• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

水稻根系三维建模及可视化方法研究进展

吴盼盼, 唐子宗, 杨乐, 彭军, 张欢欢, 施俊林

吴盼盼,唐子宗,杨乐,等. 水稻根系三维建模及可视化方法研究进展 [J]. 福建农业学报,2021,36(8):972−980. DOI: 10.19303/j.issn.1008-0384.2021.08.015
引用本文: 吴盼盼,唐子宗,杨乐,等. 水稻根系三维建模及可视化方法研究进展 [J]. 福建农业学报,2021,36(8):972−980. DOI: 10.19303/j.issn.1008-0384.2021.08.015
WU P P, TANG Z Z, YANG L, et al. Visualization of Rice Root System by 3D Modeling: A Review [J]. Fujian Journal of Agricultural Sciences,2021,36(8):972−980. DOI: 10.19303/j.issn.1008-0384.2021.08.015
Citation: WU P P, TANG Z Z, YANG L, et al. Visualization of Rice Root System by 3D Modeling: A Review [J]. Fujian Journal of Agricultural Sciences,2021,36(8):972−980. DOI: 10.19303/j.issn.1008-0384.2021.08.015

水稻根系三维建模及可视化方法研究进展

基金项目: 国家自然科学基金项目(61862032);江西省自然科学基金项目(20202BABL202034);江西省研究生创新专项资金项目(YC2021-S347)
详细信息
    作者简介:

    吴盼盼(1996−),女,硕士研究生,研究方向:农业信息技术(E-mail:1376068702@qq.com

    通讯作者:

    杨乐(1979−),男,副教授,研究方向:深度学习在农业领域的应用研究(E-mail:jxnzhyangle@163.com

  • 中图分类号: S 511

Visualization of Rice Root System by 3D Modeling: A Review

  • 摘要: 根系是水稻获取养分的主要器官,水稻根系三维建模及可视化有助于进一步了解其根系的形态、结构和功能。随着计算机视觉和非侵入性技术的不断发展,根系形态和功能研究已进入数字化和可视化的阶段。近年来许多研究者分别从制作出土根系手绘图、计算机断层扫描(CT)等非侵入性技术、数学建模以及仿真模拟等方面推进水稻根系三维建模及可视化的研究。根系数据的获取是三维建模的有效前提,根据是否破坏根系原有生长环境,根系数据探测被分为破坏性探测和原位探测两类,本文对比分析了两种探测方式的方法和特点。从人工观察测量、机器视觉、光学仪器或断层扫描的三维数字化等方面对水稻根系的三维建模进行了阐述,总结了水稻根系三维建模及可视化的研究进展,并对当下主流三维重构技术进行分类和对比,总结了不同根系三维重构方法在重建效果、成本、操作水平等方面的优劣势。此外,由于根系生长在复杂多变的土壤环境中,不同时期根系的生长发育受土壤紧实度,水分、养分分布等因素的影响而存在差异,且受限于土壤的不透明和不稳定性,更多水稻根系的三维建模研究主要停留在根系基本指标与非环境因素(如土层深度、时间)的统计拟合及单环境因子对水稻根系生理生态的影响上,而根系与多环境因子动态交互方面的研究较少。在高度非结构化的根系数据处理困难的情况下,探究水稻根系与环境的动态转化过程及根系生长与多环境因子的定量关系模型将成为未来根系三维建模研究的重要方向,为构建更具真实意义的可视化模型提供基础。
    Abstract: As an organ that extracts water and nutrients from the soil, the root system is vital for a rice plant. Establishing a 3D model to visualize the system structure can materially help the studies on the morphology and functional traits of the roots. Recent advancements in the computerized and non-invasive technologies make the information digitization for scientific research increasingly accessible and significant progresses possible. For instance, utilizing hand drawings and computer tomography (CT), mathematical models were built to vividly simulate the configuration of unearthed root system. Since data acquisition that proceeds model building is essential for an accurate and reliable representation, this article compares and analyzes the principles and characteristics of two classes of detection methods for information collection on the root systems. These methods can be either destructive or in-situ in applications depending upon whether or not the original growth environment was interrupted or destroyed. The 3D modeling and visualization of rice root system is explained in this article from the aspects of manual observation and measurement, machinery vision, 3D digitization by optical instruments, and tomography, etc. The mainstream reconstruction technologies are classified, compared, and analyzed with respect to the pros and cons on the resulting effect as well as the cost and ease of operation. Since environmental conditions are ever-changing, the development of a root system is invariably complex and varied. The affecting factors include the firmness, moisture content, and nutrients distribution of the soil a plant grows on. In addition, the non-transparency and instability of soil has so far hindered the related studies and confined to the fundamental and non-environmental elements, such as, depth of layer and time, for statistical analysis. Consequently, few reports dealt with the dynamic interactions among the multi-environmental factors that effect on the root development are available. Evidently, in the foreseeable future, the newly developed modeling and visualization technologies would usher in innovative applications and deep understanding in the field of study.
  • 【研究意义】单宁是一类水溶性多酚类物质,广泛分布于油菜、高粱和豆科植物中[1]。根据其化学结构,分为三大类,即水解单宁、缩合单宁和褐藻多酚[2]。单宁酸(tannic acid, TA)是单宁的次生代谢物,是水解单宁中最典型的物质[3]。TA具有收敛抗腹泻[4- 5]、抗菌[6]、抗病毒[6]、抗寄生虫[2]等作用,因此将TA开发作为饲料添加剂具有重要意义。【前人研究进展】TA可应用于反刍动物和单胃动物。例如,TA可减少泡沫性瘤胃鼓气和控制消化道寄生虫[2]。饲粮中添加低剂量的单宁可以提高单胃动物的健康度和生长性能[7-8]。此外,TA具有改善肠道结构的功能。有文献报道,添加2.5 mg·kg−1 TA可改善小鼠的空肠形态学,促进紧密连接蛋白ZO-1基因的表达[9]。【本研究切入点】不同的化学结构、提取来源和添加浓度均会导致TA应用效果的差异[10]。此外,TA能够与蛋白质、淀粉、矿物质和消化酶结合,通常被认为是一种抗营养因子[11],其在畜禽上的应用存在争议。关于TA对肉鸡的生长性能、屠宰性能和肠道菌群的影响有待深入研究。【拟解决的关键问题】本试验旨在研究饲粮中添加TA对肉鸡的生长性能、屠宰性能和肠道菌群的影响,为TA在家禽生产上的应用提供理论依据。

    TA由中鲨动物保健品(厦门)有限公司提供,由五倍子水解TA提纯至鞣酸含量98%,再将98%的TA添加沸石粉稀释至TA含量50%。

    1日龄白羽肉鸡(公)购于福建圣农集团有限公司。试验采用单因素设计,将384只1日龄健康且体重相近的肉鸡随机分成4个组,每组12个重复,每个重复8只。空白对照组饲喂基础饲粮,试验组在基础饲粮中分别添加100、150、200 mg·kg−1的TA。试验期为42 d。

    采用玉米-豆粕型粉状饲粮,参照NRC(1994)和NY/T 33-2004肉仔鸡营养需求配制,基础饲粮组成及营养水平见表1。试验在福建省农业科学院畜牧兽医研究所动物营养试验基地开展。试验鸡采用笼养模式(95 cm×60 cm×65 cm)。入雏前一天将鸡舍温度升高至32~35 ℃,随后温度每周降低2~3 ℃,直至降至23~25 ℃为止。光照、通风和免疫程序等其他管理措施按照白羽肉鸡生产管理手册执行。

    表  1  基础饲粮组成及营养水平(风干基础)
    Table  1.  Composition and nutrient levels of basal diet used in trial (on air-dry basis) %
    原料
    Ingredients
    含量
    Content
    1~3周
    1–3 weeks
    4~6周
    4–6 weeks
    玉米 Corn 52.00 58.00
    豆粕 Soybean meal 34.70 27.30
    膨化大豆 Extruded soybean 3.00 3.00
    国产鱼粉 Domestic fish meal 2.00 1.50
    豆油 Soybean oil 4.00 6.00
    石粉 Limestone 1.21 1.21
    磷酸氢钙 CaHPO4 1.53 1.43
    DL-蛋氨酸 DL-Met 0.26 0.26
    预混料 Premix1) 1.00 1.00
    氯化钠 NaCl 0.30 0.30
    合计 Total 100.00 100.00
    营养水平 Nutrient levels 2)
    代谢能 ME/(MJ·kg−1 12.46 13.23
    粗蛋白 CP 22.14 19.17
    钙 Ca 1.05 0.98
    有效磷 AP 0.51 0.44
    赖氨酸 Lys 1.16 0.97
    蛋氨酸+半胱氨酸 Met + Cys 1.08 0.99
    注:① 预混料为每千克饲粮提供:VA 9500 IU,VD 3 000 IU,VE 22.5 mg,VK 3.0 mg,VB1 3.0 mg,VB2 7.5 mg,VB6 3.0 mg,VB12 0.22 mg,泛酸钙 15.0 mg,烟酸 30.0 mg,叶酸 1.5 mg,生物素 0.12 mg,胆碱 400 mg,碘 0.40 mg。② 营养水平均为计算值。
    Note: ① The premix provided the following per kg of the diet: VA 9500 IU,VD 3 000 IU,VE 22.5 mg,VK 3.0 mg,VB1 3.0 mg,VB2 7.5 mg,VB6 3.0 mg,VB12 0.22 mg,calcium pantothenate 15.0 mg,nicotinic acid 30.0 mg,folic acid 1.5 mg,biotin 0.12 mg,chloride 400 mg,I 0.40 mg. ② Nutrient levels were calculated.
    下载: 导出CSV 
    | 显示表格

    试验第3和6周,禁食10 h后,以重复为单位称量鸡只重量,统计耗料量,计算肉鸡不同生长阶段的平均日增重(ADG)、平均日采食量(ADFI)、料重比(F/G)。

    试验第42 d,肉鸡禁食12 h后,各组每个重复选取接近平均体重的4只鸡,称重后颈静脉放血致死,按照相关手册进行屠宰测定,计算屠宰率、全净膛率、胸肌率和腿肌率。

    试验第42 d,每个重复选取接近平均体重的4只鸡进行屠宰,将盲肠内容物挤压至无菌离心管中。液氮速冻后运至实验室,置−70 ℃冰箱保存。

    采用E.Z.N.A.® soil DNA Kit(Omega Bio-tek, Norcross, GA, U.S.)提取盲肠内容物中的微生物基因组DNA,1.0%琼脂糖凝胶电泳检测。对扩增细菌16S rRNA 基因的高度可变的V3-V4区进行测序。引物分别为338F(5′-ACTCCTACGGGAGGCAGCAG-3′)和806R(5′-GGACTACHVGGGTWTCTAAT-3′)。反应体系:20 μL mixture containing,4 μL 5 × FastPfu Buffer,2 μL dNTPs(2.5 mmol·L−1),上下游引物各0.8 μL(5 μmol·L−1),0.4 μL FastPfu Polymerase,1 μL模板DNA,双蒸水补足至20 μL。PCR反应程序:95 ℃预变性5 min;95 ℃变性30 s,55 ℃退火30 s,72 ℃ 延伸 45 s,共27个循环;72 ℃延伸10 min。PCR产物经过纯化后,通过Illumina Mi Seq PE 300平台进行高通量测序,测序由上海美吉生物医药科技有限公司完成。

    分别使用FLASH软件和Trimmonmatic软件对每个样品的数据进行拼接,随后用UCHIME软件鉴定并去除嵌合体序列,得到有效的数据用于后续的生物信息学分析。测序片段在97%相似度的,再用QIIME软件进行聚类、划分操作分类单元(operational taxonomic units, OTU),利用Silva分类学数据库得到每个OTU的分类学信息。基于以上结果,再进行其他分析。

    采用SPSS 23.0统计软件对数据进行单因素方差分析(one-way ANOVA),组间采用Duncan's法进行多重比较。结果以“平均数±标准差”表示,P<0.05表示差异显著。

    表2可知,饲粮中添加200 mg·kg−1 TA的末重显著大于其他各组(P<0.05)。1~3周龄,与对照组相比,各试验组的ADG、ADFI和F/G差异均不显著(P>0.05)。4~6周龄,与对照组相比,添加200 mg·kg−1 TA的组别的ADFI显著大于对照组(P<0.05);与对照组相比,添加200 mg·kg−1 TA的组别的F/G显著低于对照组(P<0.05);各组间ADG差异均不显著(P>0.05)。1~6周龄,与对照组相比,添加200 mg·kg−1 TA的ADFI显著高于对照组(P<0.05),各组间的ADG和F/G差异均不显著(P>0.05);随着TA添加量的增加(100~200 mg·kg−1),ADFI呈现上升的趋势,F/G呈现下降的趋势。可见,饲粮中添加200 mg·kg−1 的TA可显著提高肉鸡的生产性能。

    表  2  TA对白羽肉鸡生长性能的影响
    Table  2.  Effect of feeding TA-containing diets on growth of broilers
    项目
    Items
    0(CK)100 mg·kg−1 TA150 mg·kg−1 TA200 mg·kg−1 TAP
    P value
    初重 IBM/g 47.00±0.47 47.78±1.26 48.00±1.15 46.89±0.51 0.125
    末重 FBM/g 2303.41±248.95 c 2327.67±255.48 ab 2343.07±261.72 ab 2476.67±230.78 a 0.031
    1~3周 1–3 weeks
    日采食量 ADFI/g 36.09±2.49 37.00±2.66 36.99±3.47 38.47±2.38 0.149
    日增重 ADG/g 41.91±1.18 41.41±3.72 40.95±2.16 42.75±2.25 0.216
    料重比 F/G 1.16±0.17 1.12±0.12 1.11±0.24 1.11±0.16 0.067
    4~6周 4–6 weeks
    ADFI 73.59±4.96 b 73.84±3.34 b 74.58±5.26 ab 79.51±4.15 a 0.021
    ADG 118.10±6.15 115.65±3.55 115.69±6.13 118.47±4.87 0.061
    F/G 1.60±0.25 a 1.57±0.18 ab 1.55±0.14 ab 1.49±0.22 b 0.046
    1~6周 1–6 weeks
    ADFI 53.72±2.76 b 54.28±2.31 b 54.64±2.52 b 57.85±3.19 a 0.016
    ADG 78.44±1.95 77.62±2.33 76.50±3.83 79.26±2.71 0.379
    F/G 1.46±0.21 1.43±0.14 1.40±0.11 1.37±0.16 0.631
    注:同行数据后的不同小写字母表示差异显著(P<0.05),相同或无字母表示差异不显著(P>0.05)。下表同。
    Note: Within a row, values with different small letters indicate significantly different between dietary treatments (P<0.05), while with the same letter or no letter means no significant difference (P>0.05). The same as below.
    下载: 导出CSV 
    | 显示表格

    表3可知,与对照组相比,各试验组肉鸡的屠宰重、屠宰率、全净膛率和胸肌率差异均不显著(P>0.05);饲粮中添加150 mg·kg−1 TA的腿肌率显著高于其他各组(P<0.05),其他各组间差异不显著(P>0.05)。

    表  3  TA对肉鸡屠宰性能的影响
    Table  3.  Effect of dietary TA supplement on slaughter performance of broilers
    项目
    Items
    0(CK)100 mg·kg−1 TA150 mg·kg−1 TA200 mg·kg−1 TAP
    P value
    屠宰重 Dressing weight/g 2190.67±87.46 2287.33±59.68 2322±85.84 2556.67±80.05 0.761
    屠宰率 Dressing rate/% 94.9±1.66 93.55±0.72 93.47±1.07 94.61±1.08 0.218
    全净膛率 All eviscerated rate/% 81.97±4.66 78.5±1.26 77.16±1.97 80.01±0.77 0.126
    胸肌率 Breast muscle rate/% 27.08±3.45 27.95±3.97 24.98±1.85 28.32±2.34 0.433
    腿肌率 Leg muscle rate/% 12.06±0.48 b 12.36±0.78 b 13.43±1.03 a 12.56±0.98 b 0.037
    下载: 导出CSV 
    | 显示表格

    表4可知,各样品的覆盖度指数均大于0.999,说明该测序结果已经基本覆盖样本的多样性。与对照组相比,各试验组肉鸡的ACE指数、Chao 1指数、Shannon指数、Simpson指数差异均不显著(P>0.05)。表明,在基础饲粮中添加TA对肉鸡的盲肠微生物的Alpha多样性无显著影响。

    表  4  TA对肉鸡肠道微生物Alpha多样性指数的影响
    Table  4.  Effect of dietary TA supplement on α diversity of enteric microbiota in broilers
    项目
    Items
    0(CK)100 mg·kg−1 TA150 mg·kg−1 TA200 mg·kg−1 TAP
    P value
    ACE指数 ACE index 259.88±13.25 251.53±17.97 265.62±14.03 259.42±16.98 0.634
    Chao 1指数 Chao 1 index 261.70±11.70 257.64±18.58 270.01±15.19 257.58±17.08 0.494
    Shannon指数 Shannon index 2.44±0.05 2.61±0.43 2.57±0.19 2.39±0.39 0.332
    Simpson指数 Simpson index 0.26±0.05 0.23±0.05 0.21±0.03 0.25±0.06 0.235
    覆盖度指数 Coverage index 0.999 0.999 0.999 0.999 0.270
    下载: 导出CSV 
    | 显示表格

    在门分类水平上,4个组的肠道菌群均主要由拟杆菌门Bacteroidetes、厚壁菌门Firmicutes、放线菌门Actinobacteria和软壁菌门Tenericutes组成,其中拟杆菌门的相对丰度最高,拟杆菌门和厚壁菌门的相对丰度总和达到90%以上(图1)。

    图  1  肉鸡肠道菌群结构在门分类水平上的组成
    注:A、B、C、D代表分别在基础饲粮中添加0(对照组)、100、150和200 mg·kg-1TA的剂量,下图同。
    Figure  1.  Composition of enteric microbiota in broilers at phylum level
    Note: A, B, C, and D represent groups supplemented with 0 (control), 100, 150, and 200 mg·kg−1 TA in basal diet, respectively. The same as below.

    在科分类水平上,4个组的肠道菌群主要由理研菌科Rikenellaceae、Barnesiellaceae、疣微菌科Ruminococcaceae、毛螺菌科Lachnospiraceae、乳杆菌科Lactobacillaceae、梭菌科Clostridiales_vadinBB60_group和拟杆菌科Bacteroidaceae组成(图2)。

    图  2  肉鸡肠道菌群结构在科分类水平上的组成
    Figure  2.  Composition of enteric microbiota in broilers at family level

    在属分类水平上,4个组的肠道菌群主要由理研菌属AlistipesBarnesiella、疣微菌属Ruminococcaceae_UCG014、瘤胃球菌属Ruminococcus1_torques_group、乳酸菌属Lactobacillus、梭菌属norank_f_Clostridiales_vadinBB60_group、理研菌科中未分类的属unclassified-1-Rikenellaceae和粪杆菌属Faecalibacterium组成(图3)。

    图  3  肉鸡肠道菌群结构在属分类水平上的组成
    Figure  3.  Composition of enteric microbiota in broilers at genus level

    LefSe用于寻找组间具有统计学差异的物种。由图4可知,经LefSe分析,在科分类水平上,饲粮中添加150 mg·kg−1的TA可显著提高Family_XIII的相对丰度。添加200 mg·kg−1 TA的组别在纲、目、科、属的分类水平上都发现了差异显著的肠道菌群,其中,科和属的分类水平的肠道菌群中,乳杆菌科Lactobacillaceae和乳杆菌属Lactobacillus的相对丰度显著升高。

    图  4  LEfSe分析差异物种
    注:圆圈由里到外表示物种分类水平由门到属,差异物种用彩色圆圈和扇形表示,每个圆圈的直径与该物种的相对丰度成比例,黄色圆圈表示差异不显著。
    Figure  4.  LEfSe analysis on different microbes
    Note: Concentric circles represent phylum (inside) to genus (outside). Biomarker taxa are shown with colored circles and shaded areas. Diameter of a circle is proportional to relative abundance of that taxa in a community. Yellow circle indicates no significance.

    生长性能是反映动物营养状态的重要指标。TA对肉鸡生长性能的影响存在争议。有研究报道,基础饲粮中添加5 g·kg−1的水解TA可提高肉鸡的生长性能[8]。基础饲粮中添加5%或10%的葡萄渣(主要含缩合TA和酚类化合物)对1~21日龄肉鸡的生长性能无显著影响[12]。而基础饲粮中添加10 g·kg−1的水解TA则降低肉鸡的增重和料肉比[13]。有研究表明,添加一定剂量的TA可提高肉鸡的生长性能,但是过高剂量的TA反而会抑制生长。这可能是由于适量的TA与肠道细胞壁结合形成保护层,从而阻断细菌与肠道受体结合,改善肠道微生态内环境,提高蛋白酶活性,促进营养物质的吸收[14];或者通过影响肠道菌群的组成进而提高动物的代谢水平[15];还有可能通过改善动物的肠道组织形态,促进肠道对营养物质的吸收[16]。但是饲粮中添加过高剂量的TA则变为抗营养因子,抑制动物生长[4]。在本试验前期阶段(1~3周),基础饲粮中添加TA对生长性能无显著影响;在后期阶段(4~6周),饲粮中添加200 mg·kg−1的TA可显著提高日采食量、降低料肉比;在整个试验阶段,饲粮中添加TA呈现提高肉鸡体重的趋势,添加200 mg·kg−1的TA可显著提高肉鸡的日采食量,且呈现降低料肉比的趋势。由表2可知,基础饲粮中添加200 mg·kg−1的TA可促进肉鸡生长。

    屠宰性能是衡量胴体品质的重要指标,其中屠宰率和全净膛率是反映屠宰性能的两个重要指标。畜禽的日龄、环境、营养组成和饲喂方式等因素均可影响屠宰性能[16]。在本试验中,基础饲粮中添加TA对肉鸡屠宰率、全净膛率和胸肌率无显著影响,添加150 mg·kg−1的TA能显著提高腿肌率。由表3可知,饲粮中添加150 mg·kg−1 的TA可促进养分在肉鸡腿部沉积。

    动物的生长与肠道内的微生物菌群密不可分。动物的肠道中寄居着数以万计的微生物,包括细菌、古生菌、病毒、真菌,其中大部分是细菌。这些微生物与宿主共同进化,形成互惠共利的关系[17]。正常的肠道菌群具有多种生理作用,例如,生理营养作用,免疫调节作用,拮抗作用,参与代谢等[17]

    Alpha多样性用于反映样品间物种的丰富度和多样性,衡量的指标包括ACE指数、Chao 1指数、Shannon指数和Simpson指数等。ACE指数和Chao 1指数反映物种的丰富度,Shannon指数和Simpson指数反映物种的多样性[18]。在本试验中,各组间Alpha多样性的四个指标差异均不显著,表明TA促进白羽肉鸡生长并非通过提高肠道菌群的Alpha多样性而实现的。

    动物的肠道菌群具有相对稳定性。有文献报道,爱拔益加(AA)父母代肉种鸡的肠道菌群中86%以上是由拟杆菌门和厚壁菌门组成,约7%由梭杆菌门和变形菌门组成[19]。蛋鸡盲肠菌群的优势菌群为拟杆菌门、厚壁菌门和变形菌门[18]。在本试验中,各组的肠道菌群在门水平上均主要由拟杆菌门、厚壁菌门、放线菌门和软壁菌门组成,表明基础饲粮中添加100~200 mg·kg−1的TA在门水平上不会影响肠道菌群的组成。此外,本试验中白羽肉鸡的肠道菌群组成与爱拔益加种鸡和蛋鸡的肠道菌群组成略有不同,这可能是由于品种、饲料和环境不同导致的[20]。不同类型的菌群对宿主的作用也不一样。例如,拟杆菌门具有维持肠道微生态平衡的作用[18],而厚壁菌门可促进营养物质的吸收[21]。LefSe是一种用于寻找不同组间差异显著物种的分析方法。采用该分析方法,结果表明,基础饲粮中添加200 mg·kg−1的TA可使肉鸡肠道中的乳酸杆菌科和乳酸杆菌属的相对丰度显著升高。有文献也报道,在仔猪饲粮中添加TA可促进空肠中乳酸杆菌增殖[22],本研究与前人的研究结果一致。乳酸杆菌属是人类和动物肠道重要的生理性菌群之一,具有维持肠道菌群平衡的作用,肠道中的乳酸菌可能通过阻止大肠杆菌的肠受肽和分泌有毒代谢物来抑制大肠杆菌和空肠弯曲杆菌在肠道的定植[23]。因此饲粮中添加适量的TA可促进肠道益生菌的定植。

    本试验研究表明,饲粮中添加适量TA可促进肉鸡采食,提高生长性能和腿肌率;添加100~200 mg·kg−1 的TA对肉鸡的盲肠菌群多样性无显著影响,添加200 mg·kg−1的TA可促进肉鸡肠道中乳酸杆菌属的生长。

  • 图  1   根系节间单位模式

    Figure  1.   Unit pattern of root internodes

    图  2   水稻根系构成

    Figure  2.   Schematic root system of rice plant

    图  3   基于形态参数构建的水稻根系生长30、60 d生长模拟可视化图

    Figure  3.   Visualization of root growth simulation for 30 and 60 d based on morphological parameters

    表  1   不同方法在根系数据探测的优缺点

    Table  1   Pros and cons of detection methods for data acquisition on rice root system

    根系探测方式
    Detecting methods
    方法名称
    Method name
    优点
    Advantages
    缺点
    Disadvantages
    破坏性探测
    Destructive detection
    挖掘法
    Excavation method[1516 ]
    所获数据真实
    Data obtained authentic
    难以保证根系的完整性,末梢数据精准度有待考量
    Ensure difficultly the integrity of roots, low accuracy of terminal data
    保护挖掘清洗法
    Protect the excavation cleaning method [17]
    一定程度上保证根系的完整性和有序性
    Ensure the integrity and order of root system to a certain extent
    细节还原度不高,末梢数据精准度有待考量
    Low detail reduction, low accuracy of terminal data
    染色扫描图像分析法
    Staining scanning image analysis[18]
    可获得细微处的拓扑结构信息
    Subtle topology information can be obtained
    有设备要求,操作过程繁琐
    Equipment requirements, cumbersome operation process
    原位探测
    In-situ detection
    土壤留置法
    Soil retention method[1920]
    可获得连续生长的根系数据
    Root data of continuous growth can be obtained
    扫描范围有限,仅能获取管壁周围的局部信息
    Limited scanning range, only obtained local information around the pipe
    特殊培养环境法
    Special culture environment
    method[2124]
    根系的生长发育全过程透明可见
    The whole process of root growth and development is transparent and visible
    根脱离了自然土壤,生长发育可能存在较大差异
    The root is separated from the natural soil, and there may be great differences in growth and development
    穿透射线成像法
    Penetrating ray imaging [2528]
    数据精准,操作方便,效率较高
    Accurate data, convenient operation, high efficiency
    对设备要求高,成本昂贵
    High requirements for equipment and high cost
    作物图像解析法
    Crop image analysis[1214]
    高效、自动和准确性高
    High efficiency, automation and accuracy
    照片获取过程费时费力,数据量大
    Time-consuming and laborious photo acquisition process, large amount of data
    下载: 导出CSV

    表  2   常见的植物根系三维重建方法的比较

    Table  2   Comparison of commonly available 3D reconstruction methods on root system of plants

    三维重构方法
    3D reconstruction methods
    重建效果
    Reconstruction effect
    材料成本
    Material cost
    优点
    Advantages
    缺点
    Disadvantages
    L-系统
    L-System[19, 21, 3638]
    缺乏根系细节描述
    Lack of root detail description

    Low
    逼真地描述根系生长过程,可用于模拟根-根、根-环境的相互作用
    Describe the root growth process realistically, can be used to simulated the interaction of root-root , root-environment
    文法规则与实际有一定偏差
    A certain degree of deviation deviation between grammar rules and reality
    CT、雷达
    CT[25, 28]、Radar [48]
    较精确
    More-precision

    High
    不受外界光照影响,重建精度较高
    Not affected by outside light, higher reconstruction accuracy
    成本昂贵,数据量大
    High cost, large amount of data
    结构光
    Structural light[8, 44]
    较精确
    More-precision

    High
    技术成熟,深度图像信息丰富
    Technical maturity, rich in depth image information
    易受光照影响,识别距离有限
    Susceptible to light, limited recognition distance
    多视觉图像
    Multi-visual images[22, 40]
    精度高
    High-precision

    Low
    能描述根部细节特征,有真实的色彩纹理
    Describe the root detail characteristics,
    with a real color texture
    易受环境影响,结构复杂的根数据获取困难
    Susceptible to environment, difficulty in obtaining complex root data
    双目立体视觉
    Binocular stereo vision[4950]
    精度一般
    Middle-precision
    适中
    Middle
    重建效果稳定
    Stable reconstruction effect
    相机严格标定,点云数据匹配困难,须根系细节处理效果一般
    Camera calibrated strictly, point cloud data matched difficultly, fibrous root system detail processing effect is general
    下载: 导出CSV
  • [1]

    SAMYOR D, DAS A B, DEKA S C. Pigmented rice a potential source of bioactive compounds: A review [J]. International Journal of Food Science & Technology, 2017, 52(5): 1073−1081.

    [2]

    SMITH S, DE SMET I. Root system architecture: Insights from Arabidopsis and cereal crops [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1595): 1441−1452. DOI: 10.1098/rstb.2011.0234

    [3]

    KRESZIES T, SCHREIBER L, RANATHUNGE K. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species [J]. Journal of Plant Physiology, 2018, 227: 75−83. DOI: 10.1016/j.jplph.2018.02.002

    [4] 赵春江, 陆声链, 郭新宇, 等. 数字植物研究进展: 植物形态结构三维数字化 [J]. 中国农业科学, 2015, 48(17):3415−3428. DOI: 10.3864/j.issn.0578-1752.2015.17.009

    ZHAO C J, LU S L, GUO X Y, et al. Advances in research of digital plant: 3D digitization of plant morphological structure [J]. Scientia Agricultura Sinica, 2015, 48(17): 3415−3428.(in Chinese) DOI: 10.3864/j.issn.0578-1752.2015.17.009

    [5] 黄伟. 基于植物生长过程仿真的虚拟植物建模研究[D]. 重庆: 重庆大学, 2011.

    HUANG W. Study on growth modeling of virtual plant based on simulation of growth process[D]. Chongqing: Chongqing University, 2011. (in Chinese).

    [6] 温维亮, 郭新宇, 赵春江, 等. 作物根系构型三维探测与重建方法研究进展 [J]. 中国农业科学, 2015, 48(3):436−448. DOI: 10.3864/j.issn.0578-1752.2015.03.04

    WEN W L, GUO X Y, ZHAO C J, et al. Crop roots configuration and visualization: A review [J]. Scientia Agricultura Sinica, 2015, 48(3): 436−448.(in Chinese) DOI: 10.3864/j.issn.0578-1752.2015.03.04

    [7] 尤号田, 邢艳秋, 彭涛, 等. LiDAR不同强度校正法对樟子松叶面积指数估测的影响 [J]. 测绘学报, 2018, 47(2):170−179. DOI: 10.11947/j.AGCS.2018.20170515

    YOU H T, XING Y Q, PENG T, et al. Effects of different LiDAR intensity normalization methods on Scotch pine forest leaf area index estimation [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 170−179.(in Chinese) DOI: 10.11947/j.AGCS.2018.20170515

    [8] 梁欢, 顾庆毅. 一种基于结构光的运动补偿3D测量方法: CN106595502A[P]. 2017-04-26.
    [9] 周静静, 郭新宇, 吴升, 等. 基于多视角图像的植物三维重建研究进展 [J]. 中国农业科技导报, 2019, 21(2):9−18.

    ZHOU J J, GUO X Y, WU S, et al. Research progress on plant three-dimensional reconstruction based on multi-view images [J]. Journal of Agricultural Science and Technology, 2019, 21(2): 9−18.(in Chinese)

    [10] 翁杨, 曾睿, 吴陈铭, 等. 基于深度学习的农业植物表型研究综述 [J]. 中国科学: 生命科学, 2019, 49(6):698−716. DOI: 10.1360/SSV-2019-0020

    WENG Y, ZENG R, WU C M, et al. A survey on deep-learning-based plant phenotype research in agriculture [J]. Scientia Sinica (Vitae), 2019, 49(6): 698−716.(in Chinese) DOI: 10.1360/SSV-2019-0020

    [11]

    DIEVART A, COUDERT Y, GANTET P, et al. Dissecting the biological bases of traits of interest in rice: Architecture and development of the root system [J]. Cahiers Agricultures, 2013, 22(5): 475−483. DOI: 10.1684/agr.2013.0651

    [12]

    STEFANELLI D, FRIDMAN Y, PERRY RL. DigiRootTM: New software for root studies [J]. European Journal of Horticultural Science, 2009, 74(4). DOI: 10.2307/24126478

    [13]

    DELORY B M, BAUDSON C, BROSTAUX Y, et al. archiDART: an R package for the automated computation of plant root architectural traits [J]. Plant and Soil, 2016, 398(1/2): 351−365.

    [14]

    GONZÁLEZ A, SEVILLANO X, BETEGÓN-PUTZE I, et al. MyROOT 2.0: An automatic tool for high throughput and accurate primary root length measurement [J]. Computers and Electronics in Agriculture, 2020, 168: 105125. DOI: 10.1016/j.compag.2019.105125

    [15]

    TRACHSEL S, KAEPPLER S M, BROWN K M, et al. Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field [J]. Plant and Soil, 2011, 341(1/2): 75−87.

    [16] 胡琪娟, 王霖娇, 盛茂银. 植物细根生产和周转研究进展 [J]. 世界林业研究, 2019, 32(2):29−34.

    HU Q J, WANG L J, SHENG M Y. Research progress of plant fine root production and turnover [J]. World Forestry Research, 2019, 32(2): 29−34.(in Chinese)

    [17] 管建慧, 郭新宇, 王纪华, 等. 玉米不同部位根系生长发育规律的研究 [J]. 玉米科学, 2007, 15(6):82−85, 88. DOI: 10.3969/j.issn.1005-0906.2007.06.019

    GUAN J H, GUO X Y, WANG J H, et al. Study on growth and development rule of different parts of maize root [J]. Journal of Maize Sciences, 2007, 15(6): 82−85, 88.(in Chinese) DOI: 10.3969/j.issn.1005-0906.2007.06.019

    [18]

    WU J, GUO Y. An integrated method for quantifying root architecture of field-grown maize [J]. Annals of Botany, 2014, 114(4): 841−851. DOI: 10.1093/aob/mcu009

    [19] 杨乐, 彭军, 杨红云, 等. 基于微分L-系统的水稻根系三维生长模型研究 [J]. 农业机械学报, 2019, 50(10):208−214. DOI: 10.6041/j.issn.1000-1298.2019.10.023

    YANG L, PENG J, YANG H Y, et al. Three dimensional growth modeling of rice root based on differential L-system [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 208−214.(in Chinese) DOI: 10.6041/j.issn.1000-1298.2019.10.023

    [20] 牛学礼, 南志标. 运用微根管技术研究草地植物细根的进展 [J]. 草业学报, 2017, 26(11):205−215. DOI: 10.11686/cyxb2017041

    NIU X L, NAN Z B. Review of minirhizotron applications for study of fine roots in grassland [J]. Acta Prataculturae Sinica, 2017, 26(11): 205−215.(in Chinese) DOI: 10.11686/cyxb2017041

    [21]

    YANG L, WU P P, YANG S Y, et al. Research on the construction and visualization of a three-dimensional model of rice root growth [J]. Applied Engineering in Agriculture, 2020, 36(6): 847−857. DOI: 10.13031/aea.13543

    [22]

    HAN T H, KUO Y F. Developing a system for three-dimensional quantification of root traits of rice seedlings [J]. Computers and Electronics in Agriculture, 2018, 152: 90−100. DOI: 10.1016/j.compag.2018.07.001

    [23]

    FANG S Q, YAN X L, LIAO H. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research [J]. The Plant Journal, 2009, 60(6): 1096−1108. DOI: 10.1111/j.1365-313X.2009.04009.x

    [24]

    ROGERS E D, MONAENKOVA D, MIJAR M, et al. X-ray computed tomography reveals the response of root system architecture to soil texture [J]. Plant Physiology, 2016, 171(3): 2028−2040. DOI: 10.1104/pp.16.00397

    [25]

    TERAMOTO S, TAKAYASU S, KITOMI Y, et al. High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography [J]. Plant Methods, 2020, 16: 66. DOI: 10.1186/s13007-020-00612-6

    [26]

    GERTH S, CLAUßEN J, EGGERT A, et al. Semiautomated 3D root segmentation and evaluation based on X-ray CT imagery [J]. Plant Phenomics, 2021, 2021: 1−13.

    [27] 向子云, 罗锡文, 周学成, 等. 多层螺旋CT三维成像技术观测植物根系的实验研究 [J]. CT理论与应用研究, 2006, 15(3):1−5. DOI: 10.3969/j.issn.1004-4140.2006.03.001

    XIANG Z Y, LUO X W, ZHOU X C, et al. Experimental study on observation of original shape of crop root system with multi helical CT technology [J]. Computerized Tomography Theory and Applications, 2006, 15(3): 1−5.(in Chinese) DOI: 10.3969/j.issn.1004-4140.2006.03.001

    [28] 周学成, 罗锡文, 严小龙, 等. 基于遗传算法的原位根系CT图像的模糊阈值分割 [J]. 中国图象图形学报, 2009, 14(4):681−687. DOI: 10.11834/jig.20090418

    ZHOU X C, LUO X W, YAN X L, et al. A fuzzy thresholding segmentation for plant root CT images based on genetic algorithm [J]. Journal of Image and Graphics, 2009, 14(4): 681−687.(in Chinese) DOI: 10.11834/jig.20090418

    [29]

    TOPP C N, IYER-PASCUZZI A S, ANDERSON J T, et al. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture [J]. PNAS, 2013, 110(18): E1695−E1704. DOI: 10.1073/pnas.1304354110

    [30]

    KUTSAHERA L. Wurzelatlas mitteleuropaischer ackerunkrauter und kulturpflanzen [J]. Economic Botany, 1963, 17(2): 158−159. DOI: 10.2307/4252435

    [31]

    PAGÈS L, VERCAMBRE G, DROUET J L, et al. Root Typ: A generic model to depict and analyse the root system architecture [J]. Plant and Soil, 2004, 258(1): 103−119. DOI: 10.1023/B:PLSO.0000016540.47134.03

    [32]

    PAGES L, MOREAU D, SARLIKIOTI V, et al. ArchiSimple: A parsimonious model of the root system architecture[C]. //Plant Growth Modeling, Simulation, Visualization and Applications.:Institute of Electrical and Electronics Engineers, 2012:297-303.

    [33] 徐其军, 汤亮, 顾东祥, 等. 基于形态参数的水稻根系三维建模及可视化 [J]. 农业工程学报, 2010, 26(10):188−194. DOI: 10.3969/j.issn.1002-6819.2010.10.032

    XU Q J, TANG L, GU D X, et al. Architectural parameter-based three dimensional modeling and visualization of rice roots [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 188−194.(in Chinese) DOI: 10.3969/j.issn.1002-6819.2010.10.032

    [34] 房燕. 基于人工生命的骆驼刺根系的模型构建与研究[D]. 长春: 东北师范大学, 2011.

    FANG Y. Construction and research of Alhagi roots model based on artificial life[D]. Changchun: Northeast Normal University, 2011. (in Chinese).

    [35]

    GE Y, GE Z Y, YI H F, et al. Visual simulation of upland rice root as related to soil compaction[C]//2011 Second International Conference on Digital Manufacturing & Automation. August 5-7, 2011, Zhangjiajie, China. IEEE, 2011: 1392−1394.

    [36]

    LEITNER D, KLEPSCH S, BODNER G, et al. A dynamic root system growth model based on L-Systems [J]. Plant and Soil, 2010, 332(1/2): 177−192.

    [37] 钟南, 罗锡文, 秦琴. 基于微分L系统理论的植物根系生长模拟的算法 [J]. 系统仿真学报, 2006, 18(S2):138−139, 143.

    ZHONG N, LUO X W, QIN Q. Simulation arithmetic of root systems growth with differential L-systems [J]. Journal of System Simulation, 2006, 18(S2): 138−139, 143.(in Chinese)

    [38] 彭英, 张素兰. 基于L系统的水稻根系建模与可视化 [J]. 计算机系统应用, 2020, 29(6):22−28.

    PENG Y, ZHANG S L. L-system-based modeling and visualization of rice root system [J]. Computer Systems & Applications, 2020, 29(6): 22−28.(in Chinese)

    [39] 刘慧, 汤亮, 张文宇, 等. 基于模型的可视化水稻生长系统的构建与实现 [J]. 农业工程学报, 2009, 25(9):148−154, 362. DOI: 10.3969/j.issn.1002-6819.2009.09.027

    LIU H, TANG L, ZHANG W Y, et al. Construction and implementation of model-based visual rice growth system [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(9): 148−154, 362.(in Chinese) DOI: 10.3969/j.issn.1002-6819.2009.09.027

    [40] 初广丽, 张伟, 王延杰, 等. 基于机器视觉的水果采摘机器人目标识别方法 [J]. 中国农机化学报, 2018, 39(2):83−88.

    CHU G L, ZHANG W, WANG Y J, et al. A method of fruit picking robot target identification based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(2): 83−88.(in Chinese)

    [41] 徐超, 李乔. 基于计算机视觉的三维重建技术综述 [J]. 数字技术与应用, 2017(1):54−56.

    XU C, LI Q. 3D reconstruction technology based on computer vision: A Review [J]. Digital Technology and Application, 2017(1): 54−56.(in Chinese)

    [42]

    LOOMIS J J, LIU X W, DING Z H, et al. Visualization of plant growth[C]//Proceedings of Visualization '97 (Cat. No. 97CB36155). October 24-24, 1997, Phoenix, AZ, USA. IEEE, 1997: 475-478.

    [43]

    TERAMOTO S, UGA Y. A deep learning-based phenotypic analysis of rice root distribution from field images [J]. Plant Phenomics (Washington, D C), 2020, 2020: 3194308.

    [44] 吴丹, 叶军立, 王康, 等. 基于轮廓投影的盆栽水稻三维重建方法研究 [J]. 中国农业科技导报, 2020, 22(9):87−95.

    WU D, YE J L, WANG K, et al. Three-dimension reconstruction method based on silhouette for pot rice [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 87−95.(in Chinese)

    [45]

    SCHULZ H, POSTMA J A, VAN DUSSCHOTEN D, et al. Plant root system analysis from MRI images[M]//Communications in Computer and Information Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 411-425.

    [46]

    VAN DUSSCHOTEN D, METZNER R, KOCHS J, et al. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging [J]. Plant Physiology, 2016, 170(3): 1176−1188. DOI: 10.1104/pp.15.01388

    [47]

    AHMED M A, ZAREBANADKOUKI M, KAESTNER A, et al. Measurements of water uptake of maize roots: The key function of lateral roots [J]. Plant and Soil, 2016, 398(1/2): 59−77.

    [48] 刘秀位, 谷慧杰, 韩洁, 等. 基于探地雷达和电容法的作物根系原位无损测量技术研究进展 [J]. 农业工程学报, 2020, 36(20):226−237. DOI: 10.11975/j.issn.1002-6819.2020.20.027

    LIU X W, GU H J, HAN J, et al. Research progress of ground penetrating radar and electrical capacitance for in situ non-destructive measurement of crop roots [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 226−237.(in Chinese) DOI: 10.11975/j.issn.1002-6819.2020.20.027

    [49] 王传宇, 赵明, 阎建河, 等. 基于双目立体视觉技术的玉米叶片三维重建 [J]. 农业工程学报, 2010, 26(4):198−202. DOI: 10.3969/j.issn.1002-6819.2010.04.033

    WANG C Y, ZHAO M, YAN J H, et al. Three-dimensional reconstruction of maize leaves based on binocular stereovision system [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 198−202.(in Chinese) DOI: 10.3969/j.issn.1002-6819.2010.04.033

    [50] 殷悦, 张慧春, 郑加强. 基于双目立体视觉的植物三维重建系统 [J]. 中国农机化学报, 2021, 42(3):129−135.

    YIN Y, ZHANG H C, ZHENG J Q. Three dimensional reconstruction system of plant based on binocular stereo vision [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 129−135.(in Chinese)

    [51]

    SOMMA F, HOPMANS J W, CLAUSNITZER V. Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake [J]. Plant and Soil, 1998, 202(2): 281−293. DOI: 10.1023/A:1004378602378

    [52]

    ZAPPALA S, MAIRHOFER S, TRACY S, et al. Quantifying the effect of soil moisture content on segmenting root system architecture in X-ray computed tomography images [J]. Plant and Soil, 2013, 370(1/2): 35−45.

    [53]

    DUNBABIN V M, POSTMA J A, SCHNEPF A, et al. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function [J]. Plant and Soil, 2013, 372(1/2): 93−124.

    [54] 张玉, 秦华东, 黄敏, 等. 水稻根系空间分布特性的数学模拟及应用 [J]. 华南农业大学学报, 2013, 34(3):304−308. DOI: 10.7671/j.issn.1001-411X.2013.03.005

    ZHANG Y, QIN H D, HUANG M, et al. Mathematical simulation of rice root spatial distribution and its application [J]. Journal of South China Agricultural University, 2013, 34(3): 304−308.(in Chinese) DOI: 10.7671/j.issn.1001-411X.2013.03.005

    [55] 刘永霞, 岳延滨, 刘岩, 等. 不同品种和氮肥条件下水稻根系主要几何参数动态量化 [J]. 中国农业科学, 2010, 43(9):1782−1790. DOI: 10.3864/j.issn.0578-1752.2010.09.003

    LIU Y X, YUE Y B, LIU Y, et al. Quantitative research of dynamic models of the main geometric parameters of rice root system of different varieties under different nitrogen conditions [J]. Scientia Agricultura Sinica, 2010, 43(9): 1782−1790.(in Chinese) DOI: 10.3864/j.issn.0578-1752.2010.09.003

    [56] 李娟, 章明清, 林琼, 等. 水稻根系氮磷钾吸收特性及其模拟模型研究 [J]. 土壤通报, 2011, 42(1):117−122.

    LI J, ZHANG M Q, LIN Q, et al. Studies on N, P and K absorption characteristics of rice root system and its simulation model [J]. Chinese Journal of Soil Science, 2011, 42(1): 117−122.(in Chinese)

    [57]

    LI T, ANGELES O, MARCAIDA M III, et al. From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments [J]. Agricultural and Forest Meteorology, 2017, 237/238: 246−256. DOI: 10.1016/j.agrformet.2017.02.025

    [58] 蒋艳娜, 肖伯祥, 郭新宇, 等. 植物建模与动画合成研究 [J]. 系统仿真学报, 2015, 27(4):881−892.

    JIANG Y N, XIAO B X, GUO X Y, et al. Study in plant modeling and animation [J]. Journal of System Simulation, 2015, 27(4): 881−892.(in Chinese)

    [59] 贾全全, 杨晓杰. 根系分形维数及其研究进展 [J]. 安徽农业科学, 2011, 39(2):652−653, 656. DOI: 10.3969/j.issn.0517-6611.2011.02.009

    JIA Q Q, YANG X J. Fractal dimension and it's study extension to root systems [J]. Journal of Anhui Agricultural Sciences, 2011, 39(2): 652−653, 656.(in Chinese) DOI: 10.3969/j.issn.0517-6611.2011.02.009

    [60]

    CLARK R T, MACCURDY R B, JUNG J K, et al. Three-dimensional root phenotyping with a novel imaging and software platform [J]. Plant Physiology, 2011, 156(2): 455−465. DOI: 10.1104/pp.110.169102

    [61]

    ADELEKE E, MILLAS R, MCNEAL W, et al. Assessing root system architecture of wheat seedlings using A high-throughput root phenotyping system [J]. bioRxiv, 2019. DOI: 10.1101/677955

  • 期刊类型引用(11)

    1. 梁婷,张斌斌,赵亚鹏,赵祥民,李璐璐,年芳,唐德富. 香椿提取物对蛋鸡屠宰性能、鸡蛋营养成分和盲肠微生物区系的影响. 饲料工业. 2025(04): 42-51 . 百度学术
    2. 邱建强,黄文,王玉玺,彭凯. 单宁对动物肠道微生物调控的研究进展. 动物营养学报. 2023(02): 772-781 . 百度学术
    3. 王思琪,孔祥祎,杨梦然,宁灿,范慧,肖文广,邬静,梁曾恩妮,袁志航. 不同来源单宁在畜禽养殖中的应用. 中国畜牧兽医. 2023(08): 3102-3112 . 百度学术
    4. 刘万军,张丽燕,李炳华,王洪玲,朱绍辉,肖发沂. 辣椒油树脂对白羽肉鸡生长性能、屠宰性能和免疫器官指数的影响. 家禽科学. 2023(11): 8-13 . 百度学术
    5. 李军,汤莉,黄立,何书海,刘佳佳,陈培荣,董建国,秦清明. 大蒜素对青脚麻鸡生长性能、免疫功能、血清生化指标的影响. 饲料研究. 2023(20): 41-46 . 百度学术
    6. 林苗,肖亚红,张谚鹏,温刘发. 复合酸对肉鸡生长性能、屠宰性能、血清免疫指标及盲肠菌群结构的影响. 动物营养学报. 2023(11): 7024-7035 . 百度学术
    7. 陆荣鲜,曹满湖,金睿,秦林. 肉鸡对高粱能量的利用. 湖南饲料. 2022(05): 34-39 . 百度学术
    8. 李军,汤莉,黄立,何书海,赵云焕,邓凯伟,秦清明,吴海港. 单宁酸和牛至油组合对肉仔鸡生长性能、屠宰性能、肉品质和抗氧化指标的影响. 饲料研究. 2022(18): 51-55 . 百度学术
    9. 李想,孙瑞萍,刘圈炜,齐琪,欧阳坤,解娅立,赵桂苹,蒋守群,魏立民,巩元芳. 植物单宁和植物单宁复合蛋白对文昌鸡生长性能、肠道形态及盲肠微生物的影响. 中国家禽. 2022(11): 56-62 . 百度学术
    10. 王俊锋,连慧香,付春胜,李慧,刘金松. 水解单宁酸的生物学功能及其在畜牧生产中的应用. 饲料研究. 2022(19): 145-148 . 百度学术
    11. 张世忠,陈秀琴,陈盛星,蓝豪杰,江斌,高炳辉,黄兴樑,王隆柏,刘景. 笋头纤维对海兰褐蛋鸡育成期内脏器官指数、血浆激素含量和盲肠微生物区系的影响. 动物营养学报. 2022(12): 7758-7769 . 百度学术

    其他类型引用(5)

图(3)  /  表(2)
计量
  • 文章访问数:  1628
  • HTML全文浏览量:  385
  • PDF下载量:  109
  • 被引次数: 16
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-07-22
  • 网络出版日期:  2021-08-09
  • 刊出日期:  2021-08-27

目录

/

返回文章
返回