• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

烟秆与竹炭基肥对植烟土壤碳氮组分及微生物的影响

Effects of Tobacco Stalk Biochar- and Bamboo Biochar-based Fertilizers on Carbon, Nitrogen, and Microbes in Soil of Tobacco Field

  • 摘要:
      目的  通过大田试验,研究烟秆和竹炭基肥施用对植烟土壤碳氮组分及微生物的影响,为提升植烟土壤质量提供依据。
      方法  设置不施肥、烟草专用肥、烟秆炭基肥及竹炭基肥4个处理,研究烟秆与竹炭基肥施用后植烟土壤pH、碳、氮组分变化规律及其对酶活性、微生物群落的影响。
      结果  与烟草专用肥处理相比,施用烟秆炭基肥和竹炭基肥,土壤pH均提高0.5个单位以上,可溶性有机碳含量分别提高21.4%和30.7%,易氧化有机碳含量分别提高32.4%和17.9%,可溶性有机氮含量分别提高50.7%和37.7%,颗粒有机氮含量分别提高28.0%和12.7%,土壤蔗糖酶活性分别提高9.4%和3.6%,微生物量碳含量均提高30%以上。烟秆炭基肥处理土壤细菌群落Chao1指数与烟草专用肥处理和竹炭基肥处理相比分别显著提高5.4%和3.2%,而三者间的土壤细菌群落Observed species和Shannon指数无显著差异。烟秆和竹炭基肥处理均影响土壤细菌群落组成结构,变形菌门与不施肥处理相比分别下降5.0%和3.4%。与烟草专用肥处理相比,竹炭基肥处理厚壁菌门丰度提高18.3%,烟秆炭基肥处理玫瑰弯菌属丰度提升64.8%。
      结论  烟秆炭基肥及竹炭基肥均可提高土壤碳、氮组分含量,土壤酶活性和微生物群落丰度,进而优化土壤细菌群落结构。与竹炭基肥相比,烟秆炭基肥对改善土壤环境的效果更为明显。

     

    Abstract:
      Objective   Effects of applying tobacco stalk biochar- or bamboo biochar-based fertilizer on the carbon, nitrogen, and microorganisms in soil of tobacco-growing fields were compared.
      Method  In a field experimentation, treatments using no fertilizer as control (CK), a fertilizer designed for tobacco farming (TF), a tobacco stalk biochar-based fertilizer (TBF), or a bamboo biochar-based fertilizer (BBF) were conducted. pH, carbon, nitrogen, enzyme activity, and microbial community of the soil samples were monitored.
      Result   Compared to TF, either TBF or BBF raised by more than 0.5 on soil pH and on microbial biomass carbon by more than 30%; on soluble organic carbon, TBF did by 21.4% and BBF by 30.7%; on oxidizable organic carbon, TBF did by 32.4% and BBF by 17.9% (p<0.05); on soluble organic nitrogen, TBF did by 50.7% and BBF by 37.7%; on particulate organic nitrogen, TBF did by 28.0% and BBF by 12.7%; and on invertase activity, TBF did by 9.4% and BBF by 3.6%. The Chao1 index of the microbial community in the TBF-treated soil was significantly higher than that of TF-treated counterpart by 5.4% and that of BBF-treated soil by 3.2%. However, there were no significant differences on the observed species or Shannon index of the microbial communities in soils under different treatments. Both TBF and BBF significantly affected the structure of the microbial community in the soil. Notably, the Proteobacteria population decreased by 5.0% under TBF treatment and by 3.4% under BBF treatment in comparison to CK. Even when TF was applied, BBF still managed to generate 18.3% greater abundance on Firmicutes, while TBF 64.8% on Curvularia, in the soil.
      Conclusion  Either TBF or BBF treatment could increase the content of carbon, nitrogen, enzyme activity, and microbial abundance in the tobacco field soil. It helped optimize the structure of the microbial community as well. However, TBF seemed to benefit the improvements more than BBF did.

     

/

返回文章
返回