• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

小粒咖啡果皮多酚提取工艺优化及抗氧化活性

王彦兵, 匡钰, 李国明, 刘小琼, 苏琳琳, 王晓媛, 李守岭

王彦兵,匡钰,李国明,等. 小粒咖啡果皮多酚提取工艺优化及抗氧化活性 [J]. 福建农业学报,2020,35(6):682−690. DOI: 10.19303/j.issn.1008-0384.2020.06.015
引用本文: 王彦兵,匡钰,李国明,等. 小粒咖啡果皮多酚提取工艺优化及抗氧化活性 [J]. 福建农业学报,2020,35(6):682−690. DOI: 10.19303/j.issn.1008-0384.2020.06.015
WANG Y B, KUANG Y, LI G M, et al. Extraction and Antioxidant Activity of Polyphenols from Coffee Bean Peels [J]. Fujian Journal of Agricultural Sciences,2020,35(6):682−690. DOI: 10.19303/j.issn.1008-0384.2020.06.015
Citation: WANG Y B, KUANG Y, LI G M, et al. Extraction and Antioxidant Activity of Polyphenols from Coffee Bean Peels [J]. Fujian Journal of Agricultural Sciences,2020,35(6):682−690. DOI: 10.19303/j.issn.1008-0384.2020.06.015

小粒咖啡果皮多酚提取工艺优化及抗氧化活性

基金项目: 农业农村部物种品种资源保护(热带作物)项目(15181301354052710);云南省重大科技专项(2018ZG014);云南省科技计划项目(2016DC026);云南省现代农业橡产业技术体系建设专项(2019KJTX008-04);云南省专家基层科研工作站张洪波工作站项目(2020年)
详细信息
    作者简介:

    王彦兵(1989−),男,助理研究员,研究方向:食品安全检测(E-mail:wongyb@126.com

    通讯作者:

    王晓媛(1990−),女,助理研究员,研究方向:中药质量综合评价研究(E-mail:wongxiaoyuan@163.com

    李守岭(1977−),男,副研究员,研究方向:热带作物栽培及育种研究(E-mail:lishouling@yeah.net

  • 中图分类号: TQ 460.9;S 38

Extraction and Antioxidant Activity of Polyphenols from Coffee Bean Peels

  • 摘要:
      目的  优化咖啡果皮多酚提取工艺条件,为其功能性开发和综合利用提供技术参考。
      方法  采用单因素及响应面试验方法对超声辅助提取咖啡果皮多酚工艺进行优化,比较分析咖啡果皮多酚体外抗氧化活性。
      结果  在超声功率200 W条件下,咖啡果皮多酚的最佳提取工艺条件为料液比m(g) v(mL)=1 54,乙醇体积分数56%,提取时间42 min,提取温度69 ℃,多酚提取率为34.68 mg·g−1。表明咖啡果皮多酚具有较好的还原性,对1,1-二苯基-2-三硝基苯肼(DPPH)自由基、羟自由基和超氧阴离子自由基有一定的清除能力,IC50值分别为2.10、314.97、322.02 μg·mL−1,其清除能力分别是L-抗坏血酸的0.99倍、0.52倍、0.12倍。
      结论  响应面优化工艺提取的咖啡果皮多酚具有一定抗氧化活性,提取工艺可行性高。该研究可为咖啡加工废弃物的再利用提供参考。
    Abstract:
      Objective  Extracting polyphenols from peels of coffee beans (Coffea arabica L.) was optimized, and antioxidant activity of the extract determined.
      Method  Single factor and response surface experiments were conducted to optimize the ultrasound-assisted extraction process. Antioxidant capacity of the polyphenols obtained was determined by an in vitro method.
      Result  The optimized process applied a solid-to-liquid ratio of 1 54 (g mL) and the ethanol concentration of 56% to extract at 69oC for 42 min. The polyphenols content in the extract reached 34.68 mg·g−1. The IC50 of the extract was 2.10 μg·mL−1 on 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals, 314.97 μg·mL−1 on hydroxyl free radicals, and 322.02 μg·mL−1 on superoxide anion free radicals. The scavenging effect of the extracted polyphenols was 0.99 times of that of L-ascorbic acid on DPPH free radicals, 0.52 times on hydroxyl free radicals, and 0.12 times on superoxide anion free radicals.
      Conclusion  The optimized polyphenol extraction process produced extract with significant antioxidant activity and could be applied to utilize the byproduct for the coffee industry.
  • 图  1   料液比与咖啡果皮多酚提取率关系

    Figure  1.   Relation between solid-to-liquid ratio and extraction rate of polyphenol extraction from coffee bean peels

    图  2   乙醇体积分数与咖啡果皮多酚提取率关系

    Figure  2.   Relation between ethanol concentration and extraction rate of polyphenol extraction from coffee bean peels

    图  3   提取时间与咖啡果皮多酚提取率的关系

    Figure  3.   Relation between processing time and extraction rate of polyphenol extraction from coffee bean peels

    图  4   提取温度与咖啡果皮多酚提取率的关系

    Figure  4.   Relation between processing temperatures and extraction rate of polyphenol extraction from coffee bean peels

    图  5   提取因素对提取率的响应面分析

    Figure  5.   Response surface analysis on processing conditions vs. extraction rate

    图  6   DPPH自由基的清除效果

    Figure  6.   Scavenging effect on DPPH free radicals by polyphenols extracted from coffee bean peels

    图  7   羟自由基的清除效果

    Figure  7.   Scavenging effect on hydroxyl free radicals by polyphenol extracted from coffee bean peels

    图  8   超氧阴离子自由基的清除效果

    Figure  8.   Scavenging effect on superoxide anion free radicals by polyphenol extracted from coffee bean peels

    图  9   总还原力测定

    Figure  9.   Determination of reducing power

    表  1   响应面试验依据因素及水平

    Table  1   Factors and levels of response surface experiment

    因素 Factor水平 Level
    −101
    A:料液比 Solid-liquid ratio/(gmL) 140 150 160
    B:乙醇体积分数 Ethanol concentration/% 50 60 70
    C:提取时间 Ultrasonic time/ min 30 40 50
    D:提取温度 Ultrasonic temperature/℃ 60 70 80
    下载: 导出CSV

    表  2   响应面方案及结果

    Table  2   Results of response surface experiment

    试验号 No.因素 Factor提取率
    Extraction volume /(mg·g−1
    ABCD
    1 1 −1 0 0 32.94
    2 0 0 1 −1 29.34
    3 0 1 0 −1 30.38
    4 1 0 0 −1 32.25
    5 1 0 0 1 31.83
    6 0 −1 0 1 30.62
    7 −1 0 0 −1 30.38
    8 0 0 0 0 34.48
    9 0 0 0 0 35.03
    10 1 0 −1 0 29.31
    11 0 0 1 1 28.85
    12 0 0 0 0 34.62
    13 0 1 0 1 29.95
    14 1 0 1 0 31.76
    15 −1 −1 0 0 30.21
    16 0 0 −1 −1 27.69
    17 −1 0 −1 0 28.15
    18 0 0 0 0 33.56
    19 0 0 0 0 34.10
    20 −1 0 0 1 30.62
    21 −1 0 1 0 30.03
    22 0 −1 0 −1 32.25
    23 0 −1 1 0 32.76
    24 0 1 1 0 30.03
    25 −1 1 0 0 31.03
    26 0 1 −1 0 27.85
    27 1 1 0 0 29.63
    28 0 0 −1 1 27.42
    29 0 −1 −1 0 29.65
    下载: 导出CSV

    表  3   方差分析结果

    Table  3   Analysis on regression model

    方差来源 Source of variance平方和 Sum of squares自由度 df均方 Mean squareFF valuePP value显著性 Significance
    模型 Model 121.27 14 8.66 15.47 <0.0001 **
    A 4.44 1 4.44 7.93 0.0137 *
    B 7.62 1 7.62 13.60 0.0024 **
    C 13.44 1 13.44 24.00 0.0002 **
    D 0.75 1 0.75 1.34 0.2665
    AB 4.26 1 4.26 7.61 0.0154 *
    AC 0.08 1 0.08 0.15 0.7090
    AD 0.11 1 0.11 0.19 0.6660
    BC 0.22 1 0.22 0.39 0.5443
    BD 0.36 1 0.36 0.64 0.4361
    CD 0.01 1 0.01 0.02 0.8852
    A2 12.12 1 12.12 21.64 0.0004 **
    B2 14.05 1 14.05 25.09 0.0002 **
    C2 69.76 1 69.76 124.57 <0.0001 **
    D2 31.02 1 31.02 55.40 <0.0001 **
    残差 Residual 7.84 14 0.56
    失拟度 Lack of fit 6.60 10 0.66 2.13 0.2424
    绝对误差 Pure error 1.24 4 0.31
    总离差 Cor total 129.11 28
    注:*,差异显著(P<0.05);**,差异极显著(P<0.01)。
    Note: *, significant difference(P<0.05); **, extremely significant difference(P<0.01).
    下载: 导出CSV
  • [1]

    BEHROUZIAN F, AMINI A M, ALGHOONEH A, et al. Characterization of dietary fiber from coffee silverskin: an optimization study using response surface methodology [J]. <italic>Bioactive Carbohydrates and Dietary Fibre</italic>, 2016, 8(2): 58−64. DOI: 10.1016/j.bcdf.2016.11.004

    [2]

    DUANGJAI A, SUPHROM N, WUNGRATH J, et al. Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (<italic>Coffea arabica</italic> L.) pulp aqueous extracts [J]. <italic>Integrative Medicine Research</italic>, 2016, 5(4): 324−331. DOI: 10.1016/j.imr.2016.09.001

    [3] 匡钰, 肖兵, 张洪波, 等. 云南咖啡初加工废弃物利用及排放情况调查 [J]. 中国热带农业, 2018(5):31−36. DOI: 10.3969/j.issn.1673-0658.2018.05.009

    KUANG Y, XIAO B, ZHANG H B, et al. Investigation on utilization and discharge of coffee waste in Yunnan Province [J]. <italic>China Tropical Agriculture</italic>, 2018(5): 31−36.(in Chinese) DOI: 10.3969/j.issn.1673-0658.2018.05.009

    [4] 代正明, 杜刚, 毛昭庆, 等. 云南小粒咖啡品牌建设现状与发展对策 [J]. 中国热带农业, 2018(5):11−13, 18. DOI: 10.3969/j.issn.1673-0658.2018.05.003

    DAI Z M, DU G, MAO Z Q, et al. Yunnan Arabica coffee brand construction status and development countermeasures [J]. <italic>China Tropical Agriculture</italic>, 2018(5): 11−13, 18.(in Chinese) DOI: 10.3969/j.issn.1673-0658.2018.05.003

    [5]

    JANISSEN B, HUYNH T. Chemical composition and value-adding applications of coffee industry by-products: a review [J]. <italic>Resources, Conservation and Recycling</italic>, 2018, 128: 110−117. DOI: 10.1016/j.resconrec.2017.10.001

    [6]

    TOMÁS-BARBERÁN F A, SELMA M V, ESPÍN J C. Interactions of gut microbiota with dietary polyphenols and consequences to human health [J]. <italic>Current Opinion in Clinical Nutrition and Metabolic Care</italic>, 2016, 19(6): 471−476. DOI: 10.1097/MCO.0000000000000314

    [7] 张力平, 孙长霞, 李俊清, 等. 植物多酚的研究现状及发展前景 [J]. 林业科学, 2005, 41(6):160−165.

    ZHANG L P, SUN C X, LI J Q, et al. The present conditions and development trend of plant polyphenols research [J]. <italic>Scientia Silvae Sinicae</italic>, 2005, 41(6): 160−165.(in Chinese)

    [8]

    WARD L, PASINETTI G M. Recommendations for development of botanical polyphenols as “natural drugs” for promotion of resilience against stress-induced depression and cognitive impairment [J]. <italic>NeuroMolecular Medicine</italic>, 2016, 18(3): 487−495. DOI: 10.1007/s12017-016-8418-6

    [9]

    MURTHY P S, MANJUNATHA M R, SULOCHANNAMA G, et al. Extraction, characterization and bioactivity of coffee anthocyanins [J]. <italic>European Journal of Biological Sciences</italic>, 2012, 4(1): 13−19.

    [10]

    RAMIREZ-MARTINEZ J R. Phenolic compounds in coffee pulp: quantitative determination by HPLC [J]. <italic>Journal of the Science of Food and Agriculture</italic>, 1988, 43(2): 135−144. DOI: 10.1002/jsfa.2740430204

    [11]

    MURTHY P S, MADHAVA NAIDU M. Sustainable management of coffee industry by-products and value addition: a review [J]. <italic>Resources, Conservation and Recycling</italic>, 2012, 66: 45−58. DOI: 10.1016/j.resconrec.2012.06.005

    [12]

    ARELLANO-GONZÁLEZ M A, RAMÍREZ-CORONEL M A, TORRES-MANCERA M T, et al. Antioxidant activity of fermented and nonfermented coffee (<italic>Coffea arabica</italic>) pulp extracts [J]. <italic>Food Technology and Biotechnology</italic>, 2011, 49(3): 374.

    [13] 陈小伟, 范昊安, 张婷, 等. 咖啡果皮酵素发酵过程中代谢产物与抗氧化功能评价 [J]. 食品研究与开发, 2019, 40(9):18−25, 50. DOI: 10.3969/j.issn.1005-6521.2019.09.004

    CHEN X W, FAN H A, ZHANG T, et al. Study on the evaluations of metabolites and antioxidant activity during the fermentation process of coffee peel jiaosu [J]. <italic>Food Research and Development</italic>, 2019, 40(9): 18−25, 50.(in Chinese) DOI: 10.3969/j.issn.1005-6521.2019.09.004

    [14] 张云鹤, 付晓萍, 梁文娟, 等. 云南小粒种咖啡果皮粗提物花青素成分及抗氧化活性研究 [J]. 食品科技, 2016, 41(5):219−223.

    ZHANG Y H, FU X P, LIANG W J, et al. Antioxidant activity and compsition of anthocyanins of crude extracts from Yunnan Arabica coffee husk [J]. <italic>Food Science and Technology</italic>, 2016, 41(5): 219−223.(in Chinese)

    [15] 付晓萍, 张云鹤, 谷大海, 等. 云南小粒种咖啡果皮粗提取物对人脐静脉内皮细胞抗氧化损伤的研究 [J]. 食品科技, 2016, 41(12):183−188.

    FU X P, ZHANG Y H, GU D H, et al. Effect on anti-oxidative injuries of human umbilical vein endothelial cell of crude extracts from Yunnan Arabica coffee husk [J]. <italic>Food Science and Technology</italic>, 2016, 41(12): 183−188.(in Chinese)

    [16] 曹小燕, 杨海涛. 响应面法优化超声辅助提取荠菜多酚工艺及其抗氧活性研究 [J]. 食品工业科技, 2019, 40(2):223−228, 232.

    CAO X Y, YANG H T. Optimization of ultrasonic assisted extraction technology of polyphenol by response surface methodology from <italic>Capsella bursa</italic>-pastoris and its antioxidant activity [J]. <italic>Science and Technology of Food Industry</italic>, 2019, 40(2): 223−228, 232.(in Chinese)

    [17] 王彦兵, 黄家卫, 李国明, 等. 响应面优化鼓槌石斛花总黄酮提取工艺及其体外抗氧化活性 [J]. 福建农业学报, 2019, 34(6):730−738.

    WANG Y B, HUANG J W, LI G M, et al. Response surface optimization of flavonoid extraction and <italic>in vitro</italic> antioxidant activity of extract from <italic>Dendrobium chrysotoxum</italic> lindl. flowers [J]. <italic>Fujian Journal of Agricultural Sciences</italic>, 2019, 34(6): 730−738.(in Chinese)

    [18] 杨喆, 万山, 张乔会, 等. 响应面法优化山杏核壳总黄酮提取工艺及其抗氧化性的研究 [J]. 食品工业科技, 2015, 36(6):279−284.

    YANG Z, WAN S, ZHANG Q H, et al. Study on optimization of extraction of total flavonoids from shell of wild apricot by response surface methodology and its antioxidant activity [J]. <italic>Science and Technology of Food Industry</italic>, 2015, 36(6): 279−284.(in Chinese)

    [19] 王彦兵, 王晓媛, 肖兵, 等. 小粒咖啡果皮总黄酮提取工艺优化及其体外抗氧化活性分析 [J]. 南方农业学报, 2020, 51(2):385−393. DOI: 10.3969/j.issn.2095-1191.2020.02.019

    WANG Y B, WANG X Y, XIAO B, et al. Optimization of extracting total flavonoids from Coffea arabica peel and its antioxidant activity <italic>in vitro</italic> [J]. <italic>Journal of Southern Agriculture</italic>, 2020, 51(2): 385−393.(in Chinese) DOI: 10.3969/j.issn.2095-1191.2020.02.019

    [20]

    TAO Y, SUN D W. Enhancement of food processes by ultrasound: a review [J]. <italic>Critical Reviews in Food Science and Nutrition</italic>, 2015, 55(4): 570−594. DOI: 10.1080/10408398.2012.667849

    [21] 钱敏, 李春阳, 刘玉皎, 等. 响应面法优化蚕豆多酚超声辅助提取工艺 [J]. 食品工业科技, 2018, 39(9):194−200.

    QIAN M, LI C Y, LIU Y J, et al. Optimization of ultrasound-assisted extraction technology of polyphenols from broad bean by response surface methodology [J]. <italic>Science and Technology of Food Industry</italic>, 2018, 39(9): 194−200.(in Chinese)

    [22] 赵晋彤, 贾莹莹, 李苏苏, 等. 绵马贯众总多酚超声提取工艺的优化及其抗氧化活性 [J]. 中成药, 2018, 40(3):729−732. DOI: 10.3969/j.issn.1001-1528.2018.03.047

    ZHAO J T, JIA Y Y, LI S S, et al. Optimization of ultrasonic extraction process and its antioxidant activity for the total polyphenols of <italic>Cytomium fortune</italic> [J]. <italic>Chinese Traditional Patent Medicine</italic>, 2018, 40(3): 729−732.(in Chinese) DOI: 10.3969/j.issn.1001-1528.2018.03.047

    [23] 段笑影, 曹冬冬, 崔强, 等. 狗尾草多酚的提取工艺及抗氧化活性研究 [J]. 中国酿造, 2019, 38(7):168−173. DOI: 10.11882/j.issn.0254-5071.2019.07.033

    DUAN X Y, CAO D D, CUI Q, et al. Extraction process and antioxidant activity of polyphenols from <italic>Setaria viridis</italic> [J]. <italic>China Brewing</italic>, 2019, 38(7): 168−173.(in Chinese) DOI: 10.11882/j.issn.0254-5071.2019.07.033

    [24]

    CHALALAI J, SARAWUT C, PUNBUSAYAKUL N. Antioxidant and antimicrobial activities of various solvents extracts of Arabica coffee pulp [J]. <italic>Journal on Processing and Energy in Agriculture</italic>, 2015, 19(5): 224−227.

    [25] 赵光远, 许艳华, 陈美丽, 等. 石榴渣多酚提取及抗氧化活性研究 [J]. 食品工业科技, 2017, 38(5):228−231, 237.

    ZHAO G Y, XU Y H, CHEN M L, et al. Extraction and antioxidant activity of polyphenols from pomegranate slag [J]. <italic>Science and Technology of Food Industry</italic>, 2017, 38(5): 228−231, 237.(in Chinese)

    [26] 徐彩红, 金渭荃, 姜忠丽, 等. 玉米皮多酚提取工艺优化及抗氧化性研究 [J]. 核农学报, 2019, 33(9):1774−1782. DOI: 10.11869/j.issn.100-8551.2019.09.1774

    XU C H, JIN W Q, JIANG Z L, et al. Optimization of extraction technique of polyphenols from maize bran and its antioxidant activity [J]. <italic>Journal of Nuclear Agricultural Sciences</italic>, 2019, 33(9): 1774−1782.(in Chinese) DOI: 10.11869/j.issn.100-8551.2019.09.1774

    [27] 令博, 王捷, 吴洪斌, 等. 葡萄皮渣多酚超声波辅助提取工艺响应面法优化及抗氧化活性研究 [J]. 食品科学, 2011, 32(18):24−29.

    LING B, WANG J, WU H B, et al. Polyphenols from grape skin: optimization of ultrasonic-assisted extraction process by response surface methodology and antioxidant activity evaluation [J]. <italic>Food Science</italic>, 2011, 32(18): 24−29.(in Chinese)

  • 期刊类型引用(4)

    1. 廖秀,周美,杨艳,李齐激. 响应面法优化铁皮石斛多酚提取工艺及其体外抗氧化活性研究. 现代中药研究与实践. 2024(03): 74-78 . 百度学术
    2. 杨圆慧,徐柠檬,资璐熙,李为兰,张永鸿,华燕,郭磊. 云南小粒咖啡果皮不同溶剂提取物主成分分析及其抗氧化活性研究. 食品科技. 2023(02): 230-238+245 . 百度学术
    3. 朱珂,董文江,程金焕,胡荣锁,何红艳,陈小爱,龙宇宙,黄家雄. 咖啡果皮与不同来源可溶性膳食纤维结构及性质比较研究. 热带作物学报. 2023(02): 394-404 . 百度学术
    4. 张佳欣,韩泽邦,吕玉兰,何飞飞. 咖啡果皮综合利用浅析. 热带农业科技. 2023(02): 56-60+82 . 百度学术

    其他类型引用(3)

图(9)  /  表(3)
计量
  • 文章访问数:  1851
  • HTML全文浏览量:  573
  • PDF下载量:  51
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-10-27
  • 修回日期:  2019-12-25
  • 网络出版日期:  2020-07-08
  • 刊出日期:  2020-08-09

目录

    /

    返回文章
    返回