Effects of Interactions between Roots of Intercropped Maize and Soybean on Plant Photosynthesis, Crop Yield, and Soil Physiochemical Properties
-
摘要:目的 了解间作系统中地下部分的根间互作对光合特性、产量及土壤理化性质的影响,探究间作增产的机制,为玉米大豆间作栽培技术提供理论依据和技术支撑。方法 采用大田栽培的方式对玉米/大豆的根系分别采取塑料膜隔离(全隔,Q)处理、尼龙网隔离(网隔,W)处理和无隔离(无隔,N)处理,开展3种根系隔离处理对间作作物的SPAD值、光合特性、产量及土壤理化性质的影响研究。结果 与单作相比,不隔根处理下间作玉米、大豆功能叶的叶绿素含量分别提高了10.36%、9.65%。玉米和大豆的净光合速度、气孔导度、胞间CO2浓度和蒸腾速率基本上表现为:无隔>网隔>全隔>单作。根间完全或部分互作均提高了间作作物的产量。无隔根处理下土地当量比(LER)为1.39、尼龙网隔根的为1.13。根间完全或部分互作也增加了玉米和大豆根际土壤全氮、全磷、全钾、速效氮、速效磷和速效钾的含量。无隔根处理和尼龙网隔根处理下玉米和大豆根际土壤过氧化氢酶、酸性磷酸单酯酶、脲酶、蔗糖酶和过氧化物酶的活性均有所提高。部分土壤酶活性与土壤养分含量之间存在着显著相关。结论 根间互作能够活化土壤营养库,增强土壤酶活性,增加间作作物的叶绿素含量,提升系统的光合作用能力,从而促进间作系统产出。Abstract:Objective Effects of underground interactions between roots of maize and soybean plants under intercropping on plant photosynthesis, crop yield, and soil physiochemical properties were investigated to decipher the associated mechanisms.Method A maize/soybean intercropping experimentation was conducted in the field. Underground between the maize and soybean plants, a plastic sheet to completely separate and deprive interactions between the root systems (Q), a nylon mesh to partially block the underground interactions (W) or with no artificial barrier to allow total root-interactions (N) was implemented. SPAD, photosynthetic characteristics, and yield of the plants grown under the varied degrees of partition on the root systems were measured.Result Compared to monoculture, the intercropped maize and soybean under N showed increased chlorophyll contents in the functional leaves by 10.36% and 9.65%, respectively. The net photosynthesis, stomatal conductance, intercellular CO2 concentration, and transpiration rate were also significantly enhanced by the intercropping under varied roots partitions as they ranked N>W>Q>monoculture. The crop yields of the plants were improved by the intercropping under W or N. The land equivalent ratio (LER) of the N treatment was 1.39, while that of W 1.13. Under Q or W, the contents of total and available N, P, and K in rhizosphere soil were higher than those in the monoculture lot. The activities of catalase, acid phosphatase, urease, sucrase, and peroxidase increased in the rhizosphere soil under W or N. A significant correlation was observed between part of the enzyme activity and nutrient content in the soil.Conclusion The interactions between the root systems of the intercropped maize and soybean plants might activate the nutrient pool and enzyme activity in the rhizosphere soil. The leaf chlorophyll of the intercropped plants could also be increased by the underground interactions benefitting the plant photosynthesis with improved crop yield.
-
Keywords:
- Maize /
- soybean /
- photosynthesis /
- yield /
- soil /
- physicochemical properties /
- roots interactions
-
0. 引言
【研究意义】近年来,随着社会经济发展与人们生活水平提升,心血管疾病发病率呈逐年上升趋势,已严重威胁人类健康。动脉粥样硬化是心血管系统疾病中最常见的疾病之一,也是心血管疾病共同的病理基础[1]。积极预防和控制动脉粥样硬化是预防心血管疾病、降低疾病发病率的重要手段。【前人研究进展】病理学研究结果表明,VSMC增殖是早期动脉粥样硬化形成的始动环节之一,成为心血管疾病防治研究的重要靶细胞[2]。同时,有研究发现,活性氧自由基(reactive oxygen species, ROS)与VSMC增殖相关。血管紧张素II、高糖等通过提高VSMC胞内ROS水平促进细胞增殖[3-4]。抗氧化剂调控ROS介导信号通路抑制VSMC增殖[5-6]。因此,以ROS清除剂筛选VSMC增殖抑制剂成为研究方向之一。【本研究切入点】海带是我国东南沿海常见的经济型养殖海藻,具有药食同源性,在我国多部古代医学典籍中均有记载其药学功效。多糖是海带主要的药效学活性成分,动物学试验研究结果表明,海带多糖可有效降低试验性大鼠血管脂质沉积,降低动脉粥样硬化风险[7]。本课题组前期研究发现海带多糖具有清除超氧阴离子(O2·−)活性,且抑制碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)诱导VSMC增殖[8-9]。已有研究发现H2O2通过调控O2·−介导信号通路促进VSMC增殖[10-11]。但是海带多糖对VSMC增殖抑制活性与其抗氧化活性相关性研究未见相关报道。【拟解决的关键问题】因此,本课题以氧化剂H2O2为诱导剂建立VSMC体外增殖模型,研究海带多糖对氧化剂诱导VSMC增殖及胞内过氧化物生成影响,为阐明海带多糖对VSMC的作用机制奠定基础。
1. 材料与方法
1.1 原料
海带多糖由本实验室制备,多糖含量为87.2%[8];DMEM培养基购自Gibco公司;胎牛血清(FBS)购自杭州四季青;丙二醛(MDA)检测试剂盒购自碧云天公司;二甲基亚砜(DMSO)、H2O2购自Sigma公司;动物细胞裂解液购自上海生工;MTT购自Biosharp公司;其他试剂均为国产分析纯。
1.2 主要仪器设备
BCM-1000超净工作台,苏州净化设备有限公司;HERAcell 150i CO2恒温培养箱,美国Thermo公司;TGL-16M 冷冻离心机,湖南湘仪;P10-Y超纯水系统,科尔顿有限公司;M3 酶标分析仪,美国MD公司;TS-100F 倒置显微镜,日本尼康公司;UV-2600紫外-可见光分光光度计,日本岛津公司。
1.3 试验方法
1.3.1 细胞培养
VSMC由本实验室制备。细胞培养及传代:VSMC采用含10% FBS的DMEM培养液,于37℃、5% CO2培养箱内静置培养。待细胞生长汇合后,吸弃培养瓶内培养液,PBS缓冲液清洗细胞瓶,加入适量0.25%胰酶,37℃放置3 min,倒置显微镜下观察,待细胞呈悬浮,即加入完全培养液终止酶解反应。吸管反复轻轻吹打培养液以分散细胞团,取0.5 mL细胞悬液接种于新的培养瓶内,补加新鲜的完全培养液至3 mL。置于37℃、5% CO2培养箱静置培养。
1.3.2 H2O2诱导VSMC增殖模型构建
取浓度为1×105 个·mL−1 VSMC悬液接种96孔板,37℃、5% CO2培养箱静置培养24 h,待细胞完全贴壁后,用无血清的DMEM培养液37℃孵育8 h。加入H2O2溶液于96孔板至终浓度为设定浓度,对照组用无血清DMEM代替H2O2。孵育至12 h、24 h、36 h后加入MTT溶液(100 μg ·孔−1),孵育4 h后,弃上清液,加入DMSO(200 µL·孔−1)。振荡混匀,于578 nm下检测吸光值。每个试验组设定6孔平行孔。细胞增殖率计算公式:
增值率/%=AiAo×100 (1) 式中:Ai为H2O2模型组吸光值;Ao为对照组吸光值。
1.3.3 MTT法测定VSMC增殖
取对数生长期细胞悬液(1×105 个·mL−1)接种于96孔培养板中,200 μL·孔−1,待细胞贴壁后更换无血清培养液,37℃、5% CO2培养箱内静置过夜培养。吸弃培养液,向96孔板内分别加入0.1、0.5、1.0 mg·mL−1海带多糖样品,每个浓度样品设置6个平行孔,H2O2模型组用DMEM代替多糖样品。培养至设定时间后,向各孔分别加入H2O2,继续孵育至设定时间,加入MTT溶液(100 μg·孔−1),孵育4 h后,弃上清液,加入DMSO(200 µL·孔−1)。振荡混匀,于578 nm下检测吸光值。细胞增殖抑制率计算公式:
抑制率/%=Ao−AiAo×100 (2) 式中:A0 为H2O2模型组的吸光值;Ai为海带多糖试验组吸光值。
1.3.4 VSMC形态观察
取对数生长期细胞悬液(1×105 cells·mL−1)接种于6孔培养板中,1 mL·孔−1,待细胞贴壁后更换无血清培养液,37℃、5% CO2培养箱内静置过夜培养。吸弃培养液,向6孔板内分别加入0.5、1.0 mg·mL−1海带多糖样品,每个浓度样品设置3个平行孔,H2O2模型组用DMEM代替多糖样品。培养至设定时间后,向各孔分别加入H2O2,继续孵育至设定时间后于倒置显微镜下观察细胞形态。
1.3.5 MDA含量测定
按1.3.4方法处理细胞,待细胞经无血清培养液过夜饥饿处理后吸弃培养液,向6孔板内分别加入0.1、0.5、1.0 mg·mL−1海带多糖样品,每个浓度样品设置3个平行孔,H2O2模型组用DMEM代替多糖样品。培养至设定时间后,向各孔分别加入H2O2,继续孵育至设定时间后收集细胞,按碧云天MDA检测试剂盒说明操作,于532 nm下测定吸光值,并计算MDA含量。
1.3.6 数据分析
数据均采用SPSS 17.0软件进行统计学处理,均数±标准差表示,并对结果进行LSD-t检验。
2. 结果与分析
2.1 H2O2 诱导VSMC体外增殖模型的建立
本课题以H2O2为诱导剂建立VSMC体外增殖模型,结果如表1所示。在相同的H2O2浓度下,24 h试验组VSMC增殖率均高于12 h和48 h试验组。而在H2O2相同作用时间下,VSMC增殖率均随着H2O2浓度的增加呈先上升而后下降的趋势。在H2O2浓度为10~100 µmol·L−1时,VSMC增殖率随着H2O2浓度增高而增大。当时间为24 h,H2O2浓度为50 µmol·L−1时,VSMC增殖率达到142.54%,再增加H2O2浓度至100 µmol·L−1,其VSMC增殖率略有增加,但与50 µmol·L−1试验组相比,差异并不显著。而当H2O2浓度增加至150 µmol·L−1,其VSMC增殖率则有所下降。可见当H2O2浓度增大至150 µmol·L−1对VSMC具有细胞毒性,这与文献[12]报道一致。因此,本课题选择H2O2诱导VSMC增殖处理浓度为50 µmol·L−1,作用时间为24 h。
表 1 MTT测定VSMC增殖率Table 1. Viability of VSMCs determined by MTT assayH2O2浓度
H2O2Concentration/
(µmol·L−1)12 h 24 h 36 h 10 102.11±5.22 112.23±3.15 108.74±4.42 20 112.08±2.15 127.65±1.55 117.24±5.68 50 129.56±2.43 a 142.54±2.91 a 133.25±3.48 a 100 132.87±3.56 a 144.29±3.68 a 138.62±2.84 a 150 107.23±5.27 114.87±4.35 96.48±2.57 注:a: 与相同作用时间下H2O2浓度为10 µmol·L−1试验组比,P<0.05。
Note: a: during the same pretreatment time, indicated significant differences compared with the group of 10 µmol·L−1 H2O2, P<0.05. 2.2 海带多糖对VSMC增殖作用的影响
采用MTT法测定海带多糖对VSMC增殖影响,结果见图1所示。从图1可以看出,海带多糖预处理时间相同时,随着海带多糖预处理质量浓度的增加VSMC增殖抑制率增大,呈量效相关性。在相同海带多糖预处理时间下,与海带多糖预处理质量浓度为0.1 mg·mL−1试验组相比,海带多糖预处理质量浓度为0.5 mg·mL−1和1.0 mg·mL−1试验组VSMC增殖抑制率均显著增高(P<0.05)。当海带多糖预处理时间为12 h时,质量浓度为1.0 mg·mL−1海带多糖预处理试验组VSMC增殖抑制率为53.11%,是相同多糖预处理时间下0.1 mg·mL−1海带多糖预处理试验组的5.72倍。由此可见,海带多糖可抑制氧化剂H2O2诱导VSMC增殖。
图 1 海带多糖对H2O2诱导VSMC增殖抑制率注:a: 相同海带多糖预处理时间下,与0.1 mg·mL−1海带多糖试验组相比,P<0.05;b:相同海带多糖预处理浓度下,与预处理时间12 h海带多糖试验组相比,P<0.05。Figure 1. Effects of L. japonica polysaccharides on H2O2-induced VSMC proliferationNote: a: during the same pretreatment time of polysaccharide, indicated significant differences compared with the group of 0.1 mg·mL−1 polysaccharide, P<0.05; b: under the same concentration of polysaccharide pretreatment, indicated significant differences compared with the group of 12 h treatment with polysaccharide, P<0.05.同时,由图1可以看出,当海带多糖预处理质量浓度高于0.5 mg·mL−1时,与多糖预处理时间12 h试验组相比,多糖预处理时间为24 h和48 h试验组VSMC增殖抑制率均显著增高(P<0.05),增殖抑制率均达到60%。其中,当海带多糖预处理质量浓度为1.0 mg·mL−1时,多糖预处理时间为24 h试验组VSMC增殖抑制率最大,达73.56%。因此,后续试验选择海带多糖预处理时间为24 h。
2.3 海带多糖对VSMC形态影响
由图2可知,H2O2模型组细胞透光性强,细胞边缘模糊,细胞呈伸展的梭状,且细胞密度大。海带多糖预处理试验组VSMC形态则出现显著变化,0.5 mg·mL−1海带多糖预处理试验组VSMC数目减少,且细胞胞质回缩,部分细胞呈圆形。1 mg·mL−1海带多糖预处理试验组VSMC密度显著降低,细胞边缘清晰,细胞胞质回缩,镜下可见大部分细胞呈圆形。由此可见,海带多糖可引起VSMC生长形态改变,随着海带多糖预处理浓度的增高,VSMC数量显著减少,且呈圆形的VSMC数量增多,表明海带多糖预处理后VSMC形态发生显著变化,使其增殖速度减慢。
图 2 VSMC形态(×100)注:A1:对照组,A2 :H2O2模型组,A3 :0.5 mg·mL−1 海带多糖+H2O2处理组,A4:1 mg ·mL−1海带多糖+H2O2处理组。Figure 2. Morphology of VSMC (×100)Note: A1: Control group; A2: H2O2 model group; A3: the group treatment with 0.5 mg·mL−1 polysaccharide and H2O2; A4: the group treatment with 1 mg·mL−1 polysaccharide and H2O2.2.4 海带多糖对H2O2诱导VSMC胞 内MDA生成的影响
研究发现,H2O2诱导VSMC胞内大量累积ROS可促进VSMC胞内一系列脂质过氧化产物的生成[13-14],进而诱导细胞释放生长因子促使VSMC增殖[15-16],因此脂质过氧化物是评估VSMC胞内ROS水平的重要参数。本课题以MDA表征胞内脂质过氧化物生成量,结果如表2所示。
表 2 VSMC胞内MDA生成量Table 2. MDA concentration in VSMC样品Samples 丙二醛MDA/(µmol·L−1) 对照组 Control 1.94±0.05 H2O2模型组
H2O2 Model Group3.21±0.09 a 0.1 mg·mL−1海带多糖+H2O2
0.1 mg·mL−1Laminaria japonica polysaccharide+H2O22.91±0.04 0.5 mg·mL−1海带多糖+H2O2
0.5mg·mL−1Laminaria japonica polysaccharide+H2O21.75±0.08 b 1.0 mg·mL−1 海带多糖+H2O2
1.0 mg·mL−1Laminaria japonica polysaccharide+H2O21.27±0.05 b 注:a:与对照组相比,P<0.01;b:与H2O2模型组相比,P< 0.01。
Note: a: indicated significant differences compared with the control group, P<0.01; b: indicated significant differences compared with the H2O2 model group, P<0.01.从表2中可以看出,与对照组相比,H2O2模型组MDA含量显著提高,达到3.21 µmol·L−1,表明H2O2诱导VSMC胞内生成大量脂质过氧化物,ROS水平显著提高,这是其诱导VSMC增殖的重要因素。而采用不同质量浓度海带多糖进行预处理后,其VSMC胞内MDA生成量均有下降。当海带多糖质量浓度达到1.0 mg·mL−1时,VSMC胞内MDA生成量最低,仅为1.27 µmol·L−1,与H2O2模型组相比下降了60.44%。由此可见,VSMC胞内脂质过氧化物生成量随着海带多糖预处理浓度的增加而降低,呈量效相关性,表明海带多糖预处理后有效抑制VSMC胞内因H2O2诱导引起的ROS升高,提示海带多糖对H2O2诱导VSMC增殖的抑制机制与调控VSMC胞内ROS水平相关。因此,后续试验可进一步从分子水平探讨海带多糖对VSMC胞内ROS的调控机制,阐明海带多糖对H2O2诱导VSMC增殖抑制机制。
3. 讨论与结论
病理学研究发现,血管平滑肌细胞异常增殖是动脉粥样硬化形成的始动环节,也是动脉粥样硬化心血管疾病共同的病理基础。研究发现抗动脉粥样硬化活性物质西洛他唑通过阻断VSMC胞内ERK1/2信号通路,抑制VSMC增殖[17]。Bin等对动脉粥样硬化形成分子机制研究发现,动脉粥样硬化重要诱因氧化低密度脂蛋白(ox-LDL)诱导VSMC胞内转录因子KLF5表达,进而上调胞内微小RNA-29a表达水平,最终促进VSMC增殖而形成动脉粥样硬化斑块[18]。细胞学研究发现,ROS水平增高激活VSMC胞内MAPK信号通路并促进VSMC增殖[19]。Yang等研究结果表明高糖处理引起细胞ROS水平增高是其诱导VSMC增殖的主要因素[4]。因此,胞内ROS水平增高是VSMC增殖的促进因子。
天然产物活性研究结果表明,海藻多糖具有显著抗氧化活性,可有效降低胞内ROS水平。马军等研究发现海藻多糖具有自由基清除和抗脂质过氧化活性[20]。杨运高等用大鼠红细胞免疫功能缺陷模型研究海藻多糖对红细胞免疫功能及自由基损伤的影响。试验结果显示,海藻多糖增强超氧化物歧化酶、谷胱甘肽等还原性物质活性,并降低MDA含量,表明海藻多糖可降低大鼠体内ROS水平,是抗氧化剂的重要备选资源[21]。海带多糖是一种抗氧化活性显著的海藻多糖,其对DPPH、羟自由基、超氧阴离子等自由基的清除活性显著[22]。张晴岚等研究发现海带多糖可改善大鼠血脂水平,提高一氧化氮浓度和一氧化氮合酶活性,抑制动脉粥样硬化斑块发生和发展[23]。本课题以H2O2为诱导剂建立VSMC增殖模型,评估海带多糖作用下动脉粥样硬化始动因子VSMC生长与脂质过氧化水平的相关性。结果表明,海带多糖可抑制H2O2诱导VSMC增殖且呈量效相关性。而海带多糖浓度与VSMC胞内MDA含量呈负相关性,可见海带多糖缓解了VSMC胞内因H2O2诱导引起的ROS水平增高,表明海带多糖抑制VSMC增殖与其抗氧化活性相关。因此,后续研究需进一步从ROS调控细胞增殖的MAPK通路上进一步探讨海带多糖对VSMC增殖的抑制机制,为深度开发海带药用价值奠定基础。
-
图 1 不同隔根处理对玉米和大豆SPAD值的影响
注:N、W、Q、D、M、S分别表示间作不隔根、间作尼龙网隔根、间作塑料膜隔根、单作、玉米和大豆。不同的小写字母表示P<0.05水平差异显著。
Figure 1. Effects of restricted root-interactions on SPAD of intercropped maize and soybean plants
Note: N, W, Q, D, M, and S denote intercropping without root barrier, intercropping with nylon mesh root barrier, intercropping with plastic sheet root barrier, monoculture, maize, and soybean, respectively. Data with different lowercase letters indicate significant different at P<0.05.
表 1 不同隔根处理对间作玉米和大豆的光合作用的影响
Table 1 Effects of restricted root-interactions on photosynthesis of intercropped maize and soybean plants
处理
Treatments净光合速率
Pn/(μmol·m−2·s−1)气孔导度
Gs/(mmol·m−2·s−1)胞间CO2浓度
Ci/(μmol·mol−1)蒸腾速率
Tr/(mmol·m−2·s−1)N-M 48.83 a 0.73 a 346.00 a 5.08 a W-M 49.02 a 0.60 ab 352.56 a 4.46 a Q-M 38.87 b 0.45 b 246.33 b 4.33 a D-M 39.79 b 0.42 b 217.33 b 4.33 a N-S 27.40 a 0.66 a 163.00 a 7.18 a W-S 27.21 a 0.59 ab 83.31 ab 7.31 a Q-S 22.88 b 0.48 bc 89.60 ab 7.06 a D-S 22.74 b 0.40 c 58.18 b 7.00 a 注:同列不同小写字母表示P<0.05水平差异显著。表2~4。
Note: Data with different lowercase letters on same column indicate significant different at P<0.05. Table 2-4.表 2 不同隔根处理对间作玉米和大豆百粒重、籽粒产量和土地当量比的影响
Table 2 Effects of restricted root-interactions on hundred-grain weight, grain yield, and LER of intercropped maize and soybean
处理
Treatments百粒重
Hundred-grain weight/g籽粒产量
Grain yield/(kg·hm−2)土地当量比
(LER)M S M S N 32.98±1.32 a 16.67±0.45 ab 3231.29±168.71 a 887.62±60.97 ab 1.39±0.16 W 32.33±1.88 a 17.34±0.73 a 2324.26±123.76 ab 932.91±92.48 a 1.13±0.11 Q 28.73±1.34 b 16.46±0.90 b 2021.92±114.62 b 717.04±81.27 bc 0.98±0.03 D 27.06±0.39 b 15.79±0.69 b 2006.80±325.26 b 637.88±22.90 c — 表 3 不同隔根处理对大豆和玉米根际土壤N、P、K含量的影响
Table 3 Effects of restricted root-interactions on NPK in rhizosphere soil of maize/soybean intercropping system
处理
Treatments全氮
Total N/(g·hg−1)速效氮
Available N/(mg·kg−1)全磷
Total P/(g·hg−1)速效磷
Available P/(mg·kg−1)全钾
Total K/(g·hg−1)速效钾
Available K(mg·kg−1)N-M 2.92 b 132.42 a 0.52 a 66.70 a 0.31 a 14.00 ab W-M 3.12 a 130.08 a 0.45 b 35.30 b 0.30 ab 14.47 a Q-M 2.91 b 119.00 b 0.34 c 27.10 c 0.29 bc 13.40 ab D-M 2.79 b 126.00 ab 0.36 c 34.00 b 0.27 c 13.00 b N-S 3.06 a 140.00 a 0.52 a 69.40 a 0.28 a 24.02 a W-S 2.68 b 138.83 ab 0.48 b 64.50 b 0.30 a 21.87 b Q-S 2.74 ab 126.00 b 0.47 b 62.00 b 0.30 a 21.80 b D-S 2.98 ab 131.80 bc 0.41 c 62.76 b 0.30 a 18.00 c 表 4 不同隔根处理对大豆和玉米根际土壤酶活性的影响
Table 4 Effects of restricted root-interactions on enzyme activity in rhizosphere soil of maize/soybean intercropping system
处理
Treatments过氧化氢酶
Catalase/(mg·g−1)酸性磷酸单酯酶
Acid phosphatase/(mg·g−1)脲酶
Urease/(mg·g−1)蔗糖酶
Sucrase/(mg·g−1)过氧化物酶
Peroxidase/(mg·g−1)N-M 6.28 a 6.33 a 9.71 ab 3.20 a 1.30 a W-M 6.28 a 5.97 b 10.42 a 2.64 b 1.30 a Q-M 4.69 c 5.22 c 8.05 bc 3.00 b 1.26 a D-M 4.99 b 5.23 c 7.54 c 2.06 c 1.19 a N-S 5.67 a 5.60 a 8.22 ab 2.17 b 1.54 a W-S 5.65 a 5.10 ab 8.93 a 2.54 a 1.47 ab Q-S 5.10 b 4.84 b 8.04 ab 1.97 c 1.34 b D-S 5.30 b 4.73 b 7.04 b 2.13 b 1.44 ab 表 5 大豆及玉米的根际土壤养分含量与酶活性的相关性
Table 5 Correlation between nutrient content and enzyme activity in rhizosphere soil of maize/soybean intercropping system
速效氮
Available N速效磷
Available P速效钾
Available K过氧化氢酶
Catalase脲酶
Urease酸性磷酸单酯酶
Acid phosphatase过氧化物酶
Peroxidase蔗糖酶
Sucrase速效氮 Available N S 1.000 0.763 0.554 −0.550 0.609 0.804 0.953 0.729 M 1.000 0.756 0.990 0.992 0.859 0.984 0.980 0.666 速效磷 Available P S 1.000 0.961 −0.959 0.048 0.998* 0.923 0.115 M 1.000 0.655 0.665 0.313 0.861 0.611 0.992 速效钾 Available K S 1.000 −1.000** 0.323 0.941 0.780 −0.165 M 1.000 1.000** 0.923 0.948 0.998* 0.553 过氧化氢酶 Catalase S 1.000 0.328 −0.939 −0.777 0.170 M 1.000 0.918 0.953 0.998* 0.564 脲酶 Urease S 1.000 0.018 0.340 0.987 M 1.000 0.753 0.943 0.190 酸性磷酸单酯酶 Acid phosphatase S 1.000 0.946 0.179 M 1.000 0.929 0.789 过氧化物酶 Peroxidase S 1.000 0.488 M 1.000 0.505 蔗糖酶 Sucrase S 1.000 M 1.000 注:* 表示显著相关( P <0.05);** 表示极显著相关(P<0.01)。
Note: * means significant correlation (P<0.05); ** means very significant correlation (P<0.01). -
[1] 刘天学, 王振河, 董朋飞, 等. 玉米间作系统的生理生态效应研究进展 [J]. 玉米科学, 2007, 15(5):114−116. DOI: 10.3969/j.issn.1005-0906.2007.05.029 LIU T X, WANG Z H, DONG P F, et al. Research Progress of Physiological and Ecological Effects in Maize Intercropping System [J]. Journal of Maize Sciences, 2007, 15(5): 114−116.(in Chinese) DOI: 10.3969/j.issn.1005-0906.2007.05.029
[2] 曹敏建.耕作学 [M].第2版. 北京: 中国农业出版社, 2013: 71–74. [3] 王自奎, 吴普特, 赵西宁, 等. 作物间套作群体光能截获和利用机理研究进展 [J]. 自然资源学报, 2015, 30(6):1057−1066. DOI: 10.11849/zrzyxb.2015.06.016 WANG Z K, WU P T, ZHAO X N, et al. A Review of Light Interception and Utilization by Intercropped Canopies [J]. Journal of Natural Resources, 2015, 30(6): 1057−1066.(in Chinese) DOI: 10.11849/zrzyxb.2015.06.016
[4] LITHOURGIDIS A S, DORDAS C A, DAMALAS C A, et al. Annual intercrops: an alternative pathway for sustainable agriculture [J]. Aust J Crop Sci, 2011, 5: 396−410.
[5] LI Q S, WU L K, CHEN J, et al. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping [J]. Journal of Integrative Agriculture, 2016, 15(1): 101−110. DOI: 10.1016/S2095-3119(15)61089-9
[6] 左元梅, 刘永秀, 张福锁. 与玉米混作改善花生铁营养对其根瘤形态结构及豆血红蛋白含量的影响 [J]. 植物生理与分子生物学学报, 2003, 29(1):33−38. ZUO Y M, LIU Y X, ZHANG F S. Effects of improvement of iron nutrition by mixed cropping with maize on nodule microstructure and leghaemoglobin content of peanut [J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(1): 33−38.(in Chinese)
[7] XIONG H C, KAKEI Y, KOBAYASHI T, et al. Molecular evidence for phytosiderophore—induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil [J]. Plant, Cell & Environment, 2013, 36(10): 1888−1902.
[8] 周海燕, 柴强, 黄高宝, 等. 绿洲灌区典型间作模式的产量和光能利用效率 [J]. 甘肃农业大学学报, 2012, 47(6):68−73. DOI: 10.3969/j.issn.1003-4315.2012.06.012 ZHOU H Y, CHAI Q, HUANG G B, et al. The yield and light use efficiency of different intercropping systems in the Hexi Oasis irrigation area [J]. J Gansu Agric Univ, 2012, 47(6): 68−73.(in Chinese) DOI: 10.3969/j.issn.1003-4315.2012.06.012
[9] 罗晓棉, 林文雄. 福建山区玉米与花生不同间作比例对产量的影响及其生态机制 [J]. 福建农业学报, 2006, 31(4):338−344. DOI: 10.3969/j.issn.1008-0384.2006.04.010 LUO X M, LIN W X. Effect of Varied Maize—peanut Intercropping on Crop yield and ecology at Mountainous Regions in Fujian [J]. Journal of Agricultural Sciences, 2006, 31(4): 338−344.(in Chinese) DOI: 10.3969/j.issn.1008-0384.2006.04.010
[10] 林伟伟, 罗晓棉, 林文雄. 玉米与花生间作的根际互惠方式及其机制 [J]. 福建农林大学学报(自然科学版), 2019, 48(4):409−417. LIN W W, LUO X M, LIN W X. Rhizosphcric mutual facilitation mode and its mechanism under maize/peanut intercropping system [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(4): 409−417.(in Chinese)
[11] AWAL M A, KOSHI H, IKEDA T. Radiation interception and use by maize /peanut intercrop canopy [J]. Agricultural & Forest Meteorology, 2006, 139(1/2): 74−83.
[12] MADDONNI G A, OTEGUI M E, CIRILO A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation [J]. Field Crops Research, 2001, 71(3): 183−193. DOI: 10.1016/S0378-4290(01)00158-7
[13] 焦念元, 宁堂原, 赵春, 等. 玉米花生间作复合体系光合特性的研究 [J]. 作物学报, 2006, 32(6):917−923. DOI: 10.3321/j.issn:0496-3490.2006.06.022 JIAO N Y, NING T Y, ZHAO C, et al. Characters of photosynthesis in intercropping system of maize and peanut [J]. Acta Agronomica Sinica, 2006, 32(6): 917−923.(in Chinese) DOI: 10.3321/j.issn:0496-3490.2006.06.022
[14] 李洪岐, 蔺海明, 梁书荣, 等. 密度和种植方式对夏玉米酶活性和产量的影响 [J]. 生态学报, 2012, 32(20):6584−6590. DOI: 10.5846/stxb201203050294 LI H Q, LIN H M, LIANG S R, et al. Effects of planting densities and modes on activities of some enzymes and yield in summer maize [J]. Acta Ecologica Sinica, 2012, 32(20): 6584−6590.(in Chinese) DOI: 10.5846/stxb201203050294
[15] 黄高宝. 集约栽培条件下间套作的光能利用理论发展及其应用 [J]. 作物学报, 1999, 25(1):16−24. DOI: 10.3321/j.issn:0496-3490.1999.01.003 HUANF G B. Development of lightutilization theory for wheat/corn intercropping in condition of intensive cultivation [J]. Acta Agron Sin, 1999, 25(1): 16−24.(in Chinese) DOI: 10.3321/j.issn:0496-3490.1999.01.003
[16] 殷文, 赵财, 于爱忠, 等. 秸秆还田后少耕对小麦/玉米间作系统中种间竞争和互补的影响 [J]. 作物学报, 2015, 41(4):633−641. DOI: 10.3724/SP.J.1006.2015.00633 YIN W, ZHAO C, YU A Z, et al. Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat-maize intercropping system [J]. Acta Agron Sin, 2015, 41(4): 633−641.(in Chinese) DOI: 10.3724/SP.J.1006.2015.00633
[17] FIRBANK L G, WATKINSO A R. On the effects of competition: from monocultures to mixtures [M]// GRACE J B, TILMAN D. Perspectives on Plant Competition. San Diego: Elsevier, 1990: 165–192.
[18] 张宏芝, 陈兴武, 雷钧杰, 等. 杏麦间作模式下小麦光合速率、叶绿素荧光及产量对追氮量和播种密度的响应 [J]. 麦类作物学报, 2015, 35(3):387−393. DOI: 10.7606/j.issn.1009-1041.2015.03.015 ZHANG H Z, CHEN X W, LEI J J, et al. Effect of planting density and topdressing nitrogen on photosynthetic rate and chlorophyll fluorescence and yield of wheat under apricot-wheat intercropping [J]. J Triticeae Crops, 2015, 35(3): 387−393.(in Chinese) DOI: 10.7606/j.issn.1009-1041.2015.03.015
[19] 杨文亭, 王晓维, 王建武. 豆科-禾本科间作系统中作物和土壤氮素相关研究进展 [J]. 生态学杂志, 2013, 32(9):2480−2484. YANG W T, WANG X W, WANG J W. Crop-and soil nitrogen in legume-Gramineae intercropping system:Research progress [J]. Chinese Journal of Ecology, 2013, 32(9): 2480−2484.(in Chinese)
[20] 张向前, 黄国勤, 卞新民, 等. 间作对玉米品质、产量及土壤微生物数量和酶活性的影响 [J]. 生态学报, 2012, 32(22):7082−7090. DOI: 10.5846/stxb201110151526 ZHANG X Q, HUANG G Q, BIAN X M, et al. Effects of intercropping on quality and yield of maize grain, microorganism quantity, and enzyme activities in soils [J]. Acta Ecologica Sinica, 2012, 32(22): 7082−7090.(in Chinese) DOI: 10.5846/stxb201110151526
[21] 李玉英, 庞发虎, 孙建好, 等. 根系分隔和施氮对蚕豆/玉米间作体系根系分布和形态的影响 [J]. 中国农业大学学报, 2010, 15(4):13−19. LI Y Y, PANG F H, SUN J H, et al. Effects of root barrier between intercropped maize and faba bean and nitrogen(N) application on the spatial distributions and morphology of crops'roots [J]. Journal of China Agricultural University, 2010, 15(4): 13−19.(in Chinese)
[22] 姜莉, 陈源泉, 隋鹏, 等. 不同间作形式对玉米根际土壤酶活性的影响 [J]. 中国农学通报, 2010, 26(9):326−330. JIANG L, CHEN Y Q, SUI P, et al. The Rhizosphere Soil Enzyme Activities of Different Corn Intercropping System [J]. Chinese Agricultural Science Bulletin, 2010, 26(9): 326−330.(in Chinese)
[23] 徐华勤, 肖润林, 向佐湘, 等. 稻草覆盖、间作三叶草茶园土壤酶活性与养分的关系 [J]. 生态学杂志, 2009, 28(8):1537−1543. XU H Q, XIAO R L, XIANG Z X, et al. Soil enzyme activities and their relations with soil fertility in a tea plantation under straw mulching and white clover intercropping [J]. Chinese Journal of Ecology, 2009, 28(8): 1537−1543.(in Chinese)
[24] 柴强, 黄高宝, 黄鹏, 等. 间甲酚及施磷对小麦间作蚕豆土壤微生物和酶活性的影响 [J]. 生态学报, 2006, 26(2):383−390. DOI: 10.3321/j.issn:1000-0933.2006.02.010 CHAI Q, HUANG G B, HUANG P, et al. Effect of 3-methy-phenol and phosphorous on soil microbes and enzyme activity in wheat faba-bean intercropping systems [J]. Acta Ecologica Sinica, 2006, 26(2): 383−390.(in Chinese) DOI: 10.3321/j.issn:1000-0933.2006.02.010
[25] 张恩和. 供磷水平对间套作物根系酸性磷酸酶活性的影响 [J]. 西北植物学报, 2001, 21(1):53−58. DOI: 10.3321/j.issn:1000-4025.2001.01.009 ZHANG E H. Effects of P application on root acid phosphates of crops in intercropping [J]. Acta Bot Boreal-Occident Sin, 2001, 21(1): 53−58.(in Chinese) DOI: 10.3321/j.issn:1000-4025.2001.01.009
[26] 刘均霞, 陆引罡, 远红伟, 等. 玉米、大豆间作对根际土壤微生物数量和酶活性的影响 [J]. 贵州农业科学, 2007, 35(2):60−61, 64. DOI: 10.3969/j.issn.1001-3601.2007.02.022 LIU J X, LU Y G, YUAN H W, et al. Effects of Intercrop Maize and Soybean on Rhizosphere Soil Microbes and Enzyme Activity [J]. Guizhou Agricultural Sciences, 2007, 35(2): 60−61, 64.(in Chinese) DOI: 10.3969/j.issn.1001-3601.2007.02.022
[27] 王晓丽. 地膜覆盖、带幅及根系相互作用对间作优势及氮磷养分高效利用的影响[D]. 北京: 中国农业大学, 2002. [28] 杜进勇, 柴强, 王一帆, 等. 地上地下互作强度对小麦间作玉米光合特性的影响 [J]. 作物学报, 2019, 45(9):1398−1406. DU J Y, CHAI Q, WANG Y F, et al. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping [J]. Acta Agronomica Sinica, 2019, 45(9): 1398−1406.(in Chinese)
[29] 叶优良. 间作对氮素和水分利用的影响[D]. 北京: 中国农业大学, 2003. [30] 史瑞和. 植物营养学原理[M]. 北京: 中国农业出版社. 1990. [31] 任媛媛, 王志梁, 王小林, 等. 黄土塬区玉米大豆不同间作方式对产量和经济收益的影响及其机制 [J]. 生态学报, 2015, 35(12):4168−4177. REN Y Y, WANG Z L, WANG X L, et al. The effect and mechanism of intercropping pattern on yield and economic benefit on the Loess Plateau [J]. Acta Ecologica Sinica, 2015, 35(12): 4168−4177.(in Chinese)
[32] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. [33] 王一帆, 秦亚洲, 冯福学, 等. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响 [J]. 作物学报, 2017, 43(5):754−762. DOI: 10.3724/SP.J.1006.2017.00754 WANG Y F, QIN Y Z, FENG F X, et al. Synergistic effect of root interaction and density on yield and yield components of wheat-maize intercropping system [J]. Acta Agron Sin, 2017, 43(5): 754−762.(in Chinese) DOI: 10.3724/SP.J.1006.2017.00754
[34] 焦念元, 李亚辉, 刘领, 等. 隔根对玉米Ⅱ花生间作光合特性与间作优势的影响 [J]. 植物生理学报, 2016, 52(6):886−894. JIAO N Y, LI Y H, LIU L, et al. Effects of root barrier on photosynthetic characteristics and intercropping advantage of maizeⅡpeanut intercropping [J]. Plant Physiology Communications, 2016, 52(6): 886−894.(in Chinese)
[35] 焦念元, 宁堂原, 杨萌珂, 等. 玉米花生间作对玉米光合特性及产量形成的影响 [J]. 生态学报, 2013, 33(14):4324−4330. DOI: 10.5846/stxb201207311087 JIAO N Y, NING T Y, YANG M K, et al. Effects of maize—peanut intercropping on photosynthetic characters and yield forming of intercropped maize [J]. Acta Ecologica Sinica, 2013, 33(14): 4324−4330.(in Chinese) DOI: 10.5846/stxb201207311087
[36] 邵瑞鑫, 李蕾蕾, 郑会芳, 等. 外源一氧化氮对干旱胁迫下玉米幼苗光合作用的影响 [J]. 中国农业科学, 2016, 49(2):251−259. DOI: 10.3864/j.issn.0578-1752.2016.02.006 SHAO R X, LI L L, ZHENG H F, et al. Effects of Exogenous Nitric Oxide on Photosynthesis of Maize Seedlings Under Drought Stress [J]. Scientia Agricultura Sinica, 2016, 49(2): 251−259.(in Chinese) DOI: 10.3864/j.issn.0578-1752.2016.02.006
[37] 廖良宁, 汤文艳, 潘婷, 等. 施氮及根系分隔处理对间作尾巨桉和降香黄檀幼苗光合生理特性的影响 [J]. 西南林业大学学报, 2019, 39(2):60−69. LIAO L N, TANG W Y, PAN T, et al. Effects of Nitrogen Fertilizer Application and Root Partition on the Photosynthetic Physiological Characteristics of Eucalyptus urophylla×Eucalyptus grandis and Dallergia odorifera Seedling [J]. Journal of Southwest Forestry College, 2019, 39(2): 60−69.(in Chinese)
[38] SCHLOTER M, DILLY O, MUNCH J C. Indicators for evaluating soil quality [J]. Agriculture, Ecosystems & Environment, 2003, 98(1/2/3): 255−262. DOI: 10.1016/S0167-8809(03)00085-9
[39] 徐强, 程智慧, 孟焕文, 等. 玉米/线辣椒套作系统中土壤养分与根际土壤微生物、酶活性的关系 [J]. 应用生态学报, 2007, 18(12):2747−2754. XU Q, CHENG Z H, MENG H W, et al. Relationships between soil nutrients and rhizosperic soil microbial communities and enzyme activities in a maizecapsicum intercropping system [J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2747−2754.(in Chinese)
[40] 孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥田土壤酶活性的动态变化特征 [J]. 生态环境, 2008, 17(5):2059−2063. Sun R L, Zhao B Q, Zhu L S, et al. Dynamic changes of soil enzyme activities in long-term fertilization soil [J]. Ecology and Environment, 2008, 17(5): 2059−2063.(in Chinese)
-
期刊类型引用(6)
1. 林登峰,李珊慧,赵洪雷,李学鹏,步营,励建荣,徐永霞. 响应面法优化三文鱼骨排酶解工艺的研究. 中国调味品. 2024(08): 90-97 . 百度学术
2. 李毅翔,陈芋霏,王艳艳. 超声-微波协同辅助优化酸枣果肉多糖提取工艺及抗氧化活性研究. 中国食物与营养. 2023(01): 23-28 . 百度学术
3. 赵彦巧,王月,孟翔宇,李钰琨. 喷雾干燥法制备玫瑰茄花色苷微胶囊条件优化. 福建农业学报. 2021(01): 104-114 . 本站查看
4. 赵有伟,李德海. 超声微波协同制备粗毛纤孔菌多糖及体外降脂作用的研究. 食品工业科技. 2021(20): 191-198 . 百度学术
5. 王娟,康子悦,肖金玲,魏春红,王维浩,曹龙奎. 超声-微波辅助酶法对小米SDF提取和物理性质的影响. 包装工程. 2020(07): 25-32 . 百度学术
6. 曹小燕,杨海涛. 微波-超声波协同辅助优化阳荷多糖提取工艺及抗氧化性分析. 食品研究与开发. 2020(18): 68-74 . 百度学术
其他类型引用(2)