Effects of Cinnamomum bodinieri Addition in Culture Substrate on Growth and Physiochemical Characteristics of Antrodia cinnamomea
-
摘要:目的 明确添加猴樟Cinnamomum bodinieri基质对牛樟芝Antrodia cinnamomea生长及生理生化特性的影响,并筛选出适宜的猴樟茎、叶浓度。方法 比较分析在牛樟芝基础培养基中添加质量浓度分别为0.125 、0.25、0.5、1 、2 、4、8 、16、32 、64 g·L−1的猴樟嫩枝、嫩叶、枝叶混合物时,牛樟芝的生长特性、生物量、SOD活性和总三萜(TT)含量的差异。结果 在PDA培养基中添加质量浓度分别为0.5~4 g·L−1、2~8 g·L−1、1~4 g·L−1、4~16 g·L−1的猴樟嫩枝基质,牛樟芝相应表现出生长特性较优、生物量、SOD活性和TT含量较高的优势,并显著高于对照水平;在PDA培养基中添加猴樟嫩叶基质质量浓度为1~2 g·L−1时,其生长特性较优,SOD活性较高,当添加量为2~4 g·L−1时,其生物量和TT含量较高;在PDA培养基中添加猴樟枝叶混合物基质质量浓度分别为2~4 g·L−1、1~4 g·L−1、0.125~1 g·L−1、4~8 g·L−1时,其相应表现为生长特性较优、生物量、SOD活性和TT含量较高的优势。结论 研究结果表明,总体来说,在PDA培养基中添加猴樟基质均能促进牛樟芝菌丝体、生物量、SOD活性和总三萜含量的提高,其中猴樟嫩叶基质2 g·L−1对菌丝体和生物量的提高最显著、猴樟嫩枝1 g·L−1或嫩叶基质2 g·L−1对菌丝体SOD活性的促进效果最显著;猴樟嫩枝基质8 g·L−1,对菌丝体总三萜含量的促进效果最显著,达到23.73 mg·g−1,较对照组提高了81.77%。该结果是樟属植物对牛樟芝培养的补充,为牛樟芝的规模化生产和开发利用提供了理论依据。Abstract:Objective Effects and optimal amounts of branches and/or leaves of Cinnamomum bodinieri added in culture substrate on the growth and physiochemical characteristics of Antrodia cinnamomea were determined.Method The growth characteristics, biomass, SOD activity and total triterpenes (TT) content of A. cinnamomea were compared and analyzed when the young branches, leaves, both branches and leaves of C. bodinieri was added with mass concentration of 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64 g·L−1 in PDA medium.Result When various concentrations of C. bodinieri young branches 0.5–4 g·L−1, 2–8 g·L−1, 1–4 g·L−1and 4–16 g·L−1 were added to the PDA medium, the growth, biomass, SOD activity, and TT content of A. cinnamomea were significantly higher than those of control without the addition. With 1–2 g·L−1 added leaves in the substrate, A. cinnamomea grew well with an increased SOD activity; while at 2–4 g·L−1, raised biomass and TT content. By adding both branches and leaves at 2–4 g·L−1, 1–4 g·L−1, 0.125–1 g·L−1 and 4–8 g·L−1, the mushroom growth could be improved with increases on biomass, SOD activity, and TT content.Conclusion The results showed that, in general, the mycelium, biomass, SOD activity and total triterpene content of A.cinnammomea were increased by adding C. bodinieri in PDA mediu. Among them, 2 g·L−1 C. bodinieri young leaves significantly increased mycelium and biomassm. C.bodinieri young branches 1 g·L−1or leaves 2 g·L−1, the promotion effect of SOD activity in mycelium was the most significant. The 8 g·L−1 branches of C. bodinieri had the most significant promoting effect on the total triterpenoid content of mycelium, reaching 23.73 mg·g−1, which was increased by 81.77% compared with the control group. This result is a supplement to the culture of A. cinnammomea , and provided a theoretical basis for the large-scale production, development and utilization of A. cinnammomea.
-
0. 引言
【研究意义】紫黑米作为一种重要的功能稻米,富含多种维生素、花色苷及微量元素,是天然的药、食兼用的功能性保健食品,深受消费者喜爱 [1]。紫黑米种皮内沉积的花色苷是花青素与糖结合的产物,其中花青素具有抗氧化清除自由基、降低血脂、抗癌、消炎等作用[2-3],已被广泛应用于食品、化妆品、医药及保健品[4-5]。此外花青素作为天然染料应用于纺织品的研究也有所报道[6]。作为中国消费量最大的功能稻米,紫黑米具有广阔的市场前景和工业加工价值。分子标记辅助选择可以极大提升作物育种效率,加快育种进程。利用与目标基因紧密连锁的分子标记解析品种农艺性状遗传构成,可为品种的进一步应用和改良提供分子依据。【前人研究进展】我国紫黑米资源丰富,但多数代表品种均存在生育期长、产量低、抗性差等问题[7]。20世纪80年代特种稻种质资源的创新利用研究开始兴起[8],迄今已培育出黑糯1号、晚籼紫宝等一系列新的紫黑米种质[9-15]。然而与普通稻米育种研究相比,特种稻育种应用分子辅助技术的还比较少。唐清杰等应用分子标记检测和分析了海丰黑糯2号的抗病虫基因[16]。王军等[17]对香糯龙晴4号的紫色和香味进行了基因型分析。许峰等[18]将稻瘟病抗性基因导入香血糯335,并与中间品系杂交,选育出了香血稻515。刘耀光课题组[19]通过开发的新一代高效多基因载体系统TGS II(TransGene Stacking II),把花青素合成相关的8个关键基因转入水稻,实现了花青素在水稻胚乳特异合成,创造出首例富含花青素的水稻新种质“紫晶米”。【本研究切入点】前人对紫黑米的研究着重于新种质的创制和应用,分子辅助育种也仅限于个别性状基因的转育,全面解析优异种质遗传特性的研究尚鲜见报道。【拟解决的关键问题】紫两优737是福建省农科院水稻研究所利用自育的紫糯两系不育系紫392S[20]与紫糯恢复系福恢737配组育成的杂交紫糯稻新品种,是国内首个通过省级审定的紫糯两系杂交稻,填补了国内外紫糯两系杂交稻品种空白。该品种在云南、福建、安徽、广西多地试种示范,产量高、品质好、适应性广、富含花青素,具有很好的应用前景。本研究以紫两优737及其亲本紫392S、福恢737为材料,采用重要农艺性状相关基因的特异性标记对其进行检测,分析紫两优737及其亲本携带的有利等位基因,为该品种的进一步利用提供科学依据。
1. 材料与方法
1.1 水稻材料
供试水稻材料为紫两优737,以及双亲紫392S和福恢737。所检测基因座位上的对照材料包含日本晴、9311、珍汕97和明恢63等,详见表1。
表 1 检测10个基因的相关标记信息Table 1. Markers’ information for 10 genes基因
Gene标记
Marker引物序列
Primer sequence (5′-3′)退火温度
Annealing temperature/℃等位基因参照
Allele referenceGn1a Gn1a-M1[21] CTCTTGCTTCATTATCAATC 55 明恢63 Minghui 63 AAACTACACAAGAATCTGCT GS3 GS3-PstⅠ[21]
(限制性内切酶 Restriction enzyme:PstⅠ)TATTTATTGGCTTGATTTCCTGTG 55 珍汕97 Zhenshan 97,明恢63 Minghui 63 GCTGGTTTTTTACTTTCATTTGCC Hd3a hd3afnp inner[22] AGCGGCAGGAGaGTCTACAA 62 日本晴 Nipponbare, Kasalath TCaGGATCATCGTTAGCTAGGG hd3afnp outer AAtCGAGGGGAGTATATTGCTAGT GCTaCATGAGAGACCTTAGCCTT Hd1 Si9337[23] AGATGTCCCTTCACTTCAGC 60 9311,日本晴 Nipponbare CGAAACGGCCCTTGATCC wx We 2-2[24] CACTACAAGACACACTTGCAC 55 荆糯6 Jingnuo 6, 9311 GTCATCTAGCCCACCACCTT Wx-t1[25] ATGTCGGCTCTCACCACG 55 荆糯6 Jingnuo 6, 9311 ACCGACCGCTGCTGCTTG 484/W2R[26]
(限制性内切酶 Restriction enzyme:AccⅠ)CTTTGTCTATCTCAAGACAC 55 9311,明恢63 Minghui 63 TTTCCAGCCCAACACCTTAC PCR- AccⅠ [27]
(限制性内切酶 Restriction enzyme:AccⅠ)GCTTCACTTCTCTGCTTGTG 55 日本晴Nipponbare, 明恢63 Minghui 63 ATGATTTAACGAGAGTTGAA Sbe1 Sbe1[28] GAGTTGAGTTGCGTCAGATC 57 9311,日本晴 Nipponbare AATGAGGTTGCTTGCTGCTG sbe3-rs RS/SpeⅠ[29]
(限制性内切酶 Restriction enzyme:SpeⅠ)ATGTGATGTGCTGGATTTGG 55 密阳 23 Miyang 23,宜优673 Yiyou 673 TGTGGTTTTCATACCGTTCTTA AGPlar AGPlar M1[30] CGTTCAGGTTCAGGCAATCA 58 珍汕97 Zhenshan 97, 9311 GGAAGGGTGGTGATGTGGAG PUL PUL M2[30] GACAACCGTCCGCTTTAGTTTC 58 9311, 宜优673 Yiyou 673 GCATTTGAGAGGGTTTGGATTC Pb CAPSPb [31]
(限制性内切酶 Restriction enzyme:BamHⅠ)AAATCAGTTGTCCCGTCCA 58 9311,日本晴 Nipponbare TTAGGGAGTTGGTGATGGG 1.2 分子标记
应用13个分子标记(表1)对紫392S、福恢737、紫两优737的重要农艺性状相关基因的基因型进行检测。其中产量性状相关基因2个,抽穗期相关基因2个,品质相关基因5个,紫色种皮基因1个。13个标记引物序列来自前人文献报道[21-31]。
1.3 标记检测
采用CTAB法提取水稻基因组DNA,DNA质量及浓度使用Thermo Scientific NanoDrop 2000检测。PCR反应体系(10 μl):5 μl含染料2× Hieff® PCR Master mix(Yeasen Biotechnology (Shanghai) Co., Ltd.),引物1 μl (4引物标记为各引物等量混合,10 μmol·L−1),DNA模板2 μl(50~150 ng·μl−1),ddH2O 2 μL。
PCR反应程序:94 ℃预变性5 min; 94 ℃变性30 S,55~62 ℃退火30 s,72 ℃延伸1 min,35个循环;72 ℃延伸10 min。
根据扩增产物片段大小,分别采用6%非变性聚丙烯酰胺凝胶和1.5%琼脂糖凝胶电泳分离,Gelstain显色。
2. 结果与分析
2.1 产量性状相关基因Gn1a与GS3的标记检测
紫两优737在云南、福建和安徽等省区试的产量表现[1,20](表2),三地区试中紫两优737的产量均超过7500 kg·hm−2,云南区试中,紫两优737比对照癸能紫米的增产幅度达到152.1%。
Table 2. Yield performance of Ziliangyou 737 in regional trails in Yunnan, Fujian and Anhui试验类型
Type of test品种
Varieties平均产量
Average Yield/(kg·hm−2)比对照增减产
Ratio compared with CK/%云南区试 Reginal trial in Yunnan 紫两优737 Ziliangyou 737 7566.90 152.1.0 癸能紫米 Guinengzimi(CK) 3002.10 福建区试 Reginal trial in Fujian 紫两优737 Ziliangyou 737 7505.48 −3.82 宜优673 Yiyou 673(CK) 7804.07 安徽区试 Reginal trial in Anhui 紫两优737 Ziliangyou 737 8441.63 −0.16 Ⅱ优838(CK) 8456.55 Gn1a与GS3均为水稻产量性状的主要构成因子,Gn1a基因定位于水稻第1染色体,是控制水稻每穗实粒数的主效QTL。采用YAN等[21]针对Gn1a基因非翻译区存在的16 bp碱基缺失而开发的STS标记,以明恢63为对照对供试材料进行检测。结果显示所有检测材料均扩增出大小约为113 bp的片段(图1-A),即紫两优737及双亲在Gn1a座位上均携带高产突变型Ha-Gn1a。
图 1 水稻产量因子Gn1a、 GS3基因相关标记对紫两优737及其亲本的检测结果A:Gn1a-M1。M:20bp DNA Marker;1:明恢63;2:宜优673;3:紫392S;4:福恢737;5:紫两优737。B: GS3-PstⅠ,原始扩增产物(左)和酶切产物(右)。M:100 bp DNA Marker; 1:珍汕97,2:明恢63,3:紫392S,4:福恢737;5:紫两优737。Figure 1. Detection of Ziliangyou 737 and its parents with markers for rice yield components Gn1a and GS3A: Gn1a-M1. M: 20bp DNA Marker; 1: Minghui 63; 2: Yiyou 673; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. B: GS3-PstⅠ, original amplified products(left) and enzyme digestion products (right). M: 100 bp DNA Marker; 1: Zhengshan 97; 2: Minghui 63; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737.GS3位于第3染色体,是控制水稻粒重和粒长的主效QTL,也是控制水稻粒宽和籽粒充实度的微效QTL。YAN等[21]根据GS3基因第2外显子的单核苷酸差异设计CAPS标记GS3-PstⅠ。短粒型在该变异位点为半胱氨酸密码子(TGC),长粒型为终止密码子(TGA),该变异位点能被限制性内切酶PstⅠ识别。以珍汕97和明恢63为对照,采用GS3-PstⅠ标记对供试材料进行检测,各品种均扩增出大小约为512 bp的片段,经酶切处理后,仅有珍汕97的扩增产物被酶切成大小约为294 bp和218 bp的两个片段(图1-B),表明紫两优737及其两个亲本在GS3座位上均携带长粒型等位基因MH- GS3。
2.2 抽穗期相关基因标记检测
抽穗期是决定水稻品种区域与季节适应性的重要因素,且对水稻抽穗期控制具有主效作用的基因往往对产量和株高也有重要作用[23]。Hd3a编码的成花素是调控水稻抽穗通路的关键因子,在短日照下促进抽穗,长日照下推迟抽穗。利用常远等[22]根据Hd3a第4外显子的碱基突变设计的共显性分子标记hd3afnp对供试材料进行检测。结果显示,紫392S、福恢737和紫两优737的基因型分别为Hd3aNip、hd3aKasa和Hd3aNip/hd3aKasa(图2-A)。
图 2 水稻Hd3a、 Hd1基因相关标记对紫两优737及其亲本的检测结果A: hd3afnp。M:100 bp DNA Marker;1:日本晴;2:Kasalath;3:紫392S;4:福恢737;5:紫两优737。B:Si9337。M:20 bp DNA Marker;1:日本晴;2:9311;3:紫392S;4:福恢737;5:紫两优737。Figure 2. Detection of Ziliangyou 737 and its parents with markers for Hd3a and Hd1A: hd3afnp. M: 100 bp DNA Marker; 1: Nipponbare; 2: Kasalath; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. B: Si9337. M: 20 bp DNA Marker; 1: Nipponbare; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737.Hd1在短日照下激活Hd3a的表达、促进开花,长日照条件下抑制Hd3a的表达、延迟开花。陈俊宇等[23]根据珍汕97B和密阳46 Hd1基因内的序列差异设计了InDel标记Si9337,用该标记鉴定紫392S、福恢737、紫两优737的Hd1基因型,结果表明其基因型分别为Hd1jap、Hd1ind及Hd1jap /Hd1ind(图2-B)。
2.3 品质性状相关基因及紫色种皮基因Pb的标记检测
紫两优737在云南、福建区试的稻米品质测试结果显示紫两优737米质好,其直链淀粉含量分别为2.6%、2.1%、1.2%,胶稠度分别为90、97 、100 mm[1](表3)。
表 3 紫两优737在云南、福建区域试验稻米品质[1]Table 3. Rice quality of Ziliangyou 737 in regional trails in Yunnan and Fujian类别 Types 糙米率
Brown rice percentage/%精米率
Head rice percentage/%整精米率
Head rice percentage/%粒长
Grain length/mm长宽比 Ratio of grain length to width 直链淀粉 Amylase content/% 碱消值 Alkali value 胶稠度
Gel consistency/mm云南区试Regional trial in Yunnan 78.4 69.4 55.3 6.3 2.7 2.6 7.0 90 福建区试 Reginal trial of in Fujian 79.3 68.5 65.1 6.4 2.9 2.1 7.0 97 采用基于糯稻基因组第2外显子上23 bp插入片段设计的共显性STS标记We2-2[24]和Wx-t1[25]对紫392S、福恢737及紫两优737的蜡质基因进行检测,三个品种均扩增出糯稻特征条带(图3-A、图3-B),表明三个品种均含糯稻蜡质基因wx。
图 3 糯稻蜡质基因相关标记对紫两优737及其亲本的检测结果A:We 2-2。M:20 bp DNA Marker;1:荆糯6;2:9311;3:紫392S;4:福恢737;5:紫两优737。B:Wx-t1。M:20 bp DNA Marker;1:荆糯6;2:9311;3:紫392S;4:福恢737;5:紫两优737。C:484/W2R,原始扩增产物(左)和酶切产物(右);M:100 bp DNA Marker;1:9311;2:明恢63;3:紫392S;4:福恢737;5:紫两优737。D:PCR-AccⅠ,原始扩增产物(左)和酶切产物(右);M:100 bp DNA Marker;1:9311;2:明恢63;3:紫392S;4:福恢737;5:紫两优737。Figure 3. Detection of Ziliangyou 737 and its parents with markers for wxA: We 2-2. M: 20 bp DNA Marker; 1: Jingnuo 6; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. B: Wx-t1. M: 20 bp DNA Marker; 1: Jingnuo 6; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. C: 484/W2R, original amplified products (left) and enzyme digestion products (right); M: 100 bp DNA Marker; 1: 9311; 2: Minghui 63; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. D: PCR-AccⅠ, original amplified products (left) and enzyme digestion products (right); M: 100 bp DNA Marker; 1: 9311; 2: Minghui 63; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737.水稻蜡质基因第1内含子+1的碱基类型与稻米中直链淀粉含量类型直接相关。当该位置的碱基为G时,能产生较多大小为2.3 kb的Wx基因成熟mRNA,从而积累更多GBSS蛋白,使得稻米中直链淀粉含量较高;当第1内含子碱基为T时,无法正常剪接,Wx翻译受阻,合成的GBSS蛋白较少,使得稻米中直链淀粉含量较低[32]。采用标记484/W2R和PCR-AccⅠ对供试材料进行检测。结果显示,所有供试材料均分别扩增出大小约为250 bp和460 bp的目标条带,但均不能被酶切(图3-C,图3-D),说明紫392S,福恢737及紫两优737 wx基因第1内含子+1位碱基均为T型,即表现为低直链淀粉含量。
采用严长杰等[27]根据籼粳差异开发的STS标记,对供试材料的Sbe1基因型进行检测,发现紫两优737及其亲本均扩增出与籼型对照一致的大小约为548 bp的条带(图4-A),说明待测材料均携带Sbe1i型等位基因。
图 4 水稻淀粉合成相关基因、紫色种皮基因Pb相关标记对紫两优737及其亲本的检测结果A:Sbe1。M:100 bp DNA Marker。1:9311;2:明恢63;3:紫392S;4:福恢737;5:紫两优737。B:AGPlar M1。M:20 bp DNA Marker;1:珍汕97B;2:9311;3:紫392S;4:福恢737;5:紫两优737。C:PUL M2。M:20 bp DNA Marker;1:9311;2:宜优673;3:紫392S;4:福恢737;5:紫两优737。D:RS/SpeⅠ,原始扩增产物(左)和酶切产物(右)。M:100 bp DNA Marker;1:密阳23;2:宜优673;3:紫392S;4:福恢737;5:紫两优737。E:CAPSPb,原始扩增产物(左)和酶切产物(右)。M:100 bp DNA Marker;1:日本晴; 2:9311;3:紫392S;4:福恢737;5:紫两优737。Figure 4. Detection of Ziliangyou 737 and its parents with markers for starch synthesis-related genes and Pb geneA: Sbe1. M: 100 bp DNA Marker. 1: 9311; 2: Minghui 63; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. B: AGPlar M1. M: 20 bp DNA Marker; 1: Zhenshan 97B; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. C: PUL M2. M: 20 bp DNA Marker; 1: 9311; 2: Yiyou 673; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. D: RS/SpeⅠ, original amplified products (left) and enzyme digestion products (right). M: 100 bp DNA Marker; 1: Miyang 23; 2: Yiyou 673; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. E: CAPSPb, original amplified products (left) and enzyme digestion products (right). M: 100 bp DNA Marker; 1: Nipponbare; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737.使用焦磷酸化酶大亚基基因AGPlar核心标记AGPlar M1[30]对供试材料进行鉴定,结果表明紫392S为Ⅰ型等位基因,福恢737为Ⅱ型等位基因,紫两优737为Ⅰ/Ⅱ杂合型(图4-B)。
极限糊精酶基因PUL为编码脱分支酶基因之一,研究表明PUL基因对稻米蒸煮食用品质的部分理化指标如胶稠度等有显著影响[33]。采用田志喜等[30]开发的核心分子标记PUL M2对供试品种进行鉴定,三个品种均扩增出与9311一致的条带,即Ⅱ型等位基因(图4-C)。
抗性淀粉(RS)具有降血糖血脂、促进肠道健康等重要的保健功能。采用基于控制水稻RS含量基因sbe3-rs的突变位点开发的RS/SpeⅠ功能标记[29]检测供试材料。所有材料均扩增出了大小约为571 bp的条带,且都被酶切成大小约为375 bp和196 bp两个条带(图4-D),表明与对照密阳23一样均为野生型SBE3。
用根据紫色果皮Pb与白色果皮pb等位基因在第7外显子的差异设计的CAPSPb标记[31]检测供试材料。紫两优737、紫392S、福恢737和对照日本晴、9311均扩增出大小约为1198bp的目标条带,经BamHⅠ酶切处理后,紫两优737及其亲本的扩增产物均被切开(图4-E),表明所有材料均携带紫色果皮等位基因型。
3. 讨论与结论
水稻杂种优势利用在普通稻米育种实践中已经被广泛使用。本课题组采用杂交育种方法,利用紫392S与福恢737配组选育出具有紫黑色种皮的紫糯两系特种稻新品种紫两优737[1]。紫两优737是国内首个通过省级审定的紫糯两系杂交稻,填补了国内外紫糯两系杂交稻品种空白。紫两优737的成功培育,是本课题组对杂种优势原理的创新性应用,成功开拓了紫糯稻两系法杂种优势利用的新途径。经云南、福建、安徽多地示范种植,紫两优737表现出适应好、产量高,直链淀粉含量低,糯性好,食用口感佳等优点[34]。
紫两优737在云南、福建、安徽种植的品种亩产量均超过500 kg,在提高紫糯米品种产量方面取得了重大突破。检测结果表明,紫两优737及其亲本在穗实粒数主效基因Gn1a座位上均携带高产等位基因Ha-Gn1a;在粒重和粒长主效基因GS3座位上均携带长粒型等位基因MH-GS3。这些基因的存在为紫两优737区别于其他常规紫糯稻的高产特性奠定了分子基础。
抽穗期是决定水稻品种适应地区和季节的关键性状,紫两优737对环境适应性好,已经通过云南省(滇审稻2019004)、福建省(闽审稻20200067)、安徽省(皖审稻20212002)品种审定和广西引种备案。抽穗期基因的检测结果为我们解释紫两优737适应性好这一特征提供了一些分子依据。Hd3a编码的成花素是水稻抽穗调控通路中的关键因子,来自aus稻品种Kasalath的ha3aKasa相对来自温带粳稻品种日本晴的Hd3aNip是高光效基因,但会导致水稻开花推迟,影响正常生产[22]。紫两优737在该基因位点的基因型则属于产量高和抽穗延迟适中的杂合态Hd3aNip/hd3aKasa。此外抽穗期基因Hd1在短日照下激活Hd3a的表达,促进开花;长日照下抑制Hd3a表达,延迟开花[23],紫两优737在该位点也是杂合型Hd1jap /Hd1ind。
长期以来,糙米存在蒸煮难度大、食味欠佳的问题,阻碍了人们消费黑米的意愿,因而改善黑米的蒸煮食味品质是寻找开发稻米产能和营养富矿的“金钥匙”[35]。本课题培育的紫两优737具有直链淀粉含量低,糯性好,适口性好的优点。安徽区试中,紫两优737米质鉴定结果符合优质三等优质糯稻品种品质规定要求。品质相关基因检测结果表明,紫两优737的双亲均携带紫色种皮基因Pb,糯稻蜡质基因wx,淀粉分支酶基因Sbe1i和SBE3以及极限糊精酶基因PUL。在焦磷酸化酶大亚基基因AGPlar座位上,双亲分别为Ⅰ和Ⅱ型。严长杰等[28]的试验表明,蜡质基因对淀粉的理化特性具有决定性作用,在该位点不同等位基因的崩解值(Breakdown Value, BDV)、冷胶粘度(Cool Paste Viscosity, CPV)、回复值(Consistency Value, CSV)、直链淀粉含量(Amylose Content, AC)和胶稠度(Gel Consistency, GC)等都有显著或极显著差异。紫两优737含有糯稻蜡质基因wx,且其第1内含子+1的碱基类型均为T型,这一检测结果跟前人研究一致。韩月澎等[36]对籼、粳两个糯性突变品种的研究表明籼稻糯性突变品种的wx基因第1内含子剪切位点+1位的碱基由G突变为T,而粳稻糯性突变品种则与原品种相同(均为T)。进而推测wx基因第1内含子+1位碱基为T是糯稻品种的特征,该变异使得品种具有中等直链淀粉含量(AC)和较软的胶稠度(GC)[37]
除上述基因之外,紫两优737还携带一些其他性状的有利等位基因,如分蘖角基因TAC1、氮高效利用基因NRT1.1B等。前人研究表明硝酸盐转运蛋白NRT1.1B的自然变异是导致水稻籼粳间氮利用效率差异的重要原因,田间试验证明携带籼型等位基因NRT1.1B的粳稻品种在正常施肥条件下增产15%[38]。这些基因对紫两优737优异农艺性状形成的贡献还有待进一步探讨。
综上所述,本研究通过分析紫糯两系特种稻紫两优737重要农艺性状的遗传构成,初步阐释了紫两优737具有的高产、适应性好、优质等优异农艺性状的分子基础。研究结果为紫两优737及其亲本在育种和生产上的进一步应用提供了理论依据,也为后续的定向改良工作奠定了基础。
-
图 2 添加猴樟基质对牛樟芝SOD活性的影响
A:猴樟嫩枝基质;B:猴樟嫩叶基质;C:猴樟枝叶混合基质。小写字母表示在0.05水平差异显著,下同。
Figure 2. Effect of C. bodinieri addition in culture substrate on SOD activity of A. cinnamomea
A: C. bodinieri branches; B: C. bodinieri leaves; C: both branches and leaves of C. bodinieri. Data with different lowercase letters indicate significant differences at 0.05 level. Same for Fig.3.
表 1 添加猴樟嫩枝基质对牛樟芝生长特性的影响
Table 1 Effect of C. bodinieri branches addition in culture substrate on growth of A. cinnamomea
处理
Treatments菌落直径
Colony diameter/mm菌落颜色
Colony color菌丝密度
Colony density菌落长势
Growth tendency生长速度
Growth speed/(mm·d−1)生长指数
Growth indexPDA-0 34.08±9.82 f ☆ ++ 1.5 1.14±0.33 e 1.71±0.50 f Z-0.125 47.20±6.50 d ☆ ++ 1.5 1.58±0.22 d 2.37±0.33 e Z-0.25 51.93±8.20 cd ☆☆ +++ 2.5 1.73±0.27 cd 4.33±0.68 d Z-0.5 58.60±8.56 ab ☆☆☆ +++ 3 1.95±0.29 bc 5.85±0.87 ab Z-1 59.88±10.58 ab ☆☆☆ +++ 3 1.90±0.35 bc 5.70±1.05 ab Z-2 62.36±10.33 a ☆☆☆ +++ 3 2.00±0.34 ab 6.24±1.02 a Z-4 55.30±7.69 bc ☆☆ +++ 2.5 1.84±0.26 bc 4.60±0.65 bc Z-8 51.92±7.00 cd ☆☆ +++ 2.5 1.73±0.23 cd 4.33±0.58 d Z-16 49.71±9.65 d ☆☆ +++ 2.5 1.99±0.32 b 4.98±0.8 b Z-32 39.93±5.23 e ☆☆ ++ 2 2.00±0.17 b 4.00±0.34 d Z-64 38.50±5.16 ef ☆☆ ++ 2 2.28±0.17 a 4.56±0.34 cd ① “+”越多,密度越高;“☆”越多,颜色越深;菌落长势评级数值越高,长势越好。菌落长势的评级标准= (菌丝密度×菌落颜色)/2[22] 。② 表中不同小写字母表示在0.05水平差异显著;③ Z:猴樟嫩枝;Y:猴樟嫩叶;ZY:猴樟嫩枝叶混合;基质代号后的数值为添加量 (g·L−1)。下同。
① More "+" indicates greater density; more "☆", darker color; and higher colony growth rating, better colony growth. Rating standard of colony growth = (mycelium density × colony color) /2[22].② Data with different lowercase letters on same column indicate significant differences at 0.05 level. ③ Z: C. bodinieri branches; Y: C. bodinieri leaves; ZY: C. bodinieri both branches and leaves. Numbers in the treatment name were addition amount of C.bodinieri branches(g·L-1). Same for below.表 2 添加猴樟嫩叶基质对牛樟芝生长特性的影响
Table 2 Effect of C. bodinieri leaves addition in culture substrate on growth of A. cinnamomea
处理
Treatments菌落直径
Colony diameter/mm菌落颜色
Colony color菌丝密度
Colony density菌落长势
Growth tendency菌落生长速度
Growth speed/(mm·d−1)生长指数
Growth IndexPDA-0 34.08±9.82 e ☆ ++ 1.5 1.14±0.33 b 1.71±0.59 g Y-0.125 53.75±0.75 cd ☆☆ ++ 2 1.79±0.02 ab 3.58±0.04 f Y-0.25 54.17±6.18 cd ☆☆ ++ 2 2.14±0.54 ab 4.28±1.08 de Y-0.5 58.70±9.08 c ☆☆ ++ 2 1.96±0.30 ab 3.92±0.60 ef Y-1 71.19±6.96 b ☆☆☆ +++++ 4 2.37±0.23 a 9.49±0.92 a Y-2 86.60±4.28 a ☆☆☆ ++++ 3.5 2.65±0.14 a 9.28±0.49 a Y-4 69.44±8.49 b ☆☆ +++ 2.5 2.11±0.28 ab 5.28±0.70c Y-8 56.50±6.35 c ☆☆ +++ 2.5 2.55±0.21 a 6.38±0.53 b Y-16 52.25±7.49 cd ☆☆ +++ 2.5 2.41±0.25 ab 6.03±0.63 b Y-32 42.42±8.82 de ☆☆ ++ 2 2.41±0.29 ab 4.82±0.48 cd Y-64 35.50±8.89 e ☆☆ ++ 2 2.52±0.30 ab 5.04±0.60 c 表 3 添加猴樟枝叶混合物基质对牛樟芝生长特性的影响
Table 3 Effect of adding mixture of C. bodinieri branches and leaves in culture substrate on growth of A. cinnamomea
处理
Treatments菌落直径
Colony diameter/mm菌落颜色
Colony color菌丝密度
Colony density菌落长势
Growth tendency菌落生长速度
Growth speed/(mm·d−1)生长指数
Growth indexPDA-0 34.08±4.82 d ☆ ++ 1.5 1.14±0.33 c 1.71±0.50 e ZY-0.125 47.86±5.67 abcd ☆☆ ++ 2 1.93±0.36 ab 4.83±0.90 bc ZY-0.25 52.42±6.30 abc ☆☆ ++ 2 1.75±0.21 ab 4.37±0.53 cd ZY-0.5 55.57±1.95 abc ☆☆ +++ 2.5 1.69±0.07 b 5.06±0.21 b ZY-1 57.21±3.75 ab ☆☆☆ ++ 2.5 1.91±0.12 ab 4.78±0.30 bcd ZY-2 61.06±7.80 a ☆☆☆☆☆ ++++ 4.5 2.04±0.26 ab 6.12±0.78 a ZY-4 61.94±5.10 a ☆☆☆☆ ++++ 4 2.06±0.17 a 6.19±0.51 a ZY-8 54.63±8.84 abc ☆☆☆ +++ 3 1.82±0.29 ab 4.55±0.73 cd ZY-16 48.17±7.94 abcd ☆☆ +++ 2.5 1.94±0.29 ab 4.85±073 bc ZY-32 43.10±5.62 bcd ☆☆ ++ 2 2.44±0.19 ab 4.88±0.38 bc ZY-64 42.25±10.08 cd ☆☆ ++ 2 2.08±0.34 a 4.16±0.68 d 表 4 添加猴樟基质对牛樟芝生物量的影响
Table 4 Effect of C. bodinieri addition in culture substrate on biomass of A. cinnamomea
处理
Treatments干重
Dry weight/g处理
Treatments干重
Dry weight/g处理
Treatments干重
Dry weight/gPDA-0 0.06±0.01 d PDA-0 0.06±0.01 d PDA-0 0.06±0.01 e Z-0.125 0.07±0.02 cd Y-0.125 0.07±0.02 d ZY-0.125 0.09±0.01 de Z-0.25 0.09±0.01 bcd Y-0.25 0.07±0.03 d ZY-0.25 0.11±0.02 bcde Z-0.5 0.11±0.02 bcd Y-0.5 0.09±0.03 cd ZY-0.5 0.16±0.05 abcd Z-1 0.12±0.03 bcd Y-1 0.14±0.02 bcd ZY-1 0.20±0.02 a Z-2 0.19±0.03 a Y-2 0.24±0.07 a ZY-2 0.19±0.05 ab Z-4 0.15±0.06 ab Y-4 0.20±0.05 ab ZY-4 0.17±0.04 abc Z-8 0.13±0.03 abc Y-8 0.18±0.04 abc ZY-8 0.16±0.04 abcd Z-16 0.12±0.02 bcd Y-16 0.13±0.06 bcd ZY-16 0.16±0.04 abcd Z-32 0.09±0.02 bcd Y-32 0.11±0.05 bcd ZY-32 0.14±0.03 abcd Z-64 0.09±0.02 bcd Y-64 0.10±0.02 bcd ZY-64 0.10±0.02 cde -
[1] 吴雨. 皿培式牛樟芝化学成分及质量控制和活性研究[D]. 厦门: 厦门大学, 2018. WU Y. Study on chemical composition and quality control and activities of the Petri-dish cultured Antrodia camphorate[D]. Xiamen : Xiamen University, 2018.
[2] 冯路瑶. 牛樟芝人工培养工艺及三萜类成分产生规律的研究[D]. 烟台: 鲁东大学, 2017. FENG L Y. Studies on artificial culture and the total triterpenes producing in Antrodia camphorata[D]. Yantai: Ludong University, 2017.
[3] CHERNG I H, CHIANG H C, CHENG M C, et al. Three new triterpenoids from Antrodia cinnamomea [J]. Journal of Natural Products, 1995, 58(3): 365−371. DOI: 10.1021/np50117a004
[4] CHENG I H, WU D P, Chiang H C. Triterpenoids from Antrodia cinnamomea [J]. Phytochemistry, 1996, 41(1): 263−267. DOI: 10.1016/0031-9422(95)00541-2
[5] NAKAMURA N, HIRAKAWA A, GAO J J, et al. Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line [J]. Journal of Natural Products, 2004, 67(1): 46−48. DOI: 10.1021/np030293k
[6] MENG L M, PAI M H, LIU J J, et al. Polysaccharides from extracts of Antrodia camphorata mycelia and fruiting bodies modulate inflammatory mediator expression in mice with polymicrobial Sepsis [J]. Nutrition (Burbank, Los Angeles County, Calif ), 2012, 28(9): 942−949. DOI: 10.1016/j.nut.2012.01.006
[7] 张远腾, 李晓波. 牛樟芝化学成分及其药理作用研究进展 [J]. 中草药, 2016, 47(6):1034−1042. ZHANG Y T, LI X B. Research progress on active components of Antrodia cinnamomea and their pharmacological effects [J]. Acupuncture Research, 2016, 47(6): 1034−1042.(in Chinese)
[8] SONG T Y, YEN G C. Antioxidant properties of Antrodia cinnamomea in submerged cultures [J]. J Agri Food Chem, 2002, 50(11): 3322−3327. DOI: 10.1021/jf011671z
[9] HUANG T T, WU S P, CHONG K Y, et al. The medicinal fungus Antrodia cinnamomea suppresses inflammation by inhibiting the NLRP3 inflammasome [J]. Journal of Ethnopharmacology, 2014, 155(1): 154−164. DOI: 10.1016/j.jep.2014.04.053
[10] HSU Y L, KUO P L, CHO C Y, et al. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor kappaB pathway [J]. Food and Chemical Toxicology, 2007, 45(7): 1249−1257. DOI: 10.1016/j.fct.2007.01.005
[11] HSIAO G, SHEN M Y, LIN K H, et al. Antioxidative and hepatoprotective effects of Antrodia camphorata extract [J]. Journal of Agricultural and Food Chemistry, 2003, 51(11): 3302−3308. DOI: 10.1021/jf021159t
[12] KUO M C, CHANG C Y, CHENG T L, et al. Immunomodulatory effect of Antrodia camphorata mycelia and culture filtrate [J]. Journal of Ethnopharmacology, 2008, 120(2): 196−203. DOI: 10.1016/j.jep.2008.08.011
[13] 李晶, 林雄杰, 王泽辉, 等. 牛樟芝鲨烯环氧酶基因的克隆、生物信息学及表达分析 [J]. 中草药, 2018(10):2440−2446. DOI: 10.7501/j.issn.0253-2670.2018.10.028 LI J, LIN X J, WANG Z H, et al. Cloning, bioinformatics, and expression analysis of squalene epoxidase in Antrodia cinnamomea [J]. Chinese Traditional and Herbal Drugs, 2018(10): 2440−2446.(in Chinese) DOI: 10.7501/j.issn.0253-2670.2018.10.028
[14] CHIU K Y, WU C C, CHIA C H, et al. Inhibition of growth, migration and invasion of human bladder cancer cells by antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, and its molecular mechanisms [J]. Cancer Letters, 2016, 373(2): 174−184. DOI: 10.1016/j.canlet.2015.11.046
[15] LU M C, EL-SHAZLY M, WU T Y, et al. Recent research and development of Antrodia cinnamomea [J]. Pharmacology & Therapeutics, 2013, 139(2): 124−156.
[16] 张东柱. 台湾特有珍贵药用真菌牛樟芝 [J]. 食药用菌, 2011(1):33−34. ZHANG D Z. Taiwan unique precious medicinal fungus Antrodia cinnamomea [J]. Edible and Medicinal Mushrooms, 2011(1): 33−34.(in Chinese)
[17] 李菁, 胡佳, 陈绪涛, 等. 珍稀药用真菌牛樟芝的研究与利用进展 [J]. 食药用菌, 2022(2):103−108. LI J, HU J, CHEN X T, et al. Advances in the research and utilization of rare medicinal mushroom Antrodia camphorata [J]. Edible and Medicinal Mushrooms, 2022(2): 103−108.(in Chinese)
[18] CHANG T T, CHOU W N. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan [J]. Mycol Res, 1995, 99(6): 756−758. DOI: 10.1016/S0953-7562(09)80541-8
[19] 李晶, 夏舒宁, 张黛, 等. 不同菌草对皿培牛樟芝菌丝体的影响 [J]. 北方园艺, 2022(8):108−115. LI J, XIA S N, ZHANG D, et al. Effects of different Juncao on solid cultured mycelium of Antrodia camphorata [J]. Northern Horticulture, 2022(8): 108−115.(in Chinese)
[20] 张知晓, 季梅, 刘凌, 等. 外源茉莉酸甲酯对牛樟芝产总三萜及多糖含量的影响 [J]. 江苏农业科学, 2019(19):133−133,134. ZHANG Z X, JI M, LIU L, et al. Impact of exogenous methyl jasmonate on total triterpenoids and polysaccharide contents of Antrodia camphorate [J]. Jiangsu Agricultural Sciences, 2019(19): 133−133,134.(in Chinese)
[21] 谢春芹, 许俊齐, 曹正, 等. 牛樟芝液体培养基优化及饮品加工工艺研究 [J]. 食品研究与开发, 2018(17):64−69. DOI: 10.3969/j.issn.1005-6521.2018.17.012 XIE C Q, XU J Q, CAO Z, et al. The research of optimization of liquid medium and technology of drink processing of Antrodia camphorata [J]. Food Research and Development, 2018(17): 64−69.(in Chinese) DOI: 10.3969/j.issn.1005-6521.2018.17.012
[22] 赵能, 原晓龙, 陈剑, 等. 不同碳氮源对牛樟芝菌丝体生长的影响 [J]. 西部林业科学, 2016(4):7−12. DOI: 10.16473/j.cnki.xblykx1972.2016.04.002 ZHAO N, YUAN X L, CHEN J, et al. Effect of different carbon and nitrogen sources on mycelia growth of Antrodia cinnamomea [J]. Journal of West China Forestry Science, 2016(4): 7−12.(in Chinese) DOI: 10.16473/j.cnki.xblykx1972.2016.04.002
[23] 周夏, 王超. 牛樟芝高产总三萜固体培养基的优化 [J]. 食品科技, 2021(5):38−44. DOI: 10.13684/j.cnki.spkj.2021.05.007 ZHOU X, WANG C. Optimization of solid medium for triterpenoids-enriched Antrodia camphorata [J]. Food Science and Technology, 2021(5): 38−44.(in Chinese) DOI: 10.13684/j.cnki.spkj.2021.05.007
[24] 李捷. 云南樟科植物区系地理 [J]. 云南植物研究, 1992(4):353−361. LI J. The floristic geography of lauraceous plants in Yunnan [J]. Acta Botanica Yunnanica, 1992(4): 353−361.(in Chinese)
[25] 杨永, 刘冰. 中国樟科物种编目: 问题和展望 [J]. 生物多样性, 2015(2):232−236. DOI: 10.17520/biods.2015027 YANG Y, LIU B. Species catalogue of Lauraceae in China: Problems and perspectives [J]. Biodiversity Science, 2015(2): 232−236.(in Chinese) DOI: 10.17520/biods.2015027
[26] 张倩倩, 黄青. 基于香草醛-高氯酸显色反应测定灵芝三萜的方法探讨与修正 [J]. 菌物学报, 2018, 37(12):1792−1801. ZHANG Q Q, HUANG Q. Revised method for determining Ganoderma Lingzhi terpenoids by UV-Vis spectrophotometry based on colorimetric vanillin perchloric acid reaction [J]. Mycosystema, 2018, 37(12): 1792−1801.(in Chinese)
[27] 孟红岩, 郭莺, 林文珍, 等. 3种樟属植物对皿式培养牛樟芝菌丝生长的影响 [J]. 西南农业学报, 2018(10):2173−2178. MENG H Y, GUO Y, LIN W Z, et al. Effects of three Cinnamomum plants on hyphae growth of plate cultured Antrodia camphorata [J]. Southwest China Journal of Agricultural Sciences, 2018(10): 2173−2178.(in Chinese)
[28] 陆震鸣. 樟芝深层液态发酵及其三萜类化合物的研究[D]. 无锡: 江南大学, 2009. LU Z M. Study on Submerged Culture of Antrodia camphorcta and its Triterpenoids[D]. Wuxi: Jiangnan University, 2009. (in Chinese)
[29] 汪雯翰, 孙太萍, 杨海芮, 等. 樟芝子实体和菌丝体萃取物的抑菌及抗氧化活性 [J]. 食用菌学报, 2016(2):79−83. DOI: 10.16488/j.cnki.1005-9873.2016.02.016 WANG W H, SUN T P, YANG H R, et al. Antibacterial and anti-oxidant properties of extracts derived from fruit bodies and mycelia of Taiwanofungus camphoratus [J]. Acta Edulis Fungi, 2016(2): 79−83.(in Chinese) DOI: 10.16488/j.cnki.1005-9873.2016.02.016
[30] YANG F C, YANG Y H, LU H C. Enhanced antioxidant and antitumor activities of Antrodia cinnamomea, cultured with cereal substrates in solid state fermentation[J] Biochemical Engineering Journal, 2013, 78: 108-113.
[31] 刁浩. 外源添加物对牛樟芝液体发酵的影响[D]. 北京: 北京化工大学, 2019. DIAO H. Effects of exogenous additives on liquid fermentation of antrodia cinnamomea[D]. Beijing: Beijing University of Chemical Technology, 2019.