• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

氮肥对棉花产量和氮素吸收量影响的Meta分析

Meta Analysis on Effects of N-fertilization on Yield and N-uptake of Cotton Plants

  • 摘要:
      目的  定量评价棉花产量和氮素吸收量对施氮的响应及其影响因素,为科学施用氮肥提供参考。
      方法  采用Meta分析的方法,对2002–2019年符合研究要求的43篇文献数据按照种植时段、种植区域、土壤类型、种植密度、施氮量、土壤有机质含量、土壤全氮含量、土壤碱解氮含量、土壤速效磷含量、土壤速效钾含量等进行分组,以不施氮肥为对照,探讨施氮对棉花产量和氮素吸收量影响的综合效应。
      结果  在2008–2013年棉花产量增量幅度(36%)与氮素吸收量提升幅度(51%)均显著高于2002–2007年(20%、34%)和2014–2019年(28%、33%)。施氮量为300–450 kg·hm−2时棉花产量和氮素吸收量(38%、58%)显著高于施氮量>450 kg·hm−2(30%、54%)和 施氮量<300 kg·hm−2(27%、31%) 。西北区施氮肥对棉花产量提高幅度最高(45%),但氮素吸收量提高幅度最低(35%);华中区对棉花产量提高幅度最低(25%),但氮素吸收量提高幅度最高(65%);华东区居中(33%、38%)。棉花产量和氮素吸收量在种植密度<5 万株·hm−2(40%、62%)时显著高于5万~10万株·hm−2(33%、35%)和>10万株·hm−2(18%、37%)。随着种植密度的增加,棉花产量和氮素吸收量有下降趋势。黏土施用氮肥后棉花产量和氮素吸收量提高幅度(40%、56%)显著高于砂壤土(25%、28%)和壤土(36%、39%)。在土壤有机质>15 g·kg−1、土壤碱解氮含量50~100 g·kg−1、土壤速效磷含量15~30 mg·kg−1、土壤速效钾含量>300 mg·kg−1情况下,施氮较不施氮棉花产量提高幅度较高。在土壤有机质10~15 g·kg−1、土壤全氮含量>1.6 g·kg−1、土壤碱解氮含量>100 g·kg−1、土壤速效磷含量15~30 mg·kg−1、土壤速效钾含量<200 mg·kg−1情况下,施氮较不施氮棉花氮素吸收量幅度较高。
      结论  施入300~450 kg·hm−2氮肥是提高和维持棉花高产的重要措施。

     

    Abstract:
      Objective  Yield and N-uptake of cotton plants in response to N applications and factors affecting the reaction were quantitatively analyzed with documented database.
      Method  Meta analysis was conducted on 43 relevant articles published from 2002 to 2019 to compare the effects of the planting time, area, and N fertilization as well as the soil type, density, organic matters, total N, alkali-hydrolysable N, available phosphorus, and available potassium on the yield and N-uptake of cotton plants with those without any N application.
      Result  The increase of 36% on yield and 51% on N-uptake of the cotton plants in 2008–2013 were significantly higher than 20% and 34%, respectively, in 2002–2007 or 28% and 33%, respectively, in 2014–2019. Increased N application promoted both yield and N-uptake of cotton plants more from the first data collection period to the second period than from the second to the last 5 years. Cotton yield and N-uptake were significantly higher with N application 300–450 kg·hm−2(38%, 58%) than N application more than 450 kg·hm−2(30%, 54%) or less than 300 kg·hm−2 (27%, 31%). There were regional variations on the effects as well. For instance, in northwest China, the fertilization resulted in the greatest increase on yield at 45% but the least on N-uptake at 35%, whereas the least on yield at 25% and the greatest on N-uptake at 65% in central China and the medium on yield at 33% and N-uptake at 38% in eastern China were observed. Increases on planting density tended to reduce the cotton yield and N-uptake. Soil type also affected the yield and N uptake as they increased significantly more in clay soil (40% and 56%, respectively) than in sandy loam (25% and 28%, respectively) and loam (36% and 39%, respectively). Grown on soil containing organic matters more than 15 g·kg−1, alkali-hydrolyzable N in the range of 50–100 g·kg−1, available phosphorus between 15–30 mg·kg−1, and available potassium greater than 300 mg·kg−1, the cotton yield was higher than without N application. And the soil containing organic matters in the range of 10–15 g·kg−1, total N more than 1.6 g·kg−1, alkali-hydrolyzable N higher than 100 g·kg−1, available phosphorus between 15–30 mg·kg−1, and available potassium less than 200 mg·kg−1 produced higher cotton N-uptake than without N fertilization.
      Conclusion  Application of 300-450 kg·hm−2 of N fertilizer on the filed appeared to be critical for high cotton yield.

     

/

返回文章
返回