• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

甘薯基部腐烂病对植株根际土壤细菌群落结构的影响

Rhizosphere Microbial Community as Affected by Sweet Potato Stem Rot Disease

  • 摘要:
      目的  探明甘薯茎基部腐烂病发生机制,为构建该病害的绿色防控体系提供依据。
      方法  以处于南北薯区交接带、南北甘薯病害发生区的浙江省台州市黄岩区西部山区为研究对象,采用Illumina高通量测序技术,对比研究甘薯茎基部腐烂病发病甘薯植株与健康甘薯植株的根际土壤细菌群落结构和多样性,及其根际土壤酶包括土壤脲酶、蔗糖酶和碱性磷酸酶活性。
      结果  甘薯茎基部腐烂病显著降低了植株根际土壤脲酶、蔗糖酶和碱性磷酸酶活性,提高了根际土壤细菌多样性指数。在门分类水平上,该病害显著降低了其植株根际土壤放线菌门、疣微菌门和拟杆菌门相对丰度,显著提高了绿湾菌门和Candidate-division-wps-2菌群的相对丰度。在属分类水平上,该病害显著提高了植株根际土壤细菌GP1、未分类的厚壁菌属和芽单胞菌属的相对丰度,显著降低了未分类的链霉菌属、链嗜酸菌属、伯克霍尔德菌属等菌群的相对丰度。
      结论  甘薯茎基部腐烂病降低了其植株根际脲酶、蔗糖酶和碱性磷酸酶活性,改变了甘薯根际土壤细菌群落的结构和多样性。

     

    Abstract:
      Objective  Microbial communities in rhizosphere soils of healthy sweet potato plants and those infected by the stem rot disease (SPSR) were compared for ecological disease control.
      Method  Rhizosphere soil samples at fields of healthy and SPSR-infected sweet potatoes in between north and south planting regions and disease occurring western hilly areas of Huangyan, Taizhou City, Zhejiang Province, were collected. Enzyme activity and microbial community in the soil were analyzed using the traditional and high throughput sequencing techniques.
      Results  Compared with the rhizosphere soils of non-infected plants, those associated with the SPSR-infected sweet potatoes exhibited significant inhibition on the activities of urease, invertase, and alkaline phosphatase as well as significant increases on the microbial diversity and richness such as Chao1 and Shannon indices. At phylum level, the average relative abundance of dominant microbes, such as Actinobacteria, Verrucomicroba, and Bacteroidetes, were significantly lower in the SPSR soil, but that of Chloroflexi and Candidate-division-wps-2 significantly higher. At genus level, the average relative abundance of GP1, Firmicutes-unclassified, and Gemmatimonas was higher in the SPSR samples, while that of Streptomycetaceae-unclassified, Streptacidiphilus, and Burkhoideria lower.
      Conclusion  In the rhizosphere soils of SPSR-infected sweet potato plants, the activities of some important soil enzymes were low. At both phylum and genus levels, the great variations in the abundance of dominant microorganisms existed between the healthy and SPSR rhizosphere soils.

     

/

返回文章
返回