• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

彩色马铃薯光合光响应曲线模拟及其特征参数分析

Light Response Model and Photosynthetic Parameters of Colored Potatoes

  • 摘要:
      目的  阐明彩色马铃薯光合光响应特性及其与普通品种(黄、白肉)的差异。
      方法  以2个普通和4个彩色马铃薯为材料,评估直角双曲线模型(RH)、非直角双曲线模型(NRH)、直角双曲线修正模型(MRH)和指数模型(EM)对马铃薯光合响应曲线的拟合效果,并对彩色与普通品种的最大净光合速率(Pn-max)、光饱和点(LSP)、光补偿点(LCP)、暗呼吸速率(Rd)和表观量子效率(AQY)等光响应参数进行比较分析。
      结果  1)4种模型在弱光阶段的模拟效果均较好,但RH、NRH和EM模型无法拟合光抑制过程,只有MRH模型能对整个光响应过程进行准确拟合,决定系数(R2)均大于0.99,均方根误差和平均绝对误差也最小。2)彩色品种Pn-max均低于普通品种,相比费乌瑞它和闽薯1号分别低6.7%~34.2%和14.8%~40.0%;除红美外,其他3个彩色品种LSP都未超过1 000 μmol·m−2·s−1,远小于普通品种;彩色和普通马铃薯对弱光的利用能力没有明显区别。3)在4个彩色品种中,红美的Pn-maxLSP均最高,但对弱光的利用能力最低,与之相反,闽彩薯3号的弱光利用能力最强。4)气孔导度(Gs)和蒸腾速率(Tr)的光响应过程与净光合速率(Pn)相似,随着光强增大,呈先快速上升后平稳或下降趋势,而胞间CO2浓度(Ci)随光强增大总体呈快速下降后平缓的趋势。
      结论  MRH模型对马铃薯光响应曲线的拟合效果最佳;彩色品种(系)的最大净光合速率低于普通品种,光饱和点低,总体表现为光合潜力低,光抑制现象明显,这一结果对通过育种手段来提高彩色马铃薯光合生产力具有一定指导意义,也可为其引种和栽培管理提供参考。

     

    Abstract:
      Objective   Light responses of potato plants bearing colored tubers were studied.
      Method   Gas exchanges of potato leaves on 2 common varieties of yellow and white tubers and 4 of different colored tubers were determined. Collected data were fitted to the simulation models of rectangular hyperbola (RH), non-rectangular hyperbola (NRH), modified rectangular hyperbolic (MRH), and exponential function (EM). Photosynthetic parameters including maximum photosynthetic rate (Pn-max), light saturation point (LSP), light compensation point (LCP), dark respiration rate (Rd), and apparent quantum yield (AQY) on the plants were analyzed.
      Result  (1) All 4 models could adequately simulate the responses under low light, and RH, NRH, and EM failed to predict on photoinhibition. On the other hand, MRH accurately covered the entire light spectrum with a correlation coefficient (R2) greater than 0.99, as well as the smallest root mean square error and mean absolute error, among all models. (2) Pn-max of the colored potatoes were lower than those of the common varieties. They were 6.7%–34.2% lower than that of Favorita and 14.8%–40.0% than that of Minshu 1. Aside from Hongmei, the other 3 colored potatoes showed LSP below 1 000 μmol·m−2·s−1, which was much less than those of the common varieties. No significant difference on the utilization under low light by the two categories of potatoes was observed. (3) Among the 4 colored varieties, Hongmei had the highest Pn-max and LSP, but lowest on the ability to use low light, while Mincaishu 3 exhibited the highest low light utilization. (4) The light response processes of stomatal conductance (Gs) and transpiration rate (Tr) were similar to that of net photosynthetic rate (Pn). They rose rapidly as the light intensity increased and then leveled off or declined. In contrast, the intercellular CO2 concentration (Ci) showed a sharp decline before stabilization.
      Conclusion  The Pn-max and LSP of potato varieties that bore colored tubers were significantly lower than those of the common varieties indicating a lower photosynthetic potential and apparent photoinhibition. The information might lead to improved breeding and cultivation practices of colored potatoes.

     

/

返回文章
返回