• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

施用酸性土壤调节剂、腐熟咖啡果皮对咖啡苗生长及土壤养分含量、酶活性的影响

Effects of Application of Acid Soil Conditioner and Fermented Coffee Peels on Growth of Coffee Seedlings and Fertility and Enzyme Activities of Soil

  • 摘要:
      目的  研究咖啡园施用酸性土壤调节剂、腐熟咖啡果皮对咖啡苗生长及土壤养分含量、酶活的影响,为促进农业废弃物咖啡果皮的综合利用和改良咖啡园酸性土壤质量提供技术支持和理论依据。
      方法  采集56年龄咖啡园土壤,添加不同量的酸性土壤调节剂克酸宝(TL)和腐熟咖啡果皮(CP),试验处理分别为:对照CK(表土100%)、TL1(TL 2%)、TL2 (TL 4%)、TL3(TL 6%)、TL4(TL 8%)、CP1 (CP 4%)、CP2(CP 8%),分析添加TL和CP对咖啡叶片光合参数、干物质积累量、土壤pH值、土壤养分含量及土壤酶活性的影响。
      结果  添加TL提高土壤pH值0.8~1.6,添加CP土壤pH值先增后降,种植6个月,土壤pH值比对照降低0.50个单位;土壤速效钾、交换性钙、交换性镁含量随TL和CP施入量增加而显著增加,CP处理全N、碱解氮、速效磷显著高于其余处理,但添加TL处理土壤速效磷显著降低,其中TL4比对照低69.34%。光合参数表现最好的是TL2、 TL3, 二磷酸核酮糖(RuBP)酶活性、净光合速率(Pn)分别比对照提高101.16%、135.30%,81.71%、80.35%。其次为CP1、CP2;添加TL和CP土壤酶活性除酸性磷酸酶(ACP)与对照差异不显著外,其余酶活均有不同程度提高。各处理碱性磷酸酶(ALP)是对照的2.05~3.71倍,过氧化氢酶(S-CAT)显著高于对照109.62%~18.60%,由高到低为CP2>CP1>TL4>TL3>TL2。脲酶(S-UE)比对照高18.70%~5.37%,最高为CP2、CP1,其次为TL1、TL4。TL2、 TL3、CP1、CP2处理不同程度促进了咖啡植株生长和干物质累积量,其中株高、茎粗比对照提高25.09%~81.29%,叶、根、茎干重和单株总干重比对照提高1.65~5.02倍,效果最显著为CP1处理。
      结论  施用适量的TL和CP改善了土壤微生物环境,提高了土壤养分有效性,促进了咖啡植株的生长。但TL添加量增加,土壤交换态钙过高会引起磷的固定,添加CP随着有机氮的矿化 ,使土壤pH值降低。

     

    Abstract:
      Objective   Means to utilize coffee peel waste and improve quality of ground soil at coffee plantations were investigated.
      Method  The soil at a 56-year-old coffee plantation was used as the base material for the pot experiment. Aside from CK using 100% plantation soil, treatments applied the mass fractions of acid soil conditioner (TL) and fermented coffee peels (CP) including TL1 (2% TL), TL2 (4% TL), TL3 (6% TL), TL4 (8% TL), CP1 (4% CP), and CP2 (8% CP) were added to the potting soil. Leaf photosynthetic properties, and RuBP activity, growth indicators, and dry biomass accumulation of the seedlings, as well as nutrient content, pH, and activities of acid phosphatase (S-ACP), alkaline phosphatase (S-ALP), catalase (S-CAT), and urease (S-UE) in soil were determined.
      Result  The addition of TL raised 0.8-1.6 on the soil pH, while CP increased it at first, then decreased, and became 0.50 lower than CK after 6 months. The available K and exchangeable Ca and Mg in soil were significantly increased with increasing TL or CP. But the available P significantly dropped by the added TL which, at TL4, was 69.34% lower than CK. The total N, alkaline N, and available P were significantly higher with CP than other treatments. TL2 and TL3 showed the greatest effects on RuBP enzyme activity with significantly 101.16% and 135.30%, respectively, and on net photosynthesis (Pn) 81.71% and 80.35%, respectively, higher than CK. And those were followed by the treatments of CP1 and CP2. All enzyme activities in the soils treated by TL and CP were higher than CK, except ACP, which was similar to CK. The S-ALP activities in the treatment soils were 2.05 to 3.71 times higher than CK. The S-CAT activities were higher than CK by 109.62%-18.60% in the order of CP2>CP1>TL4>TL3>TL2. The S-UE activities were 18.70%-5.37% higher than CK with the highest showing under CP2 and CP1 followed by TL1 and TL4. The TL2, TL3, CP1, and CP2 treatments promoted the growth and dry matter accumulation of coffee seedlings with plant height and stem diameter increases by 25.09%-81.29% and total and dry weights of leaves, roots, and stems by 1.65-5.02 times over CK. Among them, CP1 delivered the greatest rises.
      Conclusion   Application of TL and CP improved the soil microbial environment, increased the availability of soil nutrients, and promoted the coffee seedling growth. However, excessive TL could bring about high exchangeable Ca inducing P fixation, and with CP addition, the mineralization of organic N would lower the pH in soil. Consequently, the appropriate use of TL and CP was expected to achieve the goal of improving acid soil quality, utilizing coffee waste, and enhancing coffee cultivation at the plantations.

     

/

返回文章
返回