Response of Bacterial Community in Soil of Banana Plantation to Combined Use of Organic and Inorganic Fertilizers
-
摘要:目的 探明化肥减量配施有机肥对香蕉土壤细菌群落结构特征的影响。方法 设计5个不同施肥处理:不施肥处理(CK,T1);25%化肥配施有机肥(T2);50%化肥配施有机肥(T3);100%化肥(100% CF,T4)和50%化肥(50% CF,T5)。采用Illumina MiSeq高通量测序平台,对土壤细菌16S rRNA基因保守区进行测序,并对不同施肥处理下土壤细菌群落数量、结构和多样性的差异进行生物信息学分析。结果 T1、T2、T3、T4和T5处理的OTUs数分别是30、33、31、34、31个。不同处理中,优势菌群所占的比例各不相同。T3处理提高了土壤中有益菌变形杆菌门(Proteobacteria)和酸杆菌门(Acidobacteria)的相对丰度。各处理土壤细菌的Shannon指数大小顺序为:T3>T5>T2>T1>T4。和单施50% CF(T5)化肥相比,50% CF配施有机肥处理(T3)提高了土壤细菌多样性。与T5处理相比,T2处理的多样性降低,说明化肥用量过低不利于土壤多样性的提高。T4处理的微生物多样性最低,表明过量的化肥施入降低了土壤微生物多样性。主坐标分析和热图分析结果表明,不同处理细菌群落结构、相对丰度和优势菌群发生了明显的变化。结论 与单施化肥相比,合理的有机无机配施能够提高土壤细菌多样性、改善土壤细菌群落结构。减氮50%配施有机肥(T3)处理不仅减少了氮肥施用量,而且增加了土壤有益细菌的相对丰度和土壤细菌多样性,有利于土壤生物肥力的提高。Abstract:Objective Effects of combined application of organic and chemical fertilizers on the bacterial community in soil of banana plantations were studied.Method Various proportions of chemical fertilizer combined with an organic fertilizer, as well as all or reduced chemical fertilizer, were mixed in the soil from a banana plantation to determine the effect of the applications on the bacterial community in soil. The treatments included the uses of no fertilizer as control (T1), 25% chemical fertilizer (T2), 50% chemical fertilizer (T3), 100% chemical fertilizer (T4), and 50% reduced chemical fertilizer without organic fertilizer (T5). 16S rRNA genes of the bacteria were analyzed by Illumina MiSeq high-throughput sequencing. A bioinformatic analysis was performed to determine the structure, abundance, and diversity of the bacterial communities in soil under treatments.Result The OTUs of the T1, T2, T3, T4, and T5 treatments were 30, 33, 31, 34, and 31, respectively. The proportion of beneficial bacteria in the soils varied by the treatments. The relative abundances of beneficial proteobacteria and acidobacteria were increased by the treatment of T3. The Shannon index of the bacteria in soil under different treatments ranked as T3>T5>T2>T1>T4. In comparison to T5, T3 improved and T2 reduced the soil bacterial diversity indicating a disadvantage of the reduced use of chemical fertilizer. However, the lowest diversity was observed under T4 which showed excessive chemical fertilization to be detrimental, nonetheless. The PCoA and heat map analyses revealed significant changes on the bacterial compositions, relative abundance, and beneficial bacteria in the soil by the treatments.Conclusion Comparing to the use of chemical fertilizer alone, appropriate combination of organic and inorganic fertilizers effectively improved the bacterial diversity and composition in soil. A 50% reduction of chemical fertilizer usage coupled with organic fertilizer (T3) could not only conserve the chemical fertilizer, but also enhance the relative abundances of beneficial bacteria and bacterial diversity resulting in an improved soil fertility.
-
铁皮石斛Dendrobium officinale是兰科石斛属多年生附生草本植物,是重要的传统名贵药材,具有益胃生津、滋阴清热等功效[1],主要分布于我国安徽、浙江、福建、广西、四川、云南等地[2]。福建省是铁皮石斛的原产地之一,野生资源丰富,目前已在纵跨境内的武夷山脉多处发现野生的铁皮石斛资源,泰宁位于武夷山脉中段的杉岭支脉东南侧,海拔落差大,境内大面积的丹霞地貌以丘陵及山地形式分布,蕴藏着丰富的野生铁皮石斛群落[3]。此前,本课题组通过对泰宁及其他来源地铁皮石斛的亲缘关系的ISSR分子标记分析发现泰宁野生铁皮石斛具有较丰富的多样性和较高的种群分化系数,且可能与其他来源地的铁皮石斛存在基因交流[3-5]。由于铁皮石斛可在种内和种间杂交[6],细胞核染色体基因组易发生重组,增加了利用细胞核染色体DNA分子标记技术分析铁皮石斛多样性原因的复杂性,因此,寻找更合适的方式研究泰宁野生铁皮石斛多样性的程度与原因具有重要意义。
叶绿体DNA作为独立的遗传单位,进化过程中不经历重组,受到的选择压力小,能直接反映植物在长期进化过程中积累的遗传变异[7],叶绿体DNA rps16序列为基因间区(intergenic spacer)或内含子(intron)非编码区,进化速率较快,已经用于桑树、桑属、枇杷、浮萍、肉苁蓉属、中国樱桃等系统进化、亲缘关系分析[8-13],已有利用叶绿体DNA matK、rbcL、psbK-psbI、psbA-trnH序列用于铁皮石斛种间和种内变异研究[14-17],但利用叶绿体DNA rps16序列分析福建泰宁野生铁皮石斛种内遗传距离及遗传多样性等还未见报道。
本研究利用叶绿体DNA rps16序列,对泰宁野生铁皮石斛进行多样性分析,旨在研究其遗传多样性及变异情况,揭示泰宁野生铁皮石斛群落内部以及与其他来源地铁皮石斛的遗传相似性和复杂性,为制定相应的保护策略及探讨泰宁野生铁皮石斛的起源和进化提供科学依据。
1. 材料和方法
1.1 试验材料
收集包括38份福建泰宁野生铁皮石斛种质在内的铁皮石斛种质46份(表 1),其中1~19号泰宁野生铁皮石斛种质由泰宁红石山生态农业科技有限公司提供(从158份泰宁野生铁皮石斛单株经ISSR亲缘关系分析划分的4个类群中选出[18]),20~38号泰宁野生铁皮石斛种质分别采集自泰宁杉城镇江家坊、杉城镇洋川、寨下大峡谷、朱口镇、梅口乡,39~46号栽培种铁皮石斛种质收集自云南文山、云南玉溪、福建连城、福建武夷山、江西龙虎山、广西容县、浙江天目山,所有材料均保存于三明市农业科学研究院药用植物研究所实验室及种质资源圃,所测定的rps16序列均已在GenBank注册(登录号见表 1)。
表 1 46份泰宁和不同地区铁皮石斛种质及来源Table 1. Orgins of 46 D. officinale isolates from Taining and other areas序号 编号 来源 类型 GenBank
登录号1 T1 福建泰宁 野生 KX354953 2 T2 福建泰宁 野生 KX354954 3 T4 福建泰宁 野生 KX354953 4 T42 福建泰宁 野生 KX354954 5 T45 福建泰宁 野生 KX354953 6 T54 福建泰宁 野生 KX354953 7 T64 福建泰宁 野生 KX354954 8 T65 福建泰宁 野生 KX354955 9 T73 福建泰宁 野生 KX354954 10 T108 福建泰宁 野生 KX354954 11 T109 福建泰宁 野生 KX354953 12 T117 福建泰宁 野生 KX354953 13 T136 福建泰宁 野生 KX354953 14 T144 福建泰宁 野生 KX354954 15 T151 福建泰宁 野生 KX354953 16 T153 福建泰宁 野生 KX354953 17 T156 福建泰宁 野生 KX354955 18 T164 福建泰宁 野生 KX354954 19 T199 福建泰宁 野生 KX354953 20 A1 福建泰宁杉城镇江家坊 野生 KX354956 21 A2 福建泰宁杉城镇江家坊 野生 KX354956 22 A3 福建泰宁杉城镇江家坊 野生 KX354956 23 A4 福建泰宁杉城镇江家坊 野生 KX354956 24 A5 福建泰宁杉城镇江家坊 野生 KX354956 25 A6 福建泰宁杉城镇江家坊 野生 KX354956 26 B1 福建泰宁杉城镇洋川 野生 KX354957 27 B2 福建泰宁杉城镇洋川 野生 KX354958 28 B3 福建泰宁杉城镇洋川 野生 KX354958 29 B4 福建泰宁杉城镇洋川 野生 KX354958 30 B5 福建泰宁杉城镇洋川 野生 KX354958 31 B6 福建泰宁杉城镇洋川 野生 KX354958 32 C 福建泰宁寨下大峡谷 野生 KX354959 33 D1 福建泰宁朱口镇蛤蟆岩 野生 KX354960 34 D3 福建泰宁朱口镇蛤蟆岩 野生 KX354961 35 D4 福建泰宁朱口镇蛤蟆岩 野生 KX354961 36 D5 福建泰宁朱口镇蛤蟆岩 野生 KX354962 37 F1 福建泰宁梅口乡野趣源 野生 KX354963 38 F2 福建泰宁梅口乡野趣源 野生 KX354963 39 G 云南文山 栽培 KX354964 40 H 云南玉溪 栽培 KX354965 41 I 福建连城冠豸山 栽培 KX354966 42 M 福建武夷山 栽培 KX354967 43 N 江西龙虎山 栽培 KX354968 44 O 广西容县 栽培 KX354969 45 P1 浙江天目山 栽培 KX354970 46 P2 浙江天目山 栽培 KX354970 此外,从GenBank上下载包括4份铁皮石斛种质在内的29份石斛属植物叶绿体DNA rps16序列,与上述46份石斛种质一起,进行rps16序列分析,编号47~75(表 2)。
表 2 已在GenBank中登录的石斛属rps16序列Table 2. rps16 sequences of Dendrobium species listed at Genbank序号 编号 物种名称 拉丁名 GenBank
登录号47 DC1 铁皮石斛 D. catenatum KJ672783.1 48 DC2 铁皮石斛 D. catenatum KJ672782.1 49 DC3 铁皮石斛 D. catenatum KJ672781.1 50 DC4 铁皮石斛 D. catenatum KJ672780.1 51 西畴石斛 D. xichouense KJ672790.1 52 广东石斛 D. wilsonii KJ672789.1 53 黄石斛 D. tosaense KJ672788.1 54 黄石斛 D. tosaense KJ672787.1 55 滇桂石斛 D. scoriarum KJ672786.1 56 滇桂石斛 D. scoriarum KJ672785.1 57 滇桂石斛 D. scoriarum KJ672784.1 58 金钗石斛 D. nobile KJ672779.1 59 金钗石斛 D. nobile KJ672778.1 60 金钗石斛 D. nobile KJ672777.1 61 金钗石斛 D. nobile KJ672776.1 62 细茎石斛 D. moniliforme KJ672775.1 63 细茎石斛 D. moniliforme KJ672774.1 64 细茎石斛 D. moniliforme KJ672773.1 65 细茎石斛 D. moniliforme KJ672772.1 66 矩唇石斛 D. linawianum KJ672771.1 67 霍山石斛 D. huoshanense KJ672770.1 68 尖刀唇石斛 D. heterocarpum KJ672769.1 69 重唇石斛 D. hercoglossum KJ672768.1 70 疏花石斛 D. henryi KJ672767.1 71 河南石斛 D. henanense KJ672766.1 72 曲茎石斛 D. flexicaule KJ672765.1 73 曲茎石斛 D. flexicaule KJ672763.1 74 棒节石斛 D. findlayanum KJ672762.1 75 钩状石斛 D. aduncum KJ672761.1 1.2 主要试剂
Taq酶和Marker购自上海宝生物工程有限公司,引物购自上海生工生物工程技术服务公司,胶回收试剂盒购自赛默飞世尔科技(中国)有限公司。
1.3 试验方法
1.3.1 基因组DNA的提取
采用改良CTAB法提取铁皮石斛叶片基因组总DNA[4]。
1.3.2 PCR扩增及序列测定
PCR引物序列依据Jing Luo等[19]所述,分别为rps16F(5′-GGT GTA GAT ATG ATC GAA AT-3′)和rps16R(5′-CCG ATA AAG AAT CAA ACT TA-3′)扩增反应在20 μL反应体系中进行[4],包含ddH2O 9 μL,2×Taq MasterMix 9 μL,引物1 μL,模板DNA 1 μL。PCR扩增程序为:94℃预变性4 min;94℃变性45 s,51~62℃退火45 s,72℃延伸1 min,共40个循环;72℃延伸10 min,4℃保存。
PCR扩增产物经1%琼脂糖凝胶电泳分离,EB染色,割取目的条带,用GeneJET胶回收试剂盒进行纯化,纯化产物送至深圳华大基因研究院测序(单链正向测序)。
1.4 数据分析
应用MEGA6.06软件,对测序序列进行比对,参考测序图,去除前端21 bp碱基和末端279 bp序列,保留599 bp进行序列特征分析,利用K-2P(Kimura 2-parameter)模型计算铁皮石斛种内遗传距离,通过1 000次重复的自展程序进行标准误的检测,采用邻接法NJ(Neighbor-Joining)构建基于K-2P距离的系统发育树。
2. 结果与分析
2.1 福建泰宁野生铁皮石斛叶绿体DNA rps16序列特征分析
通过对50份铁皮石斛(包括GenBank上已登录的4份铁皮石斛)rps16序列比对分析(表 3),共得到20个多态性位点,其中38份泰宁野生铁皮石斛共得到5个多态性位点(分别在1、29、38、41、136 bp处),多态性位点数占总数的25%,包括1、29 bp处单个碱基的缺失、41 bp处单个碱基的插入及38、136 bp处单个碱基的颠换。泰宁野生铁皮石斛共包含5种类型的rps16核苷酸序列,具有与T1相同核苷酸序列的包括T4、T45、T54、T109、T117、T136、T151、T153、T199、B2、B3、B4、B5、B6、C、D3、D4、F1、F2共20份种质;具有与T2相同核苷酸序列的包括T42、T64、T73、T108、T144、T164、B1共8份种质;具有与T65相同核苷酸序列的仅有T156和D1共3份种质;与A1相同核苷酸序列的有A2、A3、A4、A5、A6共6份种质;以及D5种质。与来自福建泰宁的T1型rps16核苷酸序列一致的铁皮石斛种质还包括H(云南玉溪)、I(连城冠豸山)、O(广西容县)、P1(浙江天目山)、P2(浙江天目山)、DC1和DC4;与来自福建泰宁的A1型rps16核苷酸序列一致的铁皮石斛种质还包括N(江西龙虎山),泰宁野生铁皮石斛T2型、T65型、D5型的rps16核苷酸序列为参比铁皮石斛种质中的独有类型。
表 3 泰宁野生铁皮石斛叶绿体DNA rps16序列比对后的差异位点Table 3. Polymorphic sites in chloroplast DNA rps16 sequences of wild D. officinale collected from Taining种质 多态性位点 1 8 17 18 21 29 30 32 34 38 41 136 189 364 490 505 521 561 572 576 T1型 T A A - T A G T - T - T T G G A A A A G T2型 . . . - . - . . - . - . . . . . . . . . T65型 - . . - . . . . - . - . . . . . . . . . A1~A6 . . . - . . . . - . - C . . . . . . . . B1 . . . - . - . . - . - . . . . . . . . . B2~B6 . . . - . . . . - . - . . . . . . . . . C . . . - . . . . - . - . . . . . . . . . D1 - . . - . . . . - . - . . . . . . . . . D3, D4 . . . - . . . . - . - . . . . . . . . . D5 . . . - . - . . - G A . . . . . . . . . F1, F2 . . . - . . . . - . - . . . . . . . . . G . . G T G . . C A . - . G . A G G G C T H . . . - . . . . - . - . . . . . . . . . I . . . - . . . . - . - . . . . . . . . . M . - . - . . . . - . - . . . . . . . . . N . . . - . . . . - . - C . . . . . . . . O . . . - . . . . - . - . . . . . . . . . P1, P2 . . . - . . . . - . - . . . . . . . . . DC1 . . . - . . . . - . - . . . . . . . . . DC2 . . . - . . . . - . - . . T . . . . . . DC3 . . . - . . A . - . - . . . . . . . . . DC4 . . . - . . . . - . - . . . . . . . . . 注:圆点表示该位点核苷酸同T1铁皮石斛种质;-代表缺失。T1型表示与T1铁皮石斛种质具有相同的核苷酸序列的编号T开头的泰宁野生类型(包括T1、T4、T45、T54、T109、T117、T136、T151、T153、T199)下同,T2型(包括T2、T42、T64、T73、T108、T144、T164),T65型(包括T65、T156) 2.2 福建泰宁野生铁皮石斛种内的遗传距离分析
应用MEGA6.06软件,基于K-2P距离模型计算铁皮石斛种内的遗传距离,结果(表 4)表明:来源于福建泰宁的38份野生铁皮石斛种内遗传距离变化范围为0~0.003 4,平均遗传距离为0.000 6,以来源于泰宁杉城镇江家坊的A1~A6号铁皮石斛与来源于泰宁朱口镇蛤蟆岩的D5号铁皮石斛间遗传距离为最大,遗传距离为0.003 4,而50份不同来源铁皮石斛种内遗传距离变化范围为0~0.018 9,平均遗传距离为0.001 3,种内最大遗传距离发生在来源于云南文山(G)的铁皮石斛与泰宁杉城镇江家坊(A1~A6)、泰宁朱口镇蛤蟆岩(D5)、江西龙虎山(N)、DC2号、DC3号铁皮石斛之间。
表 4 基于K-2P模型构建的铁皮石斛种内的遗传距离Table 4. K-2P genetic distance according to rps16 sequences of D. officinaleDC4 T1型 T2型 T65型 A1-6 B1 B2-6 C D1 D3-4 D5 F1-2 G H I M N O P1-2 DC1 DC2 DC3 T1型 T2型 0.0000 T65型 0.0000 0.0000 A1-6 0.0017 0.0017 0.0017 B1 0.0000 0.0000 0.0000 0.0017 B2-6 0.0000 0.0000 0.0000 0.0017 0.0000 C 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 D1 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 D3-4 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 D5 0.0017 0.0017 0.0017 0.0034 0.0017 0.0017 0.0017 0.0017 0.0017 F1-2 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 G 0.0171 0.0171 0.0171 0.0189 0.0171 0.0171 0.0171 0.0171 0.0171 0.0189 0.0171 H 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0000 0.0171 I 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0000 0.0171 0.0000 M 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0000 0.0171 0.0000 0.0000 N 0.0017 0.0017 0.0017 0.0000 0.0017 0.0017 0.0017 0.0017 0.0017 0.0034 0.0017 0.0189 0.0017 0.0017 0.0017 O 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0000 0.0171 0.0000 0.0000 0.0000 0.0017 P1-2 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0000 0.0171 0.0000 0.0000 0.0000 0.0017 0.0000 DC1 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0000 0.0171 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 DC2 0.0017 0.0017 0.0017 0.0034 0.0017 0.0017 0.0017 0.0017 0.0017 0.0034 0.0017 0.0189 0.0017 0.0017 0.0017 0.0034 0.0017 0.0017 0.0017 DC3 0.0017 0.0017 0.0017 0.0034 0.0017 0.0017 0.0017 0.0017 0.0017 0.0034 0.0017 0.0189 0.0017 0.0017 0.0017 0.0034 0.0017 0.0017 0.0017 0.0034 DC4 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0000 0.0171 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0017 0.0017 2.3 基于叶绿体DNA rps16序列构建的石斛属植物系统进化树分析
叶绿体DNA rps16序列基于K-2P遗传距离构建的石斛属药用植物的NJ聚类分析(图 1)表明,不同石斛属药用植物首先分为2支,其中1支由尖刀唇石斛D.heterocarpum KJ672769.1、疏花石斛D.henryi KJ672767.1组成,表明二者之间遗传距离较小,亲缘关系较近(支持率78%),并与其他石斛属药用植物间遗传距离较大,另外1支由单独聚为1支的钩状石斛D.aduncum KJ672761.1和其他石斛属药用植物组成。除DC2号D.catenatum KJ672782.1、DC3号D.catenatum KJ672781.1铁皮石斛外,其余铁皮石斛种质均位于进化树的末端。此外黄石斛D.tosaense KJ672788.1、黄石斛D.tosaense KJ672787.1与T1型、T2型、T65型铁皮石斛种质聚在1支,表明它们之间遗传距离较小,叶绿体DNA rps16序列差异较小,亲缘关系较近。
3. 讨论
叶绿体DNA作为独立的遗传单位,进化过程中不经历重组,受到的选择压力小,能直接反映植物在长期进化过程中积累的遗传变异[7],而叶绿体基因组编码区与非编码区序列进化速率相差较大,适合不同分类阶元的系统发育研究[20]。铁皮石斛叶绿体DNA种间变异研究属较低分类阶元的系统发育研究,有文献表明,铁皮石斛叶绿体DNA matK基因在4个不同居群间遗传距离均较小,为0.001[16]、铁皮石斛叶绿体DNA rbcL基因序列在6地间遗传距离均为0[17]、叶绿体DNA psbK-psbI序列在4个铁皮石斛种内均无变异位点[14]、铁皮石斛叶绿体DNA psbA-trnH基因间隔区序列在6个不同居群间没有变异位点[15],而本研究的结果表明,叶绿体DNA rps16序列在50份不同来源的铁皮石斛种内遗传距离最大达0.018 9,总共存在20个变异位点的差别,这与Luo等[19]研究结果,包括铁皮石斛在内的6种兰科植物叶绿体DNA序列中,rps16序列进化速率较快的结果相一致。本研究初步表明不同来源铁皮石斛叶绿体DNA rps16序列间遗传距离较大,变异位点较多,因此,叶绿体DNA rps16序列可作为研究铁皮石斛种内变异的DNA条形码序列之一。
中国植物志记载福建分布的石斛属植物有剑叶石斛D. acinaciforme、细茎石斛D. moniliforme、铁皮石斛和广东石斛D. wilsonii,石斛属药用植物种类较相邻的省份广东、江西、浙江更为丰富[2]。福建是野生铁皮石斛的原产地之一,本课题组在泰宁的杉城镇江家坊、杉城镇洋川、寨下大峡谷、朱口镇蛤蟆岩、梅口乡野趣源等多地发现野生铁皮石斛群落,且在叶型、叶色、茎色等性状上与现有栽培种呈现丰富的多样性[4],通过ISSR标记进一步的分析表明泰宁野生铁皮石斛具有较丰富的多样性和较高的种群分化系数[3]。在本研究中,泰宁野生铁皮石斛不同群落中共产生5种类型的叶绿体DNA rps16核苷酸序列,呈现较为丰富的细胞质叶绿体基因组核苷酸序列的多样性,其中T2型、T65型、D5型这3种类型为参比铁皮石斛种质中的独有类型,表明泰宁铁皮石斛种群内产生新的叶绿体基因组核苷酸序列碱基突变类型,而碱基突变在形成生物个体多样性中起重要作用[21],因此泰宁是福建及周边地区野生铁皮石斛的起源中心之一。
-
表 1 不同施肥处理下土壤主要细菌门的相对丰度
Table 1 Relative abundances of major bacterial phyla in soil under treatments
细菌种类Bacterial species 处理1 T1 处理2 T2 处理3 T3 处理4 T4 处理5 T5 变形杆菌门Proteobacteria 16.65 19.81 20.44 16.26 18.95 放线菌门Actinobacteria 15.78 18.75 16.44 19.09 18.17 绿弯菌门Chloroflexi 16.22 13.94 15.31 16.53 17.25 酸杆菌门Acidobacteria 11.72 12.73 16.09 15.03 13.23 厚壁菌门Firmicutes 14.61 12.14 12.09 12.39 12.64 浮霉菌门Planctomycetes 9.57 9.88 8.14 7.07 7.04 芽单胞菌门Gemmatimonadetes 2.05 2.52 1.90 1.78 2.00 拟杆菌门Bacteroidetes 2.62 2.31 1.23 1.08 1.14 疣微菌门Verrucomicrobia 3.94 1.35 1.03 0.74 0.54 糖细菌门Saccharibacteria 0.23 0.82 0.62 0.98 1.02 表 2 不同处理土壤细菌群落多样性指数
Table 2 Diversity index of bacteria in soil under treatments
处理Treatment Shannon指数Shannon index Simpson指数Simpson index 测序深度指数Sequencing depth index OTU数量OTU number 处理1 T1 9.109 0.993 0.995 2559.000 处理2 T2 9.111 0.996 0.995 2341.333 处理3 T3 9.217 0.996 0.995 2467.000 处理4 T4 8.845 0.996 0.996 2181.667 处理5 T5 9.114 0.996 0.996 2379.333 -
[1] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势 [J]. 植物营养与肥料学报, 2014(4):783−795. DOI: 10.11674/zwyf.2014.0401 JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China [J]. Journal of Plant Nutrition and Fertilizer, 2014(4): 783−795.(in Chinese) DOI: 10.11674/zwyf.2014.0401
[2] ZHOU J, GUAN D, ZHOU B, et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China [J]. Soil Biology and Biochemistry, 2015(90): 42−51.
[3] CHEN D, YUAN L, LIU Y, et al. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties [J]. European Journal of Agronomy, 2017, 90: 34−42. DOI: 10.1016/j.eja.2017.07.007
[4] 魏文良, 刘路, 仇恒浩. 有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响 [J]. 植物营养与肥料学报, 2020(8):1384−1394. DOI: 10.11674/zwyf.19511 WEI W L, LIU L, QIU H H. Effects of different organic resources application combined with chemical fertilizer on yield and nitrogen use efficiency of main grain crops in China [J]. Journal of Plant Nutrition and Fertilizers, 2020(8): 1384−1394.(in Chinese) DOI: 10.11674/zwyf.19511
[5] ZHAO J, NI T, LI J, et al. Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system [J]. Applied Soil Ecology, 2016, 99: 1−12. DOI: 10.1016/j.apsoil.2015.11.006
[6] SHI Y, LIU X, ZHANG Q, et al. Biochar and organic fertilizer changed the ammonia-oxidizing bacteria and archaea community structure of saline-alkali soil in the North China Plain [J]. Journal of Soils and Sediments, 2020(20): 12−23.
[7] 汤宏, 曾掌权, 张杨珠, 等. 化学氮肥配施有机肥对烟草品质、氮素吸收及利用率的影响 [J]. 华北农学报, 2019(4):183−191. DOI: 10.7668/hbnxb.201751264 TANG H, ZENG Z Q, ZHANG Y Z, et al. Leaf quality, nitrogen uptake and nitrogen use efficiency of tobacco under combination of chemical nitrogen fertilizer with organic fertilizer [J]. Acta Agriculturae Boreali-Sinica, 2019(4): 183−191.(in Chinese) DOI: 10.7668/hbnxb.201751264
[8] 吕凤莲, 侯苗苗, 张弘弢, 等. 塿土冬小麦-夏玉米轮作体系有机肥替代化肥比例研究 [J]. 植物营养与肥料学报, 2018(24):22−32. LV F L, HOU M M, ZHANG H T, et al. Replacement ratio of chemical fertilizer nitrogen with manure underthe winter wheat-summer maize rotation system in Lou soil [J]. Journal of Plant Nutrition and Fertilizers, 2018(24): 22−32.(in Chinese)
[9] NINH H T, GRANDY A S, WICKINGS K, et al. Organic amendment effects on potato productivity and quality are related to soil microbial activity [J]. Plant & Soil, 2015, 386: 223−236.
[10] LUAN H, GAO W, HUANG S, et al. Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system [J]. Soil and Tillage Research, 2019, 191: 185−196. DOI: 10.1016/j.still.2019.04.009
[11] JI L, NI K, WU Z, et al. Effect of organic substitution rates on soil quality and fungal community composition in a tea plantation with long-term fertilization [J]. Biology and Fertility of Soils, 2020, 56: 633−646. DOI: 10.1007/s00374-020-01439-y
[12] 宋时丽, 吴昊, 黄鹏伟, 等. 秸秆还田土壤改良培肥基质和复合菌剂配施对土壤生态的影响 [J]. 生态学报, 2021, 41(11):4562−4576. SONG S L, WU H, HUANG P W, et al. Effects of total straw incorporation combined with soil modified fertilizer substrate and compound microbial agent on soil ecology and wheat yield [J]. Acta Ecologica Sinica, 2021, 41(11): 4562−4576.(in Chinese)
[13] 林婉奇, 薛立. 基于BIOLOG技术分析氮沉降和降水对土壤微生物功能多样性的影响 [J]. 生态学报, 2020, 40(12):4188−4197. LIN W Q, XUE L. Analysis of effects of nitrogen deposition and precipitation on soil microbial function diversity based on BIOLOG technique [J]. Acta Ecologica Sinica, 2020, 40(12): 4188−4197.(in Chinese)
[14] 韦应莉, 曹文侠, 李建宏, 等. 不同放牧与围封高寒灌丛草地土壤微生物群落结构PLFA分析 [J]. 生态学报, 2018(13):4897−4908. WEI Y L, CAO W X, LI J H, et al. Phospholipidfatty acid(PLFA) analysis of soil microbial community structure with different intensities of grazing and fencing in alpine shrubland [J]. Acta Ecologica Sinica, 2018(13): 4897−4908.(in Chinese)
[15] 吕真真, 吴向东, 侯红乾, 等. 有机-无机肥配施比例对双季稻田土壤质量的影响 [J]. 植物营养与肥料学报, 2017, 23:904−913. DOI: 10.11674/zwyf.16430 LV Z Z, WU X D, HOU H Q, et al. Effect of different application ratios of chemical and organic fertilizers on soilquality in double cropping paddy fields [J]. Journal of Plant Nutrition and Fertilizers, 2017, 23: 904−913.(in Chinese) DOI: 10.11674/zwyf.16430
[16] 刘淑军, 李冬初, 高菊生, 等. 长期施肥红壤稻田肥力与产量的相关性及县域验证 [J]. 植物营养与肥料学报, 2020(7):1262−1272. DOI: 10.11674/zwyf.19447 LIU S J, LI D C, GAO J S, et al. Correlation of red paddy soil fertility with rice yield under long-term fertilization and County verification [J]. Journal of Plant Nutrition and Fertilizers, 2020(7): 1262−1272.(in Chinese) DOI: 10.11674/zwyf.19447
[17] 孙瑞波, 郭熙盛, 王道中, 等. 长期施用化肥及秸秆还田对砂姜黑土细菌群落的影响 [J]. 微生物学通报, 2015, 42(10):2049−2057. DOI: 10.13344/j.microbiol.china.150031 SUN R B, GUO X S, WANG D Z, et al. The impact of long-term application of chemical fertilizers and straw returning on soil bacterial community [J]. Microbiology China, 2015, 42(10): 2049−2057.(in Chinese) DOI: 10.13344/j.microbiol.china.150031
[18] 徐永刚, 宇万太, 马强, 等. 长期不同施肥制度对潮棕壤微生物生物量碳、氮及细菌群落结构的影响 [J]. 应用生态学报, 2010, 21(8):2078−2085. DOI: 10.13287/j.1001-9332.2010.0288 XU Y G, YU W T, MA Q, et al. Effects of long-term fertilizations on microbial biomass C and N and bacterial community structure in an aquic brown soil [J]. Chinese Journal of Applied Ecology, 2010, 21(8): 2078−2085.(in Chinese) DOI: 10.13287/j.1001-9332.2010.0288
[19] SHOKRALLA S, SPALL J L, GIBSON J F, et al. Next-generation sequencing technologies for environmental DNA research [J]. Molecular Ecology, 2012(21): 1794−1805.
[20] SCHIRMER M, IJAZ U Z, D'AMORE R, et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform [J]. Nucleic Acids Research, 2015, 43(6): e37. DOI: 10.1093/nar/gku1341
[21] BOKULICH N A, MILLS D A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities [J]. Applied and Environmental Microbiology, 2013, 79(8): 2519−2526. DOI: 10.1128/AEM.03870-12
[22] 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征 [J]. 生态环境学报, 2020(1):141−148. DOI: 10.16258/j.cnki.1674-5906.2020.01.016 GE Y L, SUN T. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil [J]. Ecology and Environmental Sciences, 2020(1): 141−148.(in Chinese) DOI: 10.16258/j.cnki.1674-5906.2020.01.016
[23] 武俊男, 刘昱辛, 周雪, 等. 基于Illumina MiSeq测序平台分析长期不同施肥处理对黑土真菌群落的影响 [J]. 微生物学报, 2018(9):1658−1671. WU J N, LIU Y X, ZHOU X, et al. Effects of long-term different fertilization on soil fungal communities in black soil based on the Illumina Mi Seq platform [J]. Acta Microbiologica Sinica, 2018(9): 1658−1671.(in Chinese)
[24] LING N, ZHU C, XUE C, et al. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis [J]. Soil Biology and Biochemistry, 2016, 99: 137−149. DOI: 10.1016/j.soilbio.2016.05.005
[25] ZENG J, LIU X, SONG L, et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition [J]. Soil Biology and Biochemistry, 2015, 92: 41−49.
[26] YE G, LIN Y, KUZYAKOV Y, et al. Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: Results of a 27-year field experiment [J]. Soil Biology and Biochemistry, 2019, 134: 15−24. DOI: 10.1016/j.soilbio.2019.03.018
[27] 王慧颖, 徐明岗, 周宝库, 等. 黑土细菌及真菌群落对长期施肥响应的差异及其驱动因素 [J]. 中国农业科学, 2018(5):914−925. WANG H Y, XU M G, ZHOU B K, et al. Response and driving factors of bacterial and fungal community to long-term fertilization in black soil [J]. Scientia Agricultura Sinica, 2018(5): 914−925.(in Chinese)
[28] XUN W, HUANG T, ZHAO J, et al. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities [J]. Soil Biology and Biochemistry, 2015, 90: 10−18. DOI: 10.1016/j.soilbio.2015.07.018
[29] 陆海飞, 郑金伟, 余喜初, 等. 长期无机有机肥配施对红壤性水稻土微生物群落多样性及酶活性的影响 [J]. 植物营养与肥料学报, 2015(3):632−643. LU H F, ZHENG J W, YU X C, et al. Microbial community diversity and enzyme activity of red paddy soil under long-term combined inorganic-organic fertilization [J]. Journal of Plant Nutrition and Fertilizer, 2015(3): 632−643.(in Chinese)
[30] YUAN H, GE T, ZHOU P, et al. Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils [J]. Journal of Soils & Sediments, 2013, 13: 877−886.
[31] 毛君杰, 肖谋良, 陈香碧, 等. 喀斯特有机烟区不同施肥模式对烟叶化学成分的影响及其与土壤微生物性质的关系 [J]. 西南农业学报, 2018(1):111−117. MAO J J, XIAO M L, CHEN X B, et al. Effect of fertilization mode on chemical components in tobacco leaves and their relationships with microbial characteristics in organic tobacco of Karst region [J]. Southwest China Journal of Agricultural Sciences, 2018(1): 111−117.(in Chinese)
[32] 张静, 可文静, 刘娟, 等. 不同深度土壤控水对稻田土壤微生物区系及细菌群落多样性的影响 [J]. 中国生态农业学报(中英文), 2019(2):277−285. ZHANG J, KE W J, LIU J, et al. Influence of water controlling depth on soil microflora and bacterial community diversity in paddy soil [J]. Chinese Journal of Eco-Agriculture, 2019(2): 277−285.(in Chinese)
[33] LÓPEZ-MONDÉJAR R, VOŘÍŠKOVÁ J, VĚTROVSKÝ T, et al. The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics [J]. Soil Biology and Biochemistry, 2015, 87: 43−50. DOI: 10.1016/j.soilbio.2015.04.008
[34] 岳宏忠, 张东琴, 侯栋, 等. 微生物菌肥部分替代化肥对设施黄瓜产量和土壤细菌群落结构的影响 [J]. 西北农林科技大学学报(自然科学版), 2022(7):118−126,137. DOI: 10.13207/j.cnki.jnwafu.2022.07.014 YUE H Z, ZHANG D Q, HOU D, et al. Effects of partial substitution of chemical fertilizer by microbial fertilizer on yield of cucumber and soil bacterial community structure in greenhouse [J]. Journal of Northwest A & F University (Natural Science Edition), 2022(7): 118−126,137.(in Chinese) DOI: 10.13207/j.cnki.jnwafu.2022.07.014
[35] 桑文, 赵亚光, 张凤华. 化肥减量配施有机液体肥对土壤微生物群落结构多样性的影响 [J]. 西南农业学报, 2020(11):2584−2590. SANG W, ZHAO Y G, ZHANG F H. Effects of chemical fertilizer reduction combined with organic liquid fertilizer on soil microbial community structure diversity [J]. Southwest China Journal of Agricultural Sciences, 2020(11): 2584−2590.(in Chinese)
[36] TANG H, LI C, XIAO X, et al. Effects of short-term manure nitrogen input on soil microbial community structure and diversity in a double-cropping paddy field of Southern China [J]. Sci Rep, 2020, 10(1): 13540. DOI: 10.1038/s41598-020-70612-y
[37] 魏巍, 许艳丽, 朱琳, 等. 长期施肥对黑土农田土壤微生物群落的影响 [J]. 土壤学报, 2013(2):372−380. DOI: 10.11766/trxb201202290053 WEI W, XU Y L, ZHU L, et al. Effect of long-term fertilization on soil microbial communities in farmland of black soil [J]. Acta Pedologica Sinica, 2013(2): 372−380.(in Chinese) DOI: 10.11766/trxb201202290053
[38] 丁建莉, 姜昕, 关大伟, 等. 东北黑土微生物群落对长期施肥及作物的响应 [J]. 中国农业科学, 2016(22):4408−4418. DOI: 10.3864/j.issn.0578-1752.2016.22.013 DING J L, JIANG X, GUAN D W, et al. Responses of micropopulation in black soil of northeast China to long-term fertilization and crops [J]. Scientia Agricultura Sinica, 2016(22): 4408−4418.(in Chinese) DOI: 10.3864/j.issn.0578-1752.2016.22.013