS 0.09±0.03 b −0.09±0.03 b 0.29±0.05 b −0.29±0.05 a
    CS 0.16±0.03 a −0.16±0.03 a 0.31±0.02 b −0.31±0.02 a
    下载: 导出CSV

    表  5   不同处理下两种间作组合的实际产量损失指数(AYL)和系统生产力指数(SPI

    Table  5   AYL and SPI of two intercropping systems with varied treatments

    处理
    Treatments
    玉米/大豆
    Maize/soybean intercropping
    玉米/花生
    Maize/peanut intercropping
    AYL1mAYL1sAYL1SPI1AYL2mAYL2pAYL2SPI2
    NS 0.18±0.02 a 0.06±0.03 b 0.24±0.03 b 575.91 0.37±0.03 a −0.01±0.03 a 0.36±0.05 a 566.81
    HS 0.21±0.02 a 0.11±0.00 a 0.32±0.02 a 599.62 0.31±0.04 a 0.01±0.02 a 0.32±0.03 a 562.74
    CS 0.16±0.03 a 0.00±0.01 c 0.16±0.03 c 551.55 0.16±0.02 b −0.11±0.03 b 0.05±0.05 b 495.37
    下载: 导出CSV

    表  6   不同互作因子对两间作组合的产量贡献率(YCR

    Table  6   Yield contribution rates(YCR)by various interacting factors on two intercropping systems

    影响因子
    Treatments
    玉米/大豆间作
    Maize/soybean intercropping/%
    玉米/花生间作
    Maize/peanut intercropping/%
    YCR1mYCR1sYCR1YCR2mYCR2pYCR2
    土壤环境改良
    Improvement of soil environment
    4.9611.279.1714.6612.6113.29
    根系竞争
    Root competition
    −2.87−5.35−4.525.88−1.740.80
    地上部互作
    Aboveground interaction
    15.830.135.3615.98−11.42−2.28
    综合作用
    Comprehensive effect
    17.926.0510.0136.52−0.5511.81
    下载: 导出CSV
  • [1]

    MARIOTTI M, MASONI A, ERCOLI L, et al. Above- and below-ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system [J]. <italic>Grass and Forage Science</italic>, 2009, 64(4): 401−412. DOI: 10.1111/j.1365-2494.2009.00705.x

    [2]

    TILMAN D. Plant interactions. (book reviews: plant strategies and the dynamics and structure of plant communities) [J]. <italic>Science</italic>, 1988, 241: 853−855. DOI: 10.1126/science.241.4867.853

    [3]

    WU Y S, GONG W Z, YANG F, et al. Responses to shade and subsequent recovery of soya bean in maize-soya bean relay strip intercropping [J]. <italic>Plant Production Science</italic>, 2016, 19(2): 206−214. DOI: 10.1080/1343943X.2015.1128095

    [4]

    YANG F, LIAO D P, WU X L, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems [J]. <italic>Field Crops Research</italic>, 2017, 203: 16−23. DOI: 10.1016/j.fcr.2016.12.007

    [5] 安颖蔚, 冯良山, 张鹏. 间作群体作物根系营养竞争与互作效应 [J]. 江苏农业科学, 2017, 45(5):26−28.

    AN Y W, FENG L S, ZHANG P. Nutrient competition and interaction effect of root in intercropping system [J]. <italic>Jiangsu Agricultural Sciences</italic>, 2017, 45(5): 26−28.(in Chinese)

    [6]

    XIA H Y, ZHAO J H, SUN J H, et al. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates [J]. <italic>Field Crops Research</italic>, 2013, 150: 52−62. DOI: 10.1016/j.fcr.2013.05.027

    [7]

    KUZYAKOV Y, DOMANSKI G. Carbon input by plants into the soil. Review [J]. <italic>Journal of Plant Nutrition and Soil Science</italic>, 2000, 163(4): 421−431. DOI: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R

    [8]

    JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface [J]. <italic>Plant and Soil</italic>, 2009, 321(1/2): 5−33.

    [9]

    PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: the microbial ecology of the rhizosphere [J]. <italic>Nature Reviews Microbiology</italic>, 2013, 11(11): 789−799. DOI: 10.1038/nrmicro3109

    [10]

    ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly [J]. <italic>Nature Microbiology</italic>, 2018, 3(4): 470−480. DOI: 10.1038/s41564-018-0129-3

    [11]

    LI Q S, CHEN J, WU L K, et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems [J]. <italic>International Journal of Molecular Sciences</italic>, 2018, 19(2): 622. DOI: 10.3390/ijms19020622

    [12]

    LI L, TILMAN D, LAMBERS H, et al. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture [J]. <italic>The New Phytologist</italic>, 2014, 203(1): 63−69. DOI: 10.1111/nph.12778

    [13]

    ZHENG X Y, ZHAO L, NAN X U, et al. Interspecific Interaction of Below-ground and Above-ground Indices in Mulberry-soybean Intercropping System [J]. <italic>Soils</italic>, 2011, 43(3): 493−497.

    [14] 刘广才, 杨祁峰, 李隆, 等. 小麦/玉米间作优势及地上部与地下部因素的相对贡献 [J]. 植物生态学报, 2008, 32(2):477−484. DOI: 10.3773/j.issn.1005-264x.2008.02.027

    LIU G C, YANG Q F, LI L, et al. Intercropping advantage and contribution of above- and below-ground interactions in wheat-maize intercropping [J]. <italic>Journal of Plant Ecology (Chinese Version)</italic>, 2008, 32(2): 477−484.(in Chinese) DOI: 10.3773/j.issn.1005-264x.2008.02.027

    [15] 吕越, 吴普特, 陈小莉, 等. 地上部与地下部作用对玉米/大豆间作优势的影响 [J]. 农业机械学报, 2014, 45(1):129−136, 142. DOI: 10.6041/j.issn.1000-1298.2014.01.021

    LÜ Y, WU P T, CHEN X L, et al. Effect of above-and below-ground interactions on maize/soybean intercropping advantage [J]. <italic>Transactions of the Chinese Society for Agricultural Machinery</italic>, 2014, 45(1): 129−136, 142.(in Chinese) DOI: 10.6041/j.issn.1000-1298.2014.01.021

    [16] 张向前, 黄国勤, 卞新民, 等. 红壤旱地玉米对间作大豆和花生边行效应影响的研究 [J]. 中国生态农业学报, 2012, 20(8):1010−1017. DOI: 10.3724/SP.J.1011.2012.01010

    ZHANG X Q, HUANG G Q, BIAN X M, et al. Marginal effect of soybean and peanut intercropped with maize in upland red soils [J]. <italic>Chinese Journal of Eco-Agriculture</italic>, 2012, 20(8): 1010−1017.(in Chinese) DOI: 10.3724/SP.J.1011.2012.01010

    [17]

    MEAD R, WILLEY R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping [J]. <italic>Experimental Agriculture</italic>, 1980, 16(3): 217−228. DOI: 10.1017/S0014479700010978

    [18]

    ALLEN J R, OBURA R K. Yield of corn, cowpea, and soybean under different intercropping Systems1 [J]. <italic>Agronomy Journal</italic>, 1983, 75(6): 1005−1009. DOI: 10.2134/agronj1983.00021962007500060032x

    [19]

    HIEBSCH C K, MCCOLLUM R E. Area-Time Equivalency Ratio: A Method For Evaluating The Productivity Of Intercrops 1 [J]. <italic>Agronomy Journal</italic>, 1987, 79(1): 15−22. DOI: 10.2134/agronj1987.00021962007900010004x

    [20]

    LITHOURGIDIS A S, VLACHOSTERGIOS D N, DORDAS C, et al. Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems [J]. <italic>European Journal of Agronomy</italic>, 2011, 34(4): 287−294. DOI: 10.1016/j.eja.2011.02.007

    [21]

    DHIMA K, LITHOURGIDIS A S, VASILAKOGLOU I, et al. Competition indices of common vetch and cereal intercrops in two seeding ratio [J]. <italic>Field Crops Research</italic>, 2007, 100(2): 249−256.

    [22]

    XUE Y F, XIA H Y, CHRISTIE P, et al. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review [J]. <italic>Annals of Botany</italic>, 2016, 117(3): 363−377. DOI: 10.1093/aob/mcv182

    [23] 吕越, 吴普特, 陈小莉, 等. 玉米/大豆间作系统的作物资源竞争 [J]. 应用生态学报, 2014, 25(1):139−146.

    LÜ Y, WU P T, CHEN X L, et al. Resource competition in maize/soybean intercropping system [J]. <italic>Chinese Journal of Applied Ecology</italic>, 2014, 25(1): 139−146.(in Chinese)

    [24] 陈伟, 薛立. 根系间的相互作用: 竞争与互利 [J]. 生态学报, 2004, 24(6):1243−1251. DOI: 10.3321/j.issn:1000-0933.2004.06.023

    CHEN W, XUE L. Root interactions: competition and facilitation [J]. <italic>Acta Ecologica Sinica</italic>, 2004, 24(6): 1243−1251.(in Chinese) DOI: 10.3321/j.issn:1000-0933.2004.06.023

    [25]

    LI L, SUN J H, ZHANG F, et al. Wheat/maize or wheat/soybean strip intercropping - I. Yield advantage and interspecific interactions on nutrients [J]. <italic>Field Crops Research</italic>, 2001, 71(2): 123−137. DOI: 10.1016/S0378-4290(01)00156-3

    [26]

    LI L, SUN J H, ZHANG F, et al. Wheat/maize or wheat/soybean strip intercropping Ⅱ. Recovery or compensation of maize and soybean after wheat harvesting [J]. <italic>Field Crops Research</italic>, 2001, 71(3): 173−181. DOI: 10.1016/S0378-4290(01)00157-5

    [27]

    YANG W T, WANG X W, WANG J W, et al. Crop-and soil nitrogen in legume-Gramineae intercropping system: Research progress [J]. <italic>Chinese Journal of Ecology</italic>, 2013, 32(9): 2480−2484.

    [28]

    TIAN X L, WANG C B, BAO X G, et al. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping [J]. <italic>Plant and Soil</italic>, 2019, 436(1/2): 173−192.

    [29] 林文雄, 陈婷, 周明明. 农业生态学的新视野 [J]. 中国生态农业学报, 2012, 20(3):253−264. DOI: 10.3724/SP.J.1011.2012.00253

    LIN W X, CHEN T, ZHOU M M. New dimensions in agroecology [J]. <italic>Chinese Journal of Eco-Agriculture</italic>, 2012, 20(3): 253−264.(in Chinese) DOI: 10.3724/SP.J.1011.2012.00253

    [30]

    EISENHAUER N, LANOUE A, STRECKER T, et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass [J]. <italic>Scientific Reports</italic>, 2017, 7: 44641. DOI: 10.1038/srep44641

    [31]

    HUANG C D, LIU Q Q, GOU F, et al. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition [J]. <italic>Field Crops Research</italic>, 2017, 201: 41−51. DOI: 10.1016/j.fcr.2016.10.021

    [32]

    WANG Y F, QIN Y Z, CHAI Q, et al. Interspecies interactions in relation to root distribution across the rooting profile in wheat-maize intercropping under different plant densities [J]. <italic>Frontiers in Plant Science</italic>, 2018, 9: 483. DOI: 10.3389/fpls.2018.00483

    [33]

    LI Q S, WU L K, CHEN J, et al. Biochemical and microbial properties of rhizospheres under maize/ peanut intercropping [J]. <italic>Journal of Integrative Agriculture</italic>, 2016, 15(1): 101−110. DOI: 10.1016/S2095-3119(15)61089-9

    [34] 杨小琴, 王洋, 齐晓宁, 等. 玉米间作体系的光合生理生态特征 [J]. 土壤与作物, 2019, 8(1):70−77. DOI: 10.11689/j.issn.2095-2961.2019.01.008

    YANG X Q, WANG Y, QI X N, et al. Photosynthetic physio-ecological characteristics of maize intercropping system [J]. <italic>Soil and Crop</italic>, 2019, 8(1): 70−77.(in Chinese) DOI: 10.11689/j.issn.2095-2961.2019.01.008

  • 期刊类型引用(1)

    1. 陆东,王燕,周化鹏,陆璐,寇建新. 奇台县基于宽膜种植的不同玉米品种比较研究. 粮油与饲料科技. 2024(11): 25-27 . 百度学术

    其他类型引用(0)

表(6)
计量
  • 文章访问数:  1087
  • HTML全文浏览量:  281
  • PDF下载量:  52
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-08-15
  • 修回日期:  2020-01-28
  • 刊出日期:  2020-08-09

目录

/

返回文章
返回