• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

基于人工智能的青菜幼苗与杂草识别方法

AI Differentiation of Bok Choy Seedlings from Weeds

  • 摘要:
      目的  提出一种基于人工智能的青菜幼苗与杂草识别方法,以期解决杂草识别这一制约精确除草的瓶颈问题。
      方法  以青菜幼苗及其伴生杂草为试验对象,通过神经网络模型识别青菜幼苗。青菜幼苗目标之外的绿色像素则认为是杂草,并利用颜色特征对杂草进行分割。为探究主流卷积神经网络(Convolutional Neural Networks,CNN)模型以及新兴Transformer神经网络模型在青菜识别中的效果,分别选取YOLOX模型和Deformable DETR模型,以识别率和识别性能作为评价指标进行对比分析。
      结果  基于CNN的YOLOX模型和基于Transformer的Deformable DETR模型都能有效识别青菜幼苗。其中YOLOX模型为最优模型,平均精度和识别速度分别为98.1%和44.8 fps。
      结论  将青菜幼苗之外的绿色目标视为杂草的思路不仅简化了杂草识别的复杂性,同时提高了杂草识别的泛化能力。提出的青菜幼苗与杂草识别方法可用于青菜幼苗生长管理的精准作业。

     

    Abstract:
      Objective  An artificial intelligence-based identification method to effectively differentiate bok choy seedlings from weeds was proposed to facilitate vegetable farm weeding operation.
      Methods  Bok choy seedlings were recognized by the neural network models to exclude the green pixels from other vegetations considered as weeds by color differentiation. Effectiveness of the convolutional neural networks (CNN) and the emerging transformer models in correctly separating the seedlings and weeds was evaluated.
      Result  Although both performed acceptable, the YOLOX model delivered a higher average accuracy of 98.1% and a faster speed at 44.8 fps than Deformable DETR in the recognition operation.
      Conclusion  By defining the green pixels of bok choy seedlings as target color, weeds could be rejected by the AI recognition program providing a robust separation for efficient weeding in the field of the random-planting vegetables such as bok choy.

     

/

返回文章
返回