Loading [MathJax]/jax/output/SVG/jax.js
  • 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

温度对红肩瓢虫Harmonia dimidiate Fabricius生长发育的影响

孙莉, 陈霞, 郑涵靑, 王智卿, 方桂花

孙莉,陈霞,郑涵靑,等. 温度对红肩瓢虫Harmonia dimidiate Fabricius生长发育的影响 [J]. 福建农业学报,2023,38(6):732−738. DOI: 10.19303/j.issn.1008-0384.2023.06.012
引用本文: 孙莉,陈霞,郑涵靑,等. 温度对红肩瓢虫Harmonia dimidiate Fabricius生长发育的影响 [J]. 福建农业学报,2023,38(6):732−738. DOI: 10.19303/j.issn.1008-0384.2023.06.012
SUN L, CHEN X, ZHENG H Q, et al. Effect of Ambient Temperature on Growth and Development of Harmonia dimidiata Fabricius [J]. Fujian Journal of Agricultural Sciences,2023,38(6):732−738. DOI: 10.19303/j.issn.1008-0384.2023.06.012
Citation: SUN L, CHEN X, ZHENG H Q, et al. Effect of Ambient Temperature on Growth and Development of Harmonia dimidiata Fabricius [J]. Fujian Journal of Agricultural Sciences,2023,38(6):732−738. DOI: 10.19303/j.issn.1008-0384.2023.06.012

温度对红肩瓢虫Harmonia dimidiate Fabricius生长发育的影响

基金项目: 国家重点研发计划(2021YFD1400800);福建省自然科学基金项目(2022J01456、2020J011355);福建省科技计划公益类专项(2020R1024001、2020R1024006);福建省农业科学院科技创新团队建设项目(CXTD2021016);福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021011);福建省农业科学院农业科技专项(YDXM2021002、ZYTS2021005);福建省农业科学院对外合作项目(DWHZ2022-19)
详细信息
    作者简介:

    孙莉(1986 —),女,硕士,助理研究员,研究方向:生物防治(E-mail:215860250@qq.com

    通讯作者:

    陈霞(1975 —),女,硕士,副研究员,研究方向:生物防治(E-mail: 405593754@qq.com

  • 中图分类号: S435

Effect of Ambient Temperature on Growth and Development of Harmonia dimidiata Fabricius

  • 摘要:
      目的  研究温度对红肩瓢虫(Harmonia dimidiate Fabricius)生长发育的影响,探讨其大量扩繁及生防应用的适宜温度。
      方法  以地中海粉螟(Ephestia kuehniella Zeller)卵为饲料,设置15、20、25、30和32 ℃等5个温度处理,研究温度对红肩瓢虫各阶段发育历期及存活率影响,采用最小二乘法测算红肩瓢虫各发育阶段的发育起点温度和有效积温,采用线性日度方程模拟温度与红肩瓢虫发育速率间的关系。
      结果  20~30 ℃的温度范围适于红肩瓢虫卵的孵化,孵化率均达85%以上;发育至成虫的总存活率以20 ℃时最高,达87.50%,其次为25 ℃(82.50%)>30 ℃(77.50%)>32 ℃(45.00%)>15 ℃(35.00%),可见15 ℃低温和32 ℃高温均不适宜红肩瓢虫存活。15~32 ℃范围内,红肩瓢虫均可完成发育,温度升高发育速率加快、发育历期缩短,20~32 ℃区间内各处理间的总发育历期均无显著性差异,而15 ℃时极显著长于其他温度处理,说明15 ℃低温不适宜红肩瓢虫生长发育。红肩瓢虫各发育阶段中,2龄幼虫的发育起点温度最高,为12.74 ℃,蛹期最低,为9.24 ℃,从卵至成虫整个发育历期的发育起点温度和有效积温分别为9.87 ℃和324.82日·度。
      结论  综合存活率与发育历期,以地中海粉螟卵为饲料,20~30 ℃为红肩瓢虫生长发育的适宜温度,本研究结果为红肩瓢虫的大量扩繁和生防应用条件提供了参考,发育起点温度和有效积温的测算也为红肩瓢虫的滞育研究提供了依据。
    Abstract:
      Objective  Effect of ambient temperature on the growth and development of Harmonia dimidiata Fabricius was studied to determine the condition to encourage the beetle reproduction for serving as a biocontrol agent in the field.
      Method   H. dimidiata were fed on Ephestia kuehniella Zellerwere eggs and reared under a controlled temperature between 15 ℃ and 32 ℃ in a chamber to monitor the temperature effect on the development and survival of the predator. Threshold temperatures for developmental stages and effective accumulated temperature for growth were estimated by the least square method. Relationship between the chamber temperature and the beetle development was simulated with a linear diurnal equation.
      Result   The optimal egg hatching of H. dimidiata with a greater than 85% hatchability took place between 20 ℃ and 30 ℃. At 20 ℃, the rate of 87.5% for the beetles to reach adulthood was the highest. It was followed by 25 ℃ (82.50%)>30 ℃ (77.50%)>32 ℃ (45.00%)>15 ℃ (35.00%). Either low temperature of 15 ℃ or high of 32 ℃ inhibited the growth of the beetles, but within that range, the development could still be completed with the rate hastened and the time shortened by increasing the ambient temperature. There was no significant difference in the time for entire beetle development in between 20 ℃ and 32 ℃. On the other hand, the duration was extremely significantly prolonged at 15 ℃ as considerable hindrance was imposed on the growth by low temperature. The threshold temperatures for various developmental stages of H. dimidiata were found to be at the highest level for the 2nd instar larvae at 12.74 ℃, the lowest for the pupal stage at 9.24 ℃, and for the egg-hatching at 9.87 ℃. The effective accumulated temperature required for the growth to maturity of a beetle was 324.82 d· ℃.
      Conclusion   Ambient temperature significantly affected the development, growth, and survival of H. dimidiata. Based on the survival rate and development time of H. dimidiate reared on E. kuehniella eggs for feed, 20-30 ℃ was determined to be the temperature range for optimal reproduction. The information obtained on the physiology of the predator would aid in the rearing as a potentially valuable biocontrol agent as well as in studying diapause of H. dimidiata.
  • 【研究意义】红肩瓢虫(Harmonia dimidiate Fabricius)属鞘翅目(Coleoptera),瓢虫科(Coccinellidae[1])。目前,在广东、福建、河南、台湾、西藏等我国多地均有分布[2-7]。红肩瓢虫对蚜虫、介壳虫、木虱等多种害虫具有强大的捕食能力,是一种优秀的本土天敌,研究温度对红肩瓢虫生长发育的影响,可为红肩瓢虫的大量扩繁和生防应用的条件提供依据。【前人研究进展】红肩瓢虫有点肩变型(Harmonia dimidiate ab humeralis Weise)和豹斑变型(Harmonia dimidiate ab sicardi Moder)[8],点肩变型也被称为小十三星瓢虫[7],本文的研究对象即为红肩瓢虫点肩变型。据报道,红肩瓢虫的成虫和幼虫均可捕食桃蚜(Myzus persicae Sulzer)、棉蚜(Aphis gossypii Glover)等多种蚜虫[9],除蚜虫外,还可捕食介壳虫、木虱等多种害虫[10-11]。红肩瓢虫个体大、捕食量大,4龄幼虫和成虫对棉蚜的日捕食量可达146.2头和161.7头[12],成虫一生灭蚜量约115550.5头[13],对蚜虫等多种害虫的生物防治具有重要意义。但是红肩瓢虫作为一种优秀的捕食性天敌还未被充分开发,国内关于对红肩瓢虫的报道目前主要集中在农田、果园天敌种类调查[10,14-15],国外也仅有少量研究报道,主要集中在以不同蚜虫为食物或者不同温度、光周期条件下红肩瓢虫的生物学研究[16,17],以及少量的替代猎物研究[18]。温度作为重要的生态因素之一,对昆虫的存活率、生长速度、捕食等均具有重大影响[19-21],前人对于红肩瓢虫在不同温度下以不同蚜虫为食的生长发育、产卵特性、捕食能力进行了研究,据研究,以蚜虫为猎物,32 ℃以上高温和15 ℃以下低温均不利于红肩瓢虫的生长发育、捕食及繁殖,同一温度下,猎物不同也会引起红肩瓢虫发育历期、捕食量及产卵量的差异[22-23]。【本研究切入点】适宜的温度对于红肩瓢虫的大量扩繁具有重要意义,地中海粉螟(Ephestia kuehniella Zeller)卵作为一种替代饲料在瓢虫、赤眼蜂等天敌的扩繁中广泛应用[24-26],然而关于红肩瓢虫取食地中海粉螟卵在不同温度下的生长发育情况还有待深入研究。【拟解决的关键问题】以地中海粉螟卵为饲料,研究红肩瓢虫在不同温度条件下的生长发育,用最小二乘法估算各发育阶段的发育起点温度和有效积温,并用采用线性日度方程模拟温度与红肩瓢虫发育速率的关系,以期为红肩瓢虫的大量扩繁测算出最佳温度范围,也为红肩瓢虫的生防应用提供参考。

    红肩瓢虫成虫采自福州市晋安区埔垱村玉米田(119°20′42″E,26°8′6″N),在室内用地中海粉螟卵饲养3代以上。地中海粉螟为本实验室扩繁的实验室种群,收集的卵经−18 ℃冷冻处理24 h以上作为饲料。

    在容积为100 mL塑料盒的盖上开直径约为40 mm的开口,以100目纱网封口,作为透气口,在塑料盒中放置1块10 mm×10 mm×10 mm的海绵块,浸湿以提供水分。

    收集4 h内红肩瓢虫所产的卵,将卵块置于饲养盒中,试验设(15±1) ℃、(20±1) ℃、(25±1) ℃、(30±1) ℃、(32±1) ℃ 等5个温度处理[经预试验发现(33±1) ℃情况下,红肩瓢虫卵不孵化,故最高温设置为(32±1)℃ ],每处理100粒卵,每日8:00和20:00各观察1次,记录卵的孵化情况,孵化出的幼虫及时挑出,15 d后还不能孵化的卵视为死亡,结束统计。

    将各温度处理孵化出的红肩瓢虫幼虫单独置于饲养盒中,每处理40个重复,每日饲喂充足的饲料,每日8:00和20:00各观察1次,记录各龄幼虫和蛹的存活情况和发育状态,直到红肩瓢虫羽化至成虫为止,如在成虫前某一阶段死亡,则发育历期记录至上一阶段为止。试验在相对湿度(75±5)%、L∶D=16∶8的人工气候箱中进行。

    试验数据采用DPS数据处理系统及Excel 2007进行统计、分析,红肩瓢虫发育速率与温度关系采用线性回归模型进行拟合[27-28],公式如下。

    V(T)(1K)×TCK

    式中,K为有效积温(d·℃);C为发育起点温度(℃)。

    根据有效积温法则,采用最小二乘法,计算红肩瓢虫卵、各龄幼虫、蛹及总发育历期的发育起点温度和有效积温[29]。公式如下。

    有效积温(d·℃):K=nΣVTΣVΣTnΣV2(ΣV)2

    发育起点温度(℃):C=ΣV2ΣTΣVΣVTnΣV2(ΣV)2

    式中,V = 1/N,为发育速率,为发育历期的倒数;T为试验所设处理温度,n为处理组数。

    红肩瓢虫各发育阶段在不同温度下的存活率如表1,20~30 ℃温度范围适于红肩瓢虫卵的孵化,孵化率均达85%以上,15 、32 ℃时卵孵化率较低,分别为72.29%和61.54%;20 ℃时,红肩瓢虫卵发育至成虫的总存活率最高,达87.50,其次为25 ℃(82.50%)>30 ℃(77.50%)>32 ℃(45.00%)>15 ℃(35.00%),综合卵孵化率和总存活率可见,15 ℃及以下的低温和32 ℃及以上的高温均不适宜红肩瓢虫的存活,而20~30 ℃温度范围内红肩瓢虫总存活率高,即成虫获得率高,为77.5%以上。

    表  1  温度对红肩瓢虫各发育阶段存活的影响
    Table  1.  Effect of temperature on survival of H. dimidiata at development stages
    温度
    Temperature/℃
    不同发育阶段的存活率 Survival rates of different developmental stages/%
    卵孵化率
    Hatching rate
    1龄
    1st instar
    2龄
    2nd instar
    3龄
    3rd instar
    4龄
    4th instar

    Pupa
    总存活率
    Total survival rate
    15±172.2975.0083.3388.0090.9070.0035.00
    20±185.87100.0087.50100.00100.00100.0087.50
    25±195.5697.5092.3191.67100.00100.0082.50
    30±195.0687.5097.14100.0097.0693.9477.50
    32±161.5467.5092.5996.0083.3390.0045.00
    下载: 导出CSV 
    | 显示表格

    温度对红肩瓢虫生长发育的影响结果如表2所示,在15~30 ℃范围内,红肩瓢虫均能完成生长发育,随着温度的升高,红肩瓢虫的各阶段发育历期及总发育历期均呈缩短之势,与温度呈负相关关系,但温度达32 ℃时,规律发生变化,红肩瓢虫卵、2龄和3龄幼虫的发育历期延长,但总发育历期仍为最短的一个。15 ℃时,红肩瓢虫各阶段发育历期、总发育历期如下:卵期(7.66±0.01)d、1龄(12.87±0.25)d、2龄(8.56±0.33)d、3龄(10.23±0.33)d、4龄(24.08±0.99)d、蛹(16.25±0.28)d、总历期(76.50±0.91)d,均极显著长于其他温度处理,30 ℃与32 ℃温度下红肩瓢虫的总发育历期间无显著性差异,其他温度处理下红肩瓢虫的总发育历期均存在极显著性差异。

    表  2  红肩瓢虫在不同温度下的发育历期
    Table  2.  Development duration of H. dimidiata under different temperatures
    温度
    Temperature/ ℃
    不同发育阶段的发育历期 Developmental duration of different developmental stages/d

    Egg
    1龄
    1st instar
    2龄
    2nd instar
    3龄
    3rd instar
    4龄
    4th instar

    Pupa
    总历期
    Total duration
    15±17.66±0.05Aa12.87±0.25Aa8.56±0.33Aa10.23±0.33Aa24.08±0.99Aa16.25±0.28Aa76.50±0.91Aa
    20±14.05±0.02Bb2.85±0.04Bb2.90±0.05Bb3.36±0.11Bb7.47±0.15Bb8.51±0.13Bb29.10±0.23Bb
    25±12.78±0.04Cc2.71±0.11Bb2.07±0.12Cc2.36±0.11Cc5.42±0.11Cc4.95±0.09Cc20.08±0.19Cc
    30±11.75±0.04Ee1.70±0.06Cc1.18±0.04Dd1.81±0.06Cc4.77±0.10Cc4.66±0.05CDc15.89±0.11Dd
    32±12.36±0.06Dd1.41±0.07Cc1.36±0.05Dd2.31±0.21Cc4.43±0.11Cc4.06±0.16Dd15.75±0.36Dd
    表中数据为M±SE(平均数±标准误),同列数据后不同大小写字母分别表示在0.01水平和0.05水平差异显著(Tukey法检验)。
    Datas are mean±standard error; those with same capital and lowercase letters on the same column indicate significant difference at 0.01 and 0.05 levels, respectively, by Tukey analysis.
    下载: 导出CSV 
    | 显示表格

    根据红肩瓢虫各虫态在不同温度下的发育历期计算发育速率,利用线性日度回归模型进行拟合,红肩瓢虫的卵、1龄、2龄、3龄、4龄幼虫、蛹和总发育历期的发育速率与温度的关系拟合结果如表3所示,各虫态的关系模型相关系数均大于0.91,卵期和3龄幼虫发育速率与温度的相关性达到显著水平(P<0.05),1龄、2龄、4龄幼虫和蛹期发育速率与温度的相关性达到极显著性水平(P<0.01),由此可知,温度是影响红肩瓢虫生长发育的主要因素之一。

    表  3  红肩瓢虫发育速率与温度的关系模型
    Table  3.  Mathematic model on relationship between H. dimidiata development rate and temperature
    发育阶段
    Developmental Stage
    线性日度模型 Linear diumal model
    回归方程
    Regression e
    quation
    相关系数r
    Correlation
    coefficient
    PF
    卵 Egg0.0219T-0.18830.91460.029615.34
    1龄 1st instar0.0336T-0.40150.97100.005949.56
    2龄 2nd instar0.0406T-0.48540.96790.006944.56
    3龄 3rd instar0.0224T-0.18470.91000.03214.45
    4龄 4th instar0.0102T-0.09100.96800.006844.71
    蛹 Pupa0.0106T-0.09150.97940.003570.57
    总历期 Total duration0.0030T-0.02840.98640.0019108.45
    下载: 导出CSV 
    | 显示表格

    图1所示,15 ℃时,红肩瓢虫各虫态的发育速率均为各温度设置中的最低值,在15~30 ℃范围内,红肩瓢虫各虫态的发育速率随温度升高而加快,温度达32 ℃时,卵、2龄和3龄幼虫的发育速率下降,但从总发育历期来看,32 ℃时发育速率最快,但增长速度出现减缓现象,说明红肩瓢虫在32 ℃时已经逐渐出现不适应。

    图  1  红肩瓢虫发育速率与温度的关系
    A: 卵 ; B:1龄幼虫; 2龄幼虫; D:3龄幼虫 3rd instar;E:4龄幼虫;F:蛹;G:总历期。
    Figure  1.  Relationship between H. dimidiata development rate and temperature
    A: Egg; B: 1st instar; C: 2nd instar; D: 3rd instar; E: 4th instar; F: pupa; G: total duration.

    表4所示,红肩瓢虫各发育阶段中,以2龄幼虫的发育起点温度最高,为12.74 ℃,为保证红肩瓢虫的成功发育,温度应至少高于此温度;蛹期的发育起点温度最低,为9.24 ℃,是各发育阶段中最耐低温的一个阶段,可作为较低温度下生防应用时投放的虫态; 3龄、4龄幼虫的有效积温较高,可能与该龄期幼虫有增大体型和存储能量的需求有关。红肩瓢虫由卵发育至成虫的整个发育过程的发育起点温度和有效积温分别为9.87 ℃和324.82 d·℃。

    表  4  红肩瓢虫各虫态发育起点温度和有效积温
    Table  4.  Threshold temperatures and effective accumulated temperatures for H. dimidiate development at various stages
    发育阶段
    Developmental
    Stage
    相关系数r
    Correlation
    coefficient
    发育起点温度C
    Developmental
    threshold
    temperature/℃
    有效积温K
    Effective accumulated
    temperature/
    (d·℃)
    卵 Egg0.914611.1838.15
    1龄 1st instar0.971012.6528.04
    2龄 2nd instar0.968012.7423.07
    3龄 3rd instar0.910011.0437.03
    4龄 4th instar0.96809.8691.44
    蛹 Pupa0.97949.2490.12
    总历期
    Total duration
    0.98649.87324.82
    下载: 导出CSV 
    | 显示表格

    温度是自然界中影响昆虫生长发育、繁殖的最显著影响因子,只有在有效温区内,昆虫才能完成正常的发育繁殖和种群延续[30-31]。本研究表明,在15~32 ℃范围内,红肩瓢虫均可完成生长发育,但15 、32 ℃条件下,卵孵化率低,分别为72.29%和61.54%,红肩瓢虫总存活率更低,仅为35%和45%,32 ℃以上高温及15 ℃以下低温均不利于红肩瓢虫的生长发育,也不利于捕食与繁殖,这与前人研究相似,以禾谷缢管、棉蚜为猎物,红肩瓢虫在(32±1 )℃情况下由卵至成虫的存活率仅为15%、10%,且捕食、繁殖能力差[23]。在20~30 ℃温度区间,红肩瓢虫卵的孵化率均高于85%,至成虫时存活率均超过77%,是红肩瓢虫的适宜发育温区,据Gillani[13]研究,在25 ℃时,红肩瓢虫的存活率达97.04%,且此温度下,红肩瓢虫的繁殖能力和捕食能力也最强。

    在15~32 ℃范围内,红肩瓢虫发育速率与温度的关系可用线性日度模型较好的拟合,随着温度升高,发育速率随之加快,发育历期缩短。据报道,以禾谷缢管蚜为食,16~32 ℃情况下,红肩瓢虫各发育阶段的持续时间为低温最高,高温最短[22],以棉蚜为食,在15 、20 、25 ℃时红肩瓢虫的发育历期也随温度升高而缩短[23],这种发育速率与温度的关系与其他捕食性瓢虫的研究结果类似,如拟小食螨瓢虫[32]、六斑异瓢虫[31]、沙巴拟刀角瓢虫[33]

    以地中海粉螟卵饲喂的红肩瓢虫整个发育过程的发育起点温度为9.87 ℃,其中2龄幼虫的发育起点温度最高,为12.74 ℃,为了红肩瓢虫能顺利发育至成虫,在大量饲养时最低不可低于12.74 ℃。据研究,豆蚜、豌豆蚜、豌豆修尾蚜的发育起点温度分别为6.05 、5.69、4.02 ℃,几种蚜虫在较低温度时即可发育,但此温度达不到红肩瓢虫的发育条件,红肩瓢虫无法及时有效防控其发生。

    通过研究温度对红肩瓢虫生长发育的影响,综合存活率与发育历期,以地中海粉螟卵为饲料,20~30 ℃温度区间为红肩瓢虫生长发育的适宜温度,本研究结果为红肩瓢虫的大量扩繁和生防应用提供了参考,发育起点温度和有效积温的测算也为红肩瓢虫的滞育保存提供了依据,但是本研究是在室内恒温条件下进行,与田间多变的自然条件有所不同,所以在实际应用时,应考量实际条件进行红肩瓢虫的释放。

  • 图  1   红肩瓢虫发育速率与温度的关系

    A: 卵 ; B:1龄幼虫; 2龄幼虫; D:3龄幼虫 3rd instar;E:4龄幼虫;F:蛹;G:总历期。

    Figure  1.   Relationship between H. dimidiata development rate and temperature

    A: Egg; B: 1st instar; C: 2nd instar; D: 3rd instar; E: 4th instar; F: pupa; G: total duration.

    表  1   温度对红肩瓢虫各发育阶段存活的影响

    Table  1   Effect of temperature on survival of H. dimidiata at development stages

    温度
    Temperature/℃
    不同发育阶段的存活率 Survival rates of different developmental stages/%
    卵孵化率
    Hatching rate
    1龄
    1st instar
    2龄
    2nd instar
    3龄
    3rd instar
    4龄
    4th instar

    Pupa
    总存活率
    Total survival rate
    15±172.2975.0083.3388.0090.9070.0035.00
    20±185.87100.0087.50100.00100.00100.0087.50
    25±195.5697.5092.3191.67100.00100.0082.50
    30±195.0687.5097.14100.0097.0693.9477.50
    32±161.5467.5092.5996.0083.3390.0045.00
    下载: 导出CSV

    表  2   红肩瓢虫在不同温度下的发育历期

    Table  2   Development duration of H. dimidiata under different temperatures

    温度
    Temperature/ ℃
    不同发育阶段的发育历期 Developmental duration of different developmental stages/d

    Egg
    1龄
    1st instar
    2龄
    2nd instar
    3龄
    3rd instar
    4龄
    4th instar

    Pupa
    总历期
    Total duration
    15±17.66±0.05Aa12.87±0.25Aa8.56±0.33Aa10.23±0.33Aa24.08±0.99Aa16.25±0.28Aa76.50±0.91Aa
    20±14.05±0.02Bb2.85±0.04Bb2.90±0.05Bb3.36±0.11Bb7.47±0.15Bb8.51±0.13Bb29.10±0.23Bb
    25±12.78±0.04Cc2.71±0.11Bb2.07±0.12Cc2.36±0.11Cc5.42±0.11Cc4.95±0.09Cc20.08±0.19Cc
    30±11.75±0.04Ee1.70±0.06Cc1.18±0.04Dd1.81±0.06Cc4.77±0.10Cc4.66±0.05CDc15.89±0.11Dd
    32±12.36±0.06Dd1.41±0.07Cc1.36±0.05Dd2.31±0.21Cc4.43±0.11Cc4.06±0.16Dd15.75±0.36Dd
    表中数据为M±SE(平均数±标准误),同列数据后不同大小写字母分别表示在0.01水平和0.05水平差异显著(Tukey法检验)。
    Datas are mean±standard error; those with same capital and lowercase letters on the same column indicate significant difference at 0.01 and 0.05 levels, respectively, by Tukey analysis.
    下载: 导出CSV

    表  3   红肩瓢虫发育速率与温度的关系模型

    Table  3   Mathematic model on relationship between H. dimidiata development rate and temperature

    发育阶段
    Developmental Stage
    线性日度模型 Linear diumal model
    回归方程
    Regression e
    quation
    相关系数r
    Correlation
    coefficient
    PF
    卵 Egg0.0219T-0.18830.91460.029615.34
    1龄 1st instar0.0336T-0.40150.97100.005949.56
    2龄 2nd instar0.0406T-0.48540.96790.006944.56
    3龄 3rd instar0.0224T-0.18470.91000.03214.45
    4龄 4th instar0.0102T-0.09100.96800.006844.71
    蛹 Pupa0.0106T-0.09150.97940.003570.57
    总历期 Total duration0.0030T-0.02840.98640.0019108.45
    下载: 导出CSV

    表  4   红肩瓢虫各虫态发育起点温度和有效积温

    Table  4   Threshold temperatures and effective accumulated temperatures for H. dimidiate development at various stages

    发育阶段
    Developmental
    Stage
    相关系数r
    Correlation
    coefficient
    发育起点温度C
    Developmental
    threshold
    temperature/℃
    有效积温K
    Effective accumulated
    temperature/
    (d·℃)
    卵 Egg0.914611.1838.15
    1龄 1st instar0.971012.6528.04
    2龄 2nd instar0.968012.7423.07
    3龄 3rd instar0.910011.0437.03
    4龄 4th instar0.96809.8691.44
    蛹 Pupa0.97949.2490.12
    总历期
    Total duration
    0.98649.87324.82
    下载: 导出CSV
  • [1] 庞雄飞, 毛金龙. 我国瓢虫亚科昆虫名录 [J]. 昆虫天敌, 1980, 2(2):32−39,47.

    PANG X F, MAO J L. Insect list of Coccinellinae of China [J]. Natural Enemies of Insects, 1980, 2(2): 32−39,47.(in Chinese)

    [2] 李永刚, 周尚乾, 何可佳. 单季稻田捕食性天敌的群落组成及两种杀虫剂对其多样性的影响 [J]. 湖南农业科学, 2005(4):43−45.

    LI Y G, ZHOU S Q, HE K J. The community making up of predatory natural enemies and the effects of two insecticides to the community diversity in single-cropping paddy fields [J]. Hunan Agricultural Sciences, 2005(4): 43−45.(in Chinese)

    [3] 高九思, 杨松芳, 高国锋, 等. 河南省苹果园捕食性天敌昆虫发生种类及捕食对象记述 [J]. 陕西农业科学, 2007, 53(6):73−75.

    GAO J S, YANG S F, GAO G F, et al. Species and prey of predatory natural enemy insects in apple orchards of Henan Province [J]. Shaanxi Journal of Agricultural Sciences, 2007, 53(6): 73−75.(in Chinese)

    [4] 梁朝巍. 江西省有机稻米生产基地天敌昆虫资源调查 [J]. 山东农业科学, 2011, 43(9):94−98. DOI: 10.3969/j.issn.1001-4942.2011.09.027

    LIANG C W. Investigation on resources of natural enemies in organic rice fields of Jiangxi Province [J]. Shandong Agricultural Sciences, 2011, 43(9): 94−98.(in Chinese) DOI: 10.3969/j.issn.1001-4942.2011.09.027

    [5] 太一梅, 傅杨, 杨本立, 等. 昆明地区梨树蚜虫及天敌数量动态研究 [J]. 西南农业学报, 2004, 17(3):337−339.

    TAI Y M, FU Y, YANG B L, et al. Studies on the quantity dynamic of pear aphides and their natural enemy in Kunming region [J]. Southwest China Journal of Agricultural Sciences, 2004, 17(3): 337−339.(in Chinese)

    [6] 朱猛蒙, 刘艳, 张蓉, 等. 苜蓿草地害虫-天敌典型相关及生态位分析 [J]. 草业学报, 2013, 22(6):159−166.

    ZHU M M, LIU Y, ZHANG R, et al. Canonical correlations between pests and natural enemies and their niches in alfalfa grasslands [J]. Acta Prataculturae Sinica, 2013, 22(6): 159−166.(in Chinese)

    [7] 黄翠琴. 福建捕食性瓢虫科昆虫目录 [J]. 福建林业科技, 2016, 43(4):92−96,116.

    HUANG C Q. The checklist of the family Coccinellidae of predatory in the collection of Fujian [J]. Journal of Fujian Forestry Science and Technology, 2016, 43(4): 92−96,116.(in Chinese)

    [8] 李国锋, 郑发科, 王慧. 南充市郊瓢虫科昆虫的初步研究 [J]. 西华师范大学学报(自然科学版), 2005, 26(2):145−148.

    LI G F, ZHENG F K, WANG H. Preliminary study of Coccinellidae in the suburbs of Nanchong city [J]. Journal of Xihua Teachers College (Natural Science), 2005, 26(2): 145−148.(in Chinese)

    [9]

    KUZNETSOV V N, HONG P. Employment of Chinese Coccinellids in biological control of aphids in green house [J]. Far Eastern Entomology, 2002, 119: 1−5.

    [10] 杨永智, 陈伟强, 赵志昆, 等. 云南河口芒果主要病虫害发生规律调查及害虫天敌种类研究 [J]. 热带农业科学, 2015, 35(8):63−68,77.

    YANG Y Z, CHEN W Q, ZHAO Z K, et al. Occurrence regulation of main mango diseases and insect pests in Hekou, Yunnan and species of natural enemies [J]. Chinese Journal of Tropical Agriculture, 2015, 35(8): 63−68,77.(in Chinese)

    [11] 张波, 赵鸿杰, 李奕震, 等. 橄榄星室木虱研究进展 [J]. 广东农业科学, 2004, 31(2):29−30.

    ZHANG B, ZHAO H J, LI Y Z, et al. Research progress of psylla olivaceus [J]. Guangdong Agricultural Science, 2004, 31(2): 29−30.(in Chinese)

    [12]

    SHARMA P L, VERMA S C, CHANDEL R S, et al. Functional response of Harmonia dimidiata (Fab. ) to melon aphid, Aphis gossypii Glover under laboratory conditions [J]. Phytoparasitica, 2017, 45: 373−379. DOI: 10.1007/s12600-017-0599-5

    [13]

    GILLANI WA, MATIN M A, RAFI M A. Bionomics of tropical coccinellid beetle Harmonia (Leis) dimidiata (F) (Coleoptera: Coccinellidae) under laboratory conditions [J]. Pakistan Journal of Agricultural Research, 2007, 20(1): 79−83.

    [14] 蒋学建, 邓艳, 黄华艳, 等. 油茶茶蚜天敌及其优势天敌的林间消长规律 [J]. 广西林业科学, 2017, 46(1):76−79. DOI: 10.3969/j.issn.1006-1126.2017.01.015

    JIANG X J, DENG Y, HUANG H Y, et al. The natural enemies and population dynamics of dominant species of Toxoptera aurantii on Camellia oleifera [J]. Guangxi Forestry Science, 2017, 46(1): 76−79.(in Chinese) DOI: 10.3969/j.issn.1006-1126.2017.01.015

    [15] 殷山山, 钏相仙, 白燕冰, 等. 橡副珠蜡蚧生物学、生态学特性及防治研究现状及展望 [J]. 热带农业科学, 2017, 37(3):41−46.

    YIN S S, CHUAN X X, BAI Y B, et al. Research status and prospect on biology, ecology and control of Parasaissetia nigra [J]. Chinese Journal of Tropical Agriculture, 2017, 37(3): 41−46.(in Chinese)

    [16]

    KHAN J, HAQ E U, REHMAN A. Effect of temperature on the biology of Harmonia dimidiate FAB. (Coleoptera: coccinellidae) reared on Scizaphus graminum (ROND) aphid [J]. Journal of Biodiversity and Environmental Sciences, 2016, 8(2): 1−8.

    [17]

    KHAN J, HAQ E U, SALJOKI A U R, et al. Effect of photoperiod on biological attributes of Harmonia dimidiata(Fab) (Coleoptera: Coccinellidae) fed on Schizaphus graminum (Rond. ) (Homoptera: Aphididae) aphid [J]. International Journal of Biosciences, 2018, 12(1): 212−218.

    [18]

    YU J Z, LU C T. Suitability of Bactricera dorsalis (Diptera: Tephritidae) egg as food for Harmonia dimidiata (Coleoptera: Coccinellidae) [J]. Plant Protection Bulletin, 2012, 54(4): 91−102.

    [19]

    BIRCH L C. A contribution to the ecology of Calandra oryzae L. and Rhizopertha dominica Fab. (Coleoptera) instored wheat [J]. SouthAustralia, 1945, 69: 140−149,6.

    [20]

    VUCIC-PESTIC O, EHNES R B, RALL B C, et al. Warming up the system: Higher predator feeding rates but lower energetic efficiencies [J]. Global Change Biology, 2011, 17(3): 1301−1310. DOI: 10.1111/j.1365-2486.2010.02329.x

    [21]

    LEMOINE N P, BURKEPILE D E. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness [J]. Ecology, 2012, 93(11): 2483−2489. DOI: 10.1890/12-0375.1

    [22]

    KHAN J V, EHSAN-UL-HAQ, SALJOKI A, et al. Effect of temperature on biological attributes and predatory potential of Harmonia dimidiata (Fab. ) (Coleoptera: Coccinellidae) fed on Rhopalosiphum padi aphid [J]. Journal of Entomology and Zoology Studies, 2016, 4(5): 1016−1022.

    [23]

    YU J Z, CHI H, CHEN B H. Comparison of the life tables and predation rates of Harmonia dimidiata (F. ) (Coleoptera: Coccinellidae) Fed On Aphis Gossypii Glover (Hemiptera: Aphididae) at different temperatures [J]. Biological Control, 2013, 64(1): 1−9. DOI: 10.1016/j.biocontrol.2012.10.002

    [24]

    HAMASAKI K, MATSUI M. Development and reproduction of an aphidophagous coccinellid, Propylea japonica (Thunberg) (Coleoptera: Coccinellidae), Reared On An Alternative Diet, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs [J]. Applied Entomology and Zoology, 2006, 41(2): 233−237. DOI: 10.1303/aez.2006.233

    [25]

    ST-ONGE M, CORMIER D, TODOROVA S, et al. Conservation of Ephestia kuehniella eggs as hosts for Trichogramma ostriniae [J]. Journal of Applied Entomology, 2016, 140(3): 218−222. DOI: 10.1111/jen.12227

    [26]

    DELISLE J F, BRODEUR J, SHIPP L. Evaluation of various types of supplemental food for two species of predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae) [J]. Experimental and Applied Acarology, 2015, 65(4): 483−494. DOI: 10.1007/s10493-014-9862-3

    [27] 丁岩钦. 昆虫数学生态学[M]. 北京: 科学出版社, 1994.
    [28] 丁岩钦. 昆虫种群数学生态学原理与应用[M]. 北京: 科学出版社, 1980.
    [29] 张孝羲. 昆虫生态及预测预报[M]. 3版. 北京: 中国农业出版社, 2002.
    [30] 陈瑜, 马春森. 气候变暖对昆虫影响研究进展 [J]. 生态学报, 2010, 30(8):2159−2172.

    CHEN Y, MA C S. Effect of global warming on insect: A literature review [J]. Acta Ecologica Sinica, 2010, 30(8): 2159−2172.(in Chinese)

    [31] 杜文梅, 张俊杰, 齐颖慧, 等. 温度对六斑异瓢虫生长发育的影响 [J]. 北京林业大学学报, 2017, 39(1):94−98.

    DU W M, ZHANG J J, QI Y H, et al. Effects of temperature on the growth and development in Aiolocaria hexaspilota (Coleoptera: Coccinellinae) [J]. Journal of Beijing Forestry University, 2017, 39(1): 94−98.(in Chinese)

    [32] 耿召良, 吴伟坚, 马华博, 等. 温度对拟小食螨瓢虫发育和繁殖的影响 [J]. 环境昆虫学报, 2016, 38(2):280−285.

    GENG Z L, WU W J, MA H B, et al. Effects of temperature on the development and fecundity of Stethorus(Allosstethorus) Parapauperculus(Coleoptera: Coccinellidae) [J]. Journal of Environmental Entomology, 2016, 38(2): 280−285.(in Chinese)

    [33] 杨果润, 赵冬梅, 梁建锋, 等. 温度对沙巴拟刀角瓢虫生长发育和繁殖的影响 [J]. 应用昆虫学报, 2022, 59(2):386−391.

    YANG G R, ZHAO D M, LIANG J F, et al. Effects of temperature on the development and reproduction of Serangiella sababensis Sasaji(Coleoptera: Coccinellidae) [J]. Chinese Journal of Applied Entomology, 2022, 59(2): 386−391.(in Chinese)

  • 期刊类型引用(1)

    1. 刘东阳,刘国,黎洁,邓全,马鹏,陈娟,李斌,王勇,江连强,郭仕平,伍兴隆,李杨,蒲德强. 温度对十斑大瓢虫产卵特性的影响. 中国农学通报. 2024(21): 114-119 . 百度学术

    其他类型引用(2)

图(1)  /  表(4)
计量
  • 文章访问数:  494
  • HTML全文浏览量:  242
  • PDF下载量:  18
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-11-03
  • 修回日期:  2023-04-12
  • 网络出版日期:  2023-05-23
  • 刊出日期:  2023-06-27

目录

/

返回文章
返回