• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

福建甘薯氮磷钾推荐施肥与有机肥替代化肥技术模式

李娟, 张立成, 张华, 张世昌, 潘住财, 张民生, 林明贤, 章明清

李娟,张立成,张华,等. 福建甘薯氮磷钾推荐施肥与有机肥替代化肥技术模式 [J]. 福建农业学报,2022,37(8):968−976. DOI: 10.19303/j.issn.1008-0384.2022.008.002
引用本文: 李娟,张立成,张华,等. 福建甘薯氮磷钾推荐施肥与有机肥替代化肥技术模式 [J]. 福建农业学报,2022,37(8):968−976. DOI: 10.19303/j.issn.1008-0384.2022.008.002
LI J, ZHANG L C, ZHANG H, et al. Recommended NPK Fertilization and Partial Replacement with Organic Manure for Sweet Potato Cultivation in Fujian [J]. Fujian Journal of Agricultural Sciences,2022,37(8):968−976. DOI: 10.19303/j.issn.1008-0384.2022.008.002
Citation: LI J, ZHANG L C, ZHANG H, et al. Recommended NPK Fertilization and Partial Replacement with Organic Manure for Sweet Potato Cultivation in Fujian [J]. Fujian Journal of Agricultural Sciences,2022,37(8):968−976. DOI: 10.19303/j.issn.1008-0384.2022.008.002

福建甘薯氮磷钾推荐施肥与有机肥替代化肥技术模式

基金项目: 福建省科技计划公益类专项(2021R1025005);福建省农业高质量发展超越“5511” 协同创新工程项目(XTCXGC2021009)
详细信息
    作者简介:

    李娟(1977−),女,硕士,副研究员,研究方向:作物营养与施肥(E-mail:lj-95@163.com

    通讯作者:

    章明清(1963−),男,博士,研究员,研究方向:作物施肥原理和技术(E-mail:zhangmq2001@163.com

  • 中图分类号: S 147.2

Recommended NPK Fertilization and Partial Replacement with Organic Manure for Sweet Potato Cultivation in Fujian

  • 摘要:
      目的  提高甘薯施肥效益,实现化肥减施增效目标,探讨推荐施肥和有机肥替代化肥的技术模式。
      方法  根据甘薯氮磷钾田间肥效试验结果,定量确定福建甘薯最佳施肥类别;然后分别建立各施肥类别的三元非结构肥效模型和推荐施肥量,在此基础上开展有机肥替代化肥潜力的试验研究,并进行田间示范。
      结果  甘薯施肥可划分为高产田、中产田、中低产田和低产田等4个施肥类别,高产田的氮肥增产效应明显高于其他施肥类别,但磷钾肥的增产效应则反之。基于不同施肥类别的三元非结构肥效模型,甘薯平均经济施肥量为N 160 kg∙hm−2、P2O5 62 kg∙hm−2、K2O 212 kg∙hm−2,三要素适宜比例为1 0.4 1.3,但不同施肥类别的推荐施肥量有明显差异。在推荐施肥基础上有机肥替代25%化肥具有最佳增产增收效果,平均比推荐施肥增产13.0%,净增收1802元∙hm−2。在N、P2O5投入比习惯施肥下降16.7%和47.4%以及K2O投入提高94.0%的条件下,79个化肥推荐施肥田间示范比习惯施肥平均增产7.9%,净增收3 394元∙hm−2;基于推荐施肥量的16个有机肥替代25%化肥的田间示范则平均增产11.3%,净增收4 192元∙hm−2
      结论  化肥推荐施肥和在此基础上有机肥替代25%化肥是可供推广应用的甘薯化肥减施增效技术模式,后者效果更佳。
    Abstract:
      Objective  NPK fertilization and utilization of manure for partial replacement in sweet potato farming were optimized for the agriculture in Fujian.
      Method   Based on field experiments, sweet potato growing fields in the province were classified. A ternary non-structural fertilization response model was constructed for each class to optimize the fertilization. Field tests and demonstrations were conducted to scrutinize and promote the recommended program.
      Result  The 4 classes of sweet potato fields in the province included (1) high yield paddy, (2) medium yield paddy, (3) medium-to-low yield field, and (4) low yield field. The sweet potato plants were highly responsive to N fertilizer application on the fields of higher yield, but P or K tended to benefit more the plants grown on lands of lower yields. According to the fertilization response models, the economic applications averaged 160 kg·hm−2 on N, 62 kg·hm−2 on P2O5, and 212 kg·hm−2 on K2O in the ratio of 1:0.4:1.3. However, the recommendation for different classes of field differed significantly. By replacing 25% NPK in the recommended fertilizations (RF) with manure, on average a 13.0% increase on tuber yield and 1 802 yuan·hm−2 increase on net revenue over RF were realized. In the 79 field demonstrations with RF, the application of N was reduced by 16.7% and P2O5 by 47.41% while K2O increased by 79.3% which resulted in 7.9% rise on yield and 3 394 yuan·hm−2 more on net revenue over what practiced by the farmers (FP). On the other hand, in the 16 field tests where 25% NPK fertilizers was replaced with manure, the average yield rose by 11.0% with 4 192 yuan·hm−2 higher in revenue.
      Conclusion  Although either RF or 25% NPK replaced by organic manure could significantly improve the sweet potato productivity and profitability, the use of organic manure to partially substitute chemical fertilizer was deemed superior for the farming in the province.
  • 文心兰Oncidium又名舞女兰、瘤瓣兰等,主要分布于中南美洲的热带和亚热带地区。文心兰花色艳丽、花型奇特、观赏期长,是世界重要的盆花和切花种类之一。我国从20世纪90年代开始引种文心兰[1],主要以切花栽培为主。切花文心兰为具假鳞茎薄叶种,15~30℃范围内均能正常生长,15~20℃适宜营养生长,20~25℃适宜开花[2-3]。福建属亚热带湿润气候,其特点是温暖湿润,年平均气温15~22℃,非常适宜文心兰切花栽培,但福州等地夏季持续的高温严重影响了文心兰植株的生长,导致假鳞茎易皱缩,从而影响秋冬季开花产量和品质。

    目前国内学者对春兰[4]、杂交兰[5]、金线兰[6]、蝴蝶兰[7]等兰科植物进行了高温胁迫研究,有关文心兰高温胁迫的研究尚未见报道。因此本研究根据福州夏季气温自然变化规律,在光照培养箱中模拟高温胁迫,测定文心兰新芽顶叶中叶绿素、可溶性糖、还原糖、脯氨酸(Pro)等含量及相对电导率、过氧化物酶(POD)活性等多项生理指标,以探讨高温胁迫下文心兰生理变化规律和耐热机制,为筛选出文心兰耐热性鉴定生理指标及建立适宜夏季高温气候特点的栽培管理技术提供理论依据。

    以自育切花文心兰新品种‘金辉’为试验试材,选择1个饱满假鳞茎带1个新芽(新芽高度一致,新芽假鳞茎未膨大)的幼苗共192株为供试材料。

    根据福州夏季日夜气温的自然变化规律,用光照培养箱(光照培养箱为“一恒MGC-450HP-2”,光照时强度为12 000 lx,空气相对湿度75%~80%)模拟高温胁迫。以夏季最高温时温室能调控的温度(黑暗28℃ 10 h→光照30℃ 5 h→光照32℃ 4 h→光照30℃ 5 h,以此循环)为对照(CK),高温处理(T)温度变化为黑暗28℃ 10 h→光照32℃ 2 h→光照36℃ 3 h→光照40℃ 4 h→光照36℃ 3 h→光照32℃ 2 h,以此循环。高温胁迫前在CK条件下预处理7 d,CK与高温胁迫各96株,处理过程中均保持栽培介质湿润。高温胁迫处理共42 d,CK与高温处理均每隔7 d随机选取12株新芽的2片顶叶共24片叶进行生理指标的测定。

    各生理指标测定方法参考《植物生理生化实验原理和技术》[8]、《植物生理学实验指导》[9-10]中提供的方法并适当改进。叶绿素含量的测定采用丙酮浸提法,相对电导率的测定采用电导仪法(电导仪为“HANNA HI8733”),可溶性糖的测定采用蒽酮比色法,还原糖的测定采用3,5-二硝基水杨酸法,Pro含量的测定采用茚三酮法,POD活性的测定采用愈创木酚法。紫外可见分光光度计型号为“岛津UV-1780”。各项生理指标的测定均重复3次。叶绿素、可溶性糖、还原糖、Pro的含量均为鲜重的含量,相对电导率及POD活性为鲜样的测定值。用Excel和SPSS软件进行数据统计分析。

    对照处理42 d后假鳞茎饱满,叶色浓绿无坏死,且新芽基部基本已膨大形成假鳞茎;而高温胁迫处理42 d后植株虽无死亡,但假鳞茎明显失水皱缩,顶叶叶尖出现焦枯,顶叶叶色由浓绿变为黄绿,部分苞叶变黄甚至坏死,新芽基部极少能膨大形成假鳞茎。高温处理后的植株转入温室中均能恢复生长。从图 1可知,受高温胁迫后文心兰顶叶叶绿素(a+b)含量总体上呈现不断下降的变化趋势,而对照则呈平缓上升的变化趋势。高温胁迫7 d时,高温处理叶绿素含量略高于对照,至14~21 d时则低于对照,但差异不显著;当高温胁迫至28 d时叶绿素含量(0.698 mg·g-1)则显著低于对照(0.781 mg·g-1);当高温胁迫至42 d时,叶绿素含量(0.676 mg·g-1)进一步显著降低,比对照下降19.12%。

    图  1  高温胁迫对文心兰新芽顶叶叶绿素含量的影响
    注:不同小写字母表示同一处理不同时间差异显著(P<0.05),*表示相同处理时间不同处理差异显著(P<0.05),下同。
    Figure  1.  Effect of heat on chlorophyll content in sprouting apical leaves on an Oncidium plant

    图 2可知,对照中可溶性糖含量呈不断上升的变化趋势,由7 d的0.189%上升到42 d的0.351%。高温胁迫7~21 d时可溶性糖含量分别为0.222%、0.247%和0.317%,分别比对照提高17.16%、19.32%和10.07%,差异均显著;28~35 d时可溶性糖含量与对照差异不显著,且增幅均减小;至42 d时高温胁迫下可溶性糖含量为0.321%,比对照降低8.55%,差异显著。

    图  2  高温胁迫对文心兰新芽顶叶可溶性糖含量的影响
    Figure  2.  Effect of heat on soluble sugar content in sprouting apical leaves on an Oncidium plant

    图 3可知,对照与高温胁迫处理还原糖含量的变化趋势基本一致,总体上均持续增加,但在不同时期的增幅和含量有显著差异。高温胁迫7 d时还原糖含量为2.512%,比对照高18.83%,差异显著;随后高温胁迫下还原糖含量增幅减小,至28 d时与对照差异不显著,至35、42 d时高温胁迫下还原糖含量分别为2.750%、2.958%,与对照相比显著降低了11.66%和11.36%。

    图  3  高温胁迫对文心兰新芽顶叶还原糖含量的影响
    Figure  3.  Effect of heat on reducing sugar content in sprouting apical leaves on an Oncidium plant

    图 4可知,对照相对电导率呈现先升后降,然后再升再降的变化趋势,而高温胁迫下相对电导率先升高后趋于稳定的变化趋势,高温胁迫下相对电导率显著高于对照,提高幅度为8.49~20.66%。高温胁迫7~35 d时相对电导率持续上升,由21.48%上升到24.80%;35~42 d时下降,但差异不显著。

    图  4  高温胁迫对文心兰新芽顶叶相对电导率的影响
    Figure  4.  Effect of heat on relative conductivity of sprouting apical leaves on an Oncidium plant

    图 5可知,对照与高温胁迫处理下文心兰顶叶Pro含量的变化趋势基本一致,均呈升、降、升的变化趋势,但高温胁迫下Pro含量均显著高于对照。7~14 d时Pro含量均持续上升,至14 d时高温胁迫下Pro含量为25.69 μg·g-1,比对照高51.30%;14~28 d时Pro含量均缓慢下降;高温胁迫28~42 d时Pro含量急剧上升,至42 d时Pro含量高达28.38 μg·g-1,比对照高56.11%。

    图  5  高温胁对文心兰新芽顶叶Pro含量的变化
    Figure  5.  Effect of heat on Pro content in sprouting apical leaves on an Oncidium plant

    图 6可知,随高温胁迫时间的增加,文心兰顶叶中POD活性呈不断上升的变化趋势。处理7~21 d时POD活性上升较缓,且低于对照,但差异不显著;高温胁迫28 d以后POD活性具有较大幅度的增强,且高于对照;至35、42 d时POD活性显著提高,分别为0.0464U·g-1·min-1和0.0496 U·g-1·min-1,分别比对照提高8.47%和11.58%。

    图  6  高温胁迫对文心兰新芽顶叶POD活性的影响
    Figure  6.  Effect of heat on POD activity of sprouting apical leaves on an Oncidium plant

    叶绿素是光合作用不可缺少的物质,叶绿素含量多少与光合机能大小密切相关。本研究中受持续高温胁迫后文心兰顶叶叶绿素含量不断下降,这与春兰[4]、蝴蝶兰[7, 11]的研究结果一致。本研究中高温胁迫7 d时叶绿素含量略高于对照,这与短暂的高温提高了叶绿素合成相关酶的活性,从而加快了叶绿素的合成有关[12],银杏中也有类似的报道[13];随高温胁迫时间的延长,持续高温降低了叶绿素的合成,同时高温胁迫下活性氧氧化加速了叶绿素的降解[14],因此叶绿素含量显著降低。

    脯氨酸、可溶性糖是重要的渗透调节物质。当植物处于逆境胁迫下,脯氨酸合成酶类对脯氨酸的反馈抑制的敏感性降低,导致体内游离脯氨酸含量增加[15],且增长的百分率大小与耐热性有关[16],但胁迫温度过高时又会导致脯氨酸含量降低[17]。本研究中受高温胁迫文心兰顶叶中脯氨酸含量显著提高,且与对照保持一致的动态变化趋势,说明文心兰具有较好的耐热性。可溶性糖是重要的光合产物,本研究发现高温胁迫初期能显著提高可溶性糖的积累,但随高温胁迫时间的进一步延长,可溶性糖的积累显著下降,可能是高温胁迫后期叶绿素降解导致光合效率降低引起的,这与金线莲的研究结果一致[6]。本研究中高温胁迫初期还原糖含量显著提高,这可能与高温胁迫下植株体内碳水化合物转换以提高抗性有关[18],随高温胁迫时间的延长,还原糖含量显著低于对照,这可能与光合作用减弱而呼吸作用加强有关,这与在黄瓜中的研究结果一致[19]

    高温胁迫下膜蛋白受伤害导致细胞膜透性增加,胞液外渗而使相对电导率增大[20],因此叶片相对电导率是耐热性鉴定的重要生理指标。本研究中高温胁迫下顶叶相对电导率显著高于对照,高温胁迫前期相对电导率增幅较大,后期趋于稳定,表明高温胁迫初期一定程度上破坏了细胞膜,后期电导率的下降说明植株抗逆性增强,提高了对高温环境的适应能力。本研究中相对电导率的变化与甜椒[21]、辣椒[22]的研究结果一致。

    POD是氧化酶系统中的保护酶,是细胞内防御酶系统中重要的清除酶之一。高温胁迫下POD活性变化主要与品种耐热性、处理温度及处理时间有关[23],POD含量越高,其耐热性越好,适应性越强[24]。本研究中高温胁迫初期POD活性低于对照,但后期活性急剧增加且显著高于对照,这种变化规律与小苍兰类似[25],这可能与叶绿素降解和膜脂过氧化有关。不断升高的POD活性能分解膜脂过氧化产生的H2O2,从而防止细胞膜的伤害,表明文心兰具有很好的耐热性。

    综上所述,高温胁迫下文心兰顶叶的相对电导率及脯氨酸含量均显著高于对照,而叶绿素含量则不断降低,说明以上指标可作为鉴定文心兰耐热性的关键指标;可溶性糖含量、还原糖含量、POD活性的变化趋势则与高温胁迫的时间有关,可作为辅助指标。

  • 表  1   供试土壤主要理化性状

    Table  1   Major physiochemical properties of soils at test fields

    试验或示范类型
    Experiment or demonstration
    试验数
    No. of trials
    pH有机质
    Organic Matter/
    (g∙kg−1
    碱解氮
    Alkaline hydrolytic nitrogen/
    (mg∙kg−1
    有效磷
    Olsen-P/
    (mg∙kg−1
    速效钾
    Available K/
    (mg∙kg−1
    “3414”肥效试验
    Fertilizer effect experiment using “3414”design
    1105.2±1.424.94±10.56121.9±43.632.0±26.377.5±45.7
    有机肥替代试验
    Replacement fertilizer with organic manure
    145.7±0.519.04±6.48103.0±19.366.4±29.8120.7±33.3
    化肥推荐施肥田间示范
    Recommended fertilization demonstration
    765.6±0.719.66±8.1888.3±38.753.1±31.781.6±43.7
    有机肥替代化肥田间示范
    Organic manure replacement fertilizer demonstration
    165.6±0.417.46±7.67102.4±18.167.4±29.1121.4±33.5
    下载: 导出CSV

    表  2   甘薯有机肥替代化肥田间试验设计

    Table  2   Field experiment design on sweet potato grown under NPK fertilization with organic manure

    序号
    No.
    处理
    Treatments
    施肥量 Application rate/(kg∙hm−2
    NP2O5K2O有机肥 Organic manure
    1空白 CK0000
    2习惯施肥 FP2161141160
    3推荐施肥 RF180602250
    425%有机肥替代化肥 OR25%135451703 000
    550%有机肥替代化肥 OR50%90301136 000
    有机肥指商品有机肥,N+P2O5+K2O≥5%,养分总量以5%计,含水量以25%计;处理3、处理4和处理5为等氮磷钾养分数量。FP、RF、OR25%、OR50%处理分别表示习惯施肥、化肥推荐施肥、有机肥替代25%化肥和有机肥替代50%化肥。下同。
    Commercial organic manure contained N+P2O5+K2O≥5%, total nutrients of 5%, and moisture content of 25%; same application rates of N, P2O5, and K2O for Treatments 3, 4, and 5. FP: farmer practice; RF: recommend fertilization; OR25% and OR50%: 25% and 50% of chemical fertilizer replaced with organic manure, respectively. Same for below.
    下载: 导出CSV

    表  3   甘薯氮磷钾施肥类别及各类别的施肥效应

    Table  3   Sweet potato field classes for NPK fertilization study and resulting tuber yields

    施肥类别
    Fertilization category
    试验数
    No. of trials
    处理(6)施肥量
    Application rate of treatment 6/(kg∙hm−2
    各处理甘薯产量
    Peanut yield/(kg∙hm−2
    NP2O5K2OCKN2P2K2N0P2K2N2P0K2N2P2K0
    高产田
    High yield field
    5180±1660±17288±2435 445±7 10273 650±7 88145 510±8 09166 000±8 09163 915±8 164
    中产田
    Middle yield field
    26176±370±19237±3126 024±5 77644 571±5 68129 492±5 84636 922±6 94433 994±5 637
    中低产田
    Middle-low yield field
    28182±560±10248±1814 321±3 60327 106±4 55017 842±4 24622 478±4 14721 159±3 951
    低产田
    Low yield field
    51181±366±20248±2211 587±3 30619 339±3 50414 000±4 01915 579±4 30213 833±3 285
    下载: 导出CSV

    表  4   甘薯不同施肥类别的氮磷钾三元非结构肥效模型

    Table  4   Ternary non-structural fertilization response models for sweet potato cultivated on fields of different classes

    施肥类别
    Fertilization category
    模型参数
    Model parameter
    统计检验
    Statistical test
    模型典型性
    Model typicality
    A×103N0P0K0c1×103c2×103c3×103FR2
    高产田
    High yield field
    8.302 591.573120.420387.3403.483 74.889 21.444 218.93**0.942 0典型式
    中产田
    Middle yield field
    10.455 0115.4186.937226.1603.567 16.952 22.274 718.81**0.941 6典型式
    中低产田
    Middle-low yield field
    5.301 3119.2189.095237.5903.158 76.419 42.093 062.49**0.981 7典型式
    低产田
    Low yield field
    3.178 6150.140100.520219.1203.169 85.951 42.149 014.87**0.927 2典型式
    “**”表示P<0.01。
    “**” represents P<0.01.
    下载: 导出CSV

    表  5   基于农学效应的甘薯氮磷钾推荐施肥量

    Table  5   Limit standards of NPK fertilization based on agronomic effects for sweet potato cultivation

    施肥类别
    Fertilization categories
    空白区产量
    Blank yield/
    (kg∙hm−2
    目标产量
    Target yield/
    (kg∙hm−2
    最高施肥量及产量
    Maxium fertilizer rate and yield/(kg∙hm−2
    经济施肥量及产量
    Economic fertilizer rate and yield/(kg∙hm−2
    NP2O5K2O产量YieldNP2O5K2O产量 Yield
    高产田
    High yield field
    35 000±7 10073 000±7 9001958430572 8801918228472 833
    中产田
    Middle yield field
    26 000±5 80045 000±5 7001655721342 6361585519942 595
    中低产田
    Middle-low yield field
    14 000±3 60027 000±4 6001976724026 4001836421326 322
    低产田
    Low yield field
    11 000±3 30019000±350016568246183001456221018192
    表中各施肥类别的空白区产量和目标产量是在肥效模型计算值的基础上取整数。
    Control and target yields of each sweet potato field class were rounded values from fertilization response models.
    下载: 导出CSV

    表  6   不同有机肥替代化肥比例对甘薯产量和施肥效益的影响

    Table  6   Sweet potato yield and economic benefits under varied percentages of organic manure replacement on NPK application

    施肥类别
    Fertilization categories
    项目 Items施肥处理 Treatments方差分析
    Variance analysis
    CKFPRFOR25%OR50%
    高产田
    High yield field(n=5)
    产量 Yield/(kg∙hm−2 35 586 d 40 055 c 41 710 b 43 397 a 41 357 b F=57.2**
    增产 Yield increase/% −14.5 −4.0 4.0 −0.8
    净增收 Net income/(元∙hm−2 −668 1 −236 3 751 −408 0
    中产田
    Middle yield field(n=5)
    产量 Yield/(kg∙hm−2 23 072 c 33 477 b 34 816 b 36 969 a 34 510 b F=146.4**
    增产 Yield increase/% −33.7 −3.8 6.2 −0.9
    净增收 Net income/(元∙hm−2 −15 111 −1 889 1 450 −4 009
    中低产田
    Middle-low yield field(n=3)
    产量 Yield/(kg∙hm−2 19 051 c 28 165 b 30 492 ab 33 656 a 29 212 b F=28.2**
    增产 Yield increase/% −37.5 −7.6 10.4 −4.2
    净增收 Net income/(元∙hm−2 −14 656 −3 371 2 966 −5 470
    低产田
    Low yield field( n =1)
    产量 Yield/(kg∙hm−2 13 150 c 18 167 b 19 433 b 24 167 a 22 083 a F=6.4*
    增产 Yield increase/% −32.3 −6.5 24.4 13.6
    净增收 Net income/(元∙hm−2 −6920 −1780 5321 425
    ① “*”表示P<0.05, “**”表示P<0.01, 同列数据后不同小写字母表示差异显著(P<0.05)。②CK、FP、RF、OR25%、OR50%处理的肥料成本分别为0、2386、2505、4285和6055元∙hm−2
    ① “*”: P<0.05, “**”: P<0.01. Different lowcase letters of the same row in the table showed significant difference(P<0.05). ② Fertilizer costs of CK, FP, RF, OR25 % and OR50% were 0, 2 386, 2 505, 4 285, and 6 055 yuan·hm−2, respectively.
    下载: 导出CSV

    表  7   化肥减施增效示范田的甘薯产量和施肥效益

    Table  7   Sweet potato yield and economic benefit on demonstration field with fertilizer reduction and efficiency improvement

    施肥类别
    Fertilization categories
    项目 Items化肥推荐施肥
    Recommended fertilization
    有机肥替代化肥
    organic manure replacement of chemical fertilizer
    CKFPRFCKPFOR25/%
    高产田
    High yield field
    产量 Yield/(kg∙hm−2 37 513±7 186 47 455±1 735 51 026±3 412 32 625±1 199 45 381±1 637 48 871±1 412
    增产 Yield increase/% 7.0 7.1
    净增收
    Net income/(元∙hm−2
    5 008 3 333
    中产田
    Middle yield field
    产量 Yield/(kg∙hm−2 26 704±5 406 34 119±3 209 36 091±5 442 26 862±6 261 34 786±3 496 39 210±1 412
    增产 Yield increase/% 5.5 11.3
    净增收
    Net income/(元∙hm−2
    2457 4737
    中低产田
    Middle-low yield field
    产量 Yield/(kg∙hm−2 17 819±5 432 26 175±3 249 29 190±3 227 22 061±2 610 28 410±3 057 32 217±2 839
    增产 Yield increase/% 10.3 11.8
    净增收
    Net income/(元∙hm−2
    4 094 3 812
    低产田 Low yield field 产量Yield/(kg∙hm−2 13 537±2 256 17 611±1 663 21 291±1 400 13 158 18 141 24 192
    增产 Yield increase/% 17.3 25.0
    净增收
    Net income/(元∙hm−2
    5 271 7 177
    化肥推荐施肥的高产田、中产田、中低产田、低产田的示范田数量分别为7、40、24、5个,有机肥替代化肥的示范田数量则分别为4、5、6、1个。
    There were 7 demonstration fields for high yield, 40 for medium yield, 24 for middle-low yield, and 5 for low-yield class in RF treatment; and 4 demonstration fields for high yield, 5 for medium yield, 6 for middle-low yield, and one for low-yield class in 25% organic manure replacement treatment.
    下载: 导出CSV
  • [1] 林子龙, 杨立明, 郭其茂, 等. 福建省甘薯产业现状与发展对策 [J]. 福建农业科技, 2014(8):85−89. DOI: 10.3969/j.issn.0253-2301.2014.08.035

    LIN Z L, YANG L M, GUO Q M, et al. Present situation and development countermeasure of sweet potato industry in Fujian Province [J]. Fujian Agricultural Science and Technology, 2014(8): 85−89.(in Chinese) DOI: 10.3969/j.issn.0253-2301.2014.08.035

    [2] 张辉, 贺娟, 梁健, 等. 长江中下游薯区甘薯农户施肥现状调查分析 [J]. 江苏师范大学学报(自然科学版), 2021, 39(2):31−34.

    ZHANG H, HE J, LIANG J, et al. Investigation and analysis of farmers fertilizer application for sweetpotato in the middle and lower reaches of Yangtze River [J]. Journal of Jiangsu Normal University (Natural Science Edition), 2021, 39(2): 31−34.(in Chinese)

    [3] 王钊, 刘明慧, 高文川, 等. 陕西关中地区甘薯施肥存在的问题及建议 [J]. 农业科技通讯, 2013(8):209−210. DOI: 10.3969/j.issn.1000-6400.2013.08.083

    WANG Z, LIU M H, GAO W C, et al. Problems and suggestions of sweet potato fertilization in Guanzhong area in Shaanxi Province [J]. Bulletin of agricultural science and technology, 2013(8): 209−210.(in Chinese) DOI: 10.3969/j.issn.1000-6400.2013.08.083

    [4] 张辉, 张永春. 肥料对甘薯营养品质影响的研究进展 [J]. 江苏农业科学, 2017, 45(17):1−5.

    ZHANG H, ZHANG Y C. Effects of fertilizer on nutrient quality of sweet potato [J]. Jiangsu Agricultural Sciences, 2017, 45(17): 1−5.(in Chinese)

    [5] 赵鹏, 刘明, 靳容, 等. 长期施用有机肥对潮土区甘薯碳氮积累与分配的影响 [J]. 中国农业科学, 2021, 54(10):2142−2153. DOI: 10.3864/j.issn.0578-1752.2021.10.010

    ZHAO P, LIU M, JIN R, et al. Effects of long-term application of organic fertilizer on carbon and nitrogen accumulation and distribution of sweetpotato in FluvoAquic soil area [J]. Scientia Agricultura Sinica, 2021, 54(10): 2142−2153.(in Chinese) DOI: 10.3864/j.issn.0578-1752.2021.10.010

    [6] 邬梦成, 李鹏, 张欣, 等. 不同有机物施用对油菜-红薯轮作模式下养分吸收利用的影响 [J]. 水土保持学报, 2018, 32(1):320−326.

    WU M C, LI P, ZHANG X, et al. Effects of different organic matters application on nutrient absorption and utilization in rape and sweet potato rotation mode [J]. Journal of Soil and Water Conservation, 2018, 32(1): 320−326.(in Chinese)

    [7] 康国栋, 魏家星, 邬梦成, 等. 有机物料施用对旱地红壤作物产量和有机质活性组分的影响 [J]. 土壤, 2017, 49(6):1084−1091.

    KANG G D, WEI J X, WU M C, et al. Effects of organic material application on crop yield and active organic components in upland red soil [J]. Soils, 2017, 49(6): 1084−1091.(in Chinese)

    [8] 魏猛, 张爱君, 诸葛玉平, 等. 长期施肥下甘薯产量稳定性及品质特性研究 [J]. 西北农业学报, 2017, 26(4):588−595. DOI: 10.7606/j.issn.1004-1389.2017.04.014

    WEI M, ZHANG A J, ZHUGE Y P, et al. Study of different fertilization practices on sweetpotato yield stability and quality characteristics [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(4): 588−595.(in Chinese) DOI: 10.7606/j.issn.1004-1389.2017.04.014

    [9] 冉圆圆, 刘洪斌. 重庆市不同地貌甘薯土壤养分丰缺指标及施肥方案 [J]. 中国土壤与肥料, 2017(5):44−50,72. DOI: 10.11838/sfsc.20170508

    RAN Y Y, LIU H B. The soil fertility and fertilization strategies of sweet potato in different landforms areas of Chongqing [J]. Soil and Fertilizer Sciences in China, 2017(5): 44−50,72.(in Chinese) DOI: 10.11838/sfsc.20170508

    [10] 宁运旺, 张辉, 许仙菊, 等. 薯麦轮作体系钾肥全部施于薯季提高甘薯和周年产量 [J]. 植物营养与肥料学报, 2018, 24(4):935−946. DOI: 10.11674/zwyf.17352

    NING Y W, ZHANG H, XU X J, et al. Full application of potassium fertilizer in sweet potato to increase tuber and annual yields in sweet potato/wheat rotation [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 935−946.(in Chinese) DOI: 10.11674/zwyf.17352

    [11] 刘明, 张爱君, 陈晓光, 等. 秸秆还田配施化肥对土壤肥力及鲜食甘薯产量和品质的影响 [J]. 应用生态学报, 2020, 31(10):3445−3452.

    LIU M, ZHANG A J, CHEN X G, et al. Effects of straw returning and fertilization on soil fertility and yield and quality of edible sweetpotato [J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3445−3452.(in Chinese)

    [12] 段文学, 张海燕, 解备涛, 等. 化肥和生物有机肥配施对鲜食型甘薯块根产量、品质及土壤肥力的影响 [J]. 植物营养与肥料学报, 2021, 27(11):1971−1980. DOI: 10.11674/zwyf.2021211

    DUAN W X, ZHANG H Y, XIE B T, et al. Effects of chemical and bio-organic fertilizers on tuber yield, quality, and soil fertility of edible sweetpotato [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 1971−1980.(in Chinese) DOI: 10.11674/zwyf.2021211

    [13] 姚宝全, 徐志平, 章明清, 等. 福建主要粮油作物测土配方施肥指标体系研究Ⅲ. 区域施肥模型及其推荐施肥 [J]. 福建农业学报, 2009, 24(2):137−142. DOI: 10.3969/j.issn.1008-0384.2009.02.009

    YAO B Q, XU Z P, ZHANG M Q, et al. Soil testing and fertilization indices for major grain and oil crops in Fujian Ⅲ. models and recommendations for regional fertilization [J]. Fujian Journal of Agricultural Sciences, 2009, 24(2): 137−142.(in Chinese) DOI: 10.3969/j.issn.1008-0384.2009.02.009

    [14] 张建丽. 福建主要粮油作物测土配方施肥指标体系研究Ⅳ. 土壤速效氮磷钾测定值与最佳施肥量的关系 [J]. 福建农业学报, 2009, 24(3):246−250. DOI: 10.3969/j.issn.1008-0384.2009.03.011

    ZHANG J L. Soil testing and fertilization indices for major grain and oil crops in Fujian Ⅳ. Correlation between soil test data and fertilization model [J]. Fujian Journal of Agricultural Sciences, 2009, 24(3): 246−250.(in Chinese) DOI: 10.3969/j.issn.1008-0384.2009.03.011

    [15] 章明清, 李娟, 孔庆波, 等. 福建甘薯氮磷钾施肥指标研究 [J]. 土壤通报, 2012, 43(4):861−866.

    ZHANG M Q, LI J, KONG Q B, et al. Study on fertilization index of nitrogen, phosphorus and potassium for sweet potato in Fujian [J]. Chinese Journal of Soil Science, 2012, 43(4): 861−866.(in Chinese)

    [16] 曹榕彬. 宁德市耕地土壤养分空间分布特征分析和甘薯施肥建议 [J]. 中国土壤与肥料, 2018(2):153−160. DOI: 10.11838/sfsc.20180223

    CAO R B. Analysis of spatial distribution of soil nutrients and suggestions for fertilization of sweet potato in Ningde [J]. Soil and Fertilizer Sciences in China, 2018(2): 153−160.(in Chinese) DOI: 10.11838/sfsc.20180223

    [17] 王兴仁, 陈新平, 张福锁, 等. 施肥模型在我国推荐施肥中的应用 [J]. 植物营养与肥料学报, 1998, 4(1):67−74. DOI: 10.3321/j.issn:1008-505X.1998.01.011

    WANG X R, CHEN X P, ZHANG F S, et al. Application of fertilization model for fertilizer recommendation in China [J]. Plant Natrition and Fertilizen Science, 1998, 4(1): 67−74.(in Chinese) DOI: 10.3321/j.issn:1008-505X.1998.01.011

    [18] 李娟, 章明清, 章赞德, 等. 三元非结构肥效模型提高水稻施肥推荐的可靠性 [J]. 植物营养与肥料学报, 2019, 25(2):311−320. DOI: 10.11674/zwyf.18104

    LI J, ZHANG M Q, ZHANG Z D, et al. Increasing precision of fertilizer recommendation using ternary non-structural fertilizer response model [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(2): 311−320.(in Chinese) DOI: 10.11674/zwyf.18104

    [19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [20] 李娟, 章明清, 孔庆波, 等. 构建县域早稻氮磷钾施肥的系统聚类方法研究 [J]. 植物营养与肥料学报, 2017, 23(2):531−538. DOI: 10.11674/zwyf.16123

    LI J, ZHANG M Q, KONG Q B, et al. Building fertilization categories of N, P and K fertilization for early rice using systematic clustering method in County territory [J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 531−538.(in Chinese) DOI: 10.11674/zwyf.16123

    [21] 袁志发, 宋世德. 多元统计分析[M]. 2版. 北京: 科学出版社, 2009.
    [22]

    Food and Agriculture Organization. FAOSTAT agriculture data[OL]. [2022-04-06] . http://www.fao.org/faostat/en.

    [23] 王道中, 张永春. 安徽省甘薯生产及施肥现状调查分析 [J]. 安徽农业科学, 2010, 38(19):10024−10025. DOI: 10.3969/j.issn.0517-6611.2010.19.035

    WANG D Z, ZHANG Y C. production and fertilization Investigation and analysis on sweet potato in Anhui Province [J]. Journal of Anhui Agricultural Sciences, 2010, 38(19): 10024−10025.(in Chinese) DOI: 10.3969/j.issn.0517-6611.2010.19.035

    [24] 李秀勉. 泉州市甘薯施肥现状及建议 [J]. 福建农业, 2009(3):15.

    LI X M. Fertilization status and suggestions for sweet potato in Quanzhou city [J]. Fujian Agriculture, 2009(3): 15.(in Chinese)

    [25] 杨守春, 陈伦寿, 毛达如. 黄淮海平原主要作物优化施肥和土壤培肥技术[M]. 北京: 中国农业科技出版社, 1991.
    [26] 王兴仁, 陈伦寿, 毛达如, 等. 分类回归综合法及其在区域施肥决策中的应用 [J]. 土壤通报, 1989, 20(1):17−21.

    WANG X R, CHEN L S, MAO D R, et al. Classification regression synthetic method and its application in regional fertilization decision [J]. Chinese Journal of Soil Science, 1989, 20(1): 17−21.(in Chinese)

    [27] 毛达如, 张承东. 多点肥料效应函数的动态聚类方法 [J]. 北京农业大学学报, 1991, 17(2):49−54.

    MAO D R, ZHANG C D. Cluster Analysis of quadratic response fanction on the fertilizer dispersed experiments [J]. Journal of Beijing agricultural university, 1991, 17(2): 49−54.(in Chinese)

    [28] 金耀青, 张中原. 配方施肥方法及其应用[M]. 沈阳: 辽宁科学技术出版社, 1993.
    [29] 陈新平, 周金池, 王兴仁, 等. 小麦-玉米轮作制中氮肥效应模型的选择: 经济和环境效益分析 [J]. 土壤学报, 2000, 37(3):346−354. DOI: 10.3321/j.issn:0564-3929.2000.03.008

    CHEN X P, ZHOU J C, WANG X R, et al. Economic and environmental evaluation on models for describing crop yield response to nitrogen fertilizers at winter-wheat and summer-corn rotation system [J]. Acta Pedologica Sinica, 2000, 37(3): 346−354.(in Chinese) DOI: 10.3321/j.issn:0564-3929.2000.03.008

    [30]

    LARBI A, ETELA I, NWOKOCHA H N, et al. Fodder and tuber yields, and fodder quality of sweetpotato cultivars at different maturity stages in the West African humid forest and savanna zones [J]. Animal Feed Science and Technology, 2007, 135(1–2): 126–138.

    [31] 王汝娟, 史春余, 董庆裕, 等. 甘薯施用有机—无机缓释肥的生物学效应 [J]. 杂粮作物, 2005, 25(4):248−250.

    WANG R J, SHI C Y, DONG Q Y, et al. Biological effects of organic-inorganic slow release fertilizer on sweetpotato [J]. Rain Fed Crops, 2005, 25(4): 248−250.(in Chinese)

    [32] 魏猛, 张爱君, 李洪民, 等. 不同施肥方式对甘薯光合特性及产量的影响 [J]. 江西农业学报, 2017, 29(1):47−50.

    WEI M, ZHANG A J, LI H M, et al. Effects of different fertilization modes on photosynthetic characteristics and yield of sweet potato [J]. Acta Agriculturae Jiangxi, 2017, 29(1): 47−50.(in Chinese)

    [33]

    YANG J, GAO W, REN S. Long-term effects of combined application of chemical nitrogen with organic materials on crop yields, soil organic carbon and total nitrogen in fluvo-aquic soil [J]. Soil and Tillage Research, 2015, 151: 67−74. DOI: 10.1016/j.still.2015.03.008

    [34]

    ZHANG X B, SUN N, WU L H, et al. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China [J]. Science of the Total Environment, 2016, 562: 247−259. DOI: 10.1016/j.scitotenv.2016.03.193

  • 期刊类型引用(9)

    1. 常翠芳,郭丽娟,于宏,韩亚梅,朱景乐,武荣花. 四个长阶花品种叶片对高温胁迫形态及生理响应. 北方园艺. 2024(11): 56-63 . 百度学术
    2. 罗小燕,罗远华,易双双,李崇晖,廖易,张志群,郑碧兰,陆顺教. 不同文心兰品种耐热性指标筛选与评价体系构建. 热带作物学报. 2024(07): 1348-1358 . 百度学术
    3. 罗小燕,易双双,李崇晖,廖易,张志群,陆顺教. 兰花热胁迫响应机制及耐热性研究进展. 分子植物育种. 2023(19): 6406-6412 . 百度学术
    4. 郑素兰,林莹,黄宇,刘磊. 高温胁迫对2个矾根盆栽品种生理特性的影响. 闽南师范大学学报(自然科学版). 2021(01): 114-118 . 百度学术
    5. 冯保云,李蓉,赖钟雄,林玉玲. 文心兰HSP70基因的克隆及表达分析. 热带作物学报. 2020(04): 745-754 . 百度学术
    6. 罗远华,方能炎,林榕燕,钟淮钦,黄敏玲. 遮光处理对文心兰生长发育和生理指标的影响. 北方园艺. 2019(01): 91-97 . 百度学术
    7. 颜彩燕,边子星,杨福孙,姚肖健. 金针菇菌渣肥料的制备及其对文心兰生长发育的影响. 中国食用菌. 2019(12): 20-23 . 百度学术
    8. 罗远华,方能炎,林榕燕,钟淮钦,黄敏玲. 温度对文心兰生长特性和生理指标的影响. 福建农业学报. 2018(07): 702-707 . 本站查看
    9. 肖文芳,李佐,陈和明,吕复兵. 不同蝴蝶兰品种耐热性比较测定及综合评价. 热带农业科学. 2018(12): 43-48 . 百度学术

    其他类型引用(1)

表(7)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  202
  • PDF下载量:  23
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-04-23
  • 修回日期:  2022-05-23
  • 网络出版日期:  2022-08-28
  • 刊出日期:  2022-08-27

目录

/

返回文章
返回