• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

紫糯特种稻紫两优737重要农艺性状遗传分析

陈春霞, 游晴如, 王洪飞, 郑建华, 房贤涛, 董瑞霞, 陈双龙, 廖发炼, 董练飞, 黄庭旭

陈春霞,游晴如,王洪飞,等. 紫糯特种稻紫两优737重要农艺性状遗传分析 [J]. 福建农业学报,2023,38(7):783−791. DOI: 10.19303/j.issn.1008-0384.2023.07.003
引用本文: 陈春霞,游晴如,王洪飞,等. 紫糯特种稻紫两优737重要农艺性状遗传分析 [J]. 福建农业学报,2023,38(7):783−791. DOI: 10.19303/j.issn.1008-0384.2023.07.003
CHEN C X, YOU Q R, WANG H F, et al. Analysis of Genetypes Related to Important Agronomic Traits of Purple Waxy Special Rice Variety Ziliangyou 737 [J]. Fujian Journal of Agricultural Sciences,2023,38(7):783−791. DOI: 10.19303/j.issn.1008-0384.2023.07.003
Citation: CHEN C X, YOU Q R, WANG H F, et al. Analysis of Genetypes Related to Important Agronomic Traits of Purple Waxy Special Rice Variety Ziliangyou 737 [J]. Fujian Journal of Agricultural Sciences,2023,38(7):783−791. DOI: 10.19303/j.issn.1008-0384.2023.07.003

紫糯特种稻紫两优737重要农艺性状遗传分析

基金项目: 福建省科技计划公益类专项(2020R1023004、2018R1021-6);福建省科技计划重大专项(2020NZ08016);福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021001)
详细信息
    作者简介:

    陈春霞(1979 —),女,博士,助理研究员,主要从事分子水稻育种研究,E-mail:158625731@qq.com

    通讯作者:

    黄庭旭(1964 —),男,硕士,研究员,主要从事水稻遗传育种研究,E-mail:610143535@qq.com

  • 中图分类号: S511

Analysis of Genetypes Related to Important Agronomic Traits of Purple Waxy Special Rice Variety Ziliangyou 737

  • 摘要:
      目的  解析紫糯特种稻紫两优737及其亲本的产量、品质相关性状的基因型构成,为该品种及其双亲在育种和生产上的进一步应用提供分子依据。
      方法  应用10个重要基因的13个分子标记,分析紫两优737及其亲本紫392S、福恢737在产量、品质等相关基因座位上的等位基因变化。
      结果  在7个基因座位上,紫两优737及其亲本均携带相同等位基因型。在穗实粒数主效基因Gn1a座位上均携带高产等位基因Ha-Gn1a;在粒重和粒长主效基因GS3座位上均携带长粒型等位基因MH-GS3;在种皮基因Pb座位上均携带紫色果皮等位基因型;在糯稻蜡质基因wx座位上均携带低直链淀粉含量等位基因型;此外在淀粉分支酶基因SBE1SBE3以及极限糊精酶基因PUL基因座位上亦均携带相同等位基因型。在3个基因座位上,双亲携带不同等位基因型。在Hd3a座位上,紫392S、福恢737和紫两优737分别携带Hd3aNiphd3aKasaHd3aNip/hd3aKasa;在Hd1座位上,分别携带Hd1japHd1indHd1jap/Hd1ind在焦磷酸化酶大亚基基因AGPlar座位上,分别为Ⅰ型,Ⅱ型及Ⅰ/Ⅱ杂合型。
      结论  紫两优737重要农艺性状的遗传解析为其具有高产、优质、适应性好及种皮颜色等特点提供了分子证据,并为相关有利等位基因的进一步利用提供参考。
    Abstract:
      Objective  This study was conducted to analyze the genotypes of yield and quality-related traits of the purple waxy special rice Ziliangyou 737 and its parents, and to provide molecular basis for the further application of this variety and its parents in breeding and production.
      Method  Using 13 molecular markers of 10 important genes, the alleles of Ziliangyou 737 and its parents Ziliang392s and Fuhui 737 were analyzed in relation to yield and quality.
      Result  In 7 gene loci, both Zizliangyou 737 and its parents carry the same allele genotype. The high-yield allele Ha-Gn1a was carried in the seat of Gn1a, the major gene of panicles number. The long grain allele MH-GS3 was carried in the GS3 locus of the major gene for grain weight and grain length. The alleles of purple pericarp were carried in the Pb locus of seed coat gene. All alleles with low amylose content in waxy gene wx locus were carried in glutinous rice. In addition, the same allelic genotype was carried in the starch branch enzyme genes SBE1 and SBE3 and the limit dextrin enzyme gene PUL gene locus. In three loci, parents carry different alleles. In the Hd3a seat, the Zi 392S, Fuhui 737 and Ziliangyou 737 carry Hd3aNip, hd3aKasa and Hd3aNip/hd3aKasa respectively. On the Hd1 seat, carry Hd1jap, Hd1ind and Hd1jap/Hd1ind respectively. In the large subunit gene AGPlar locus of pyrophosphorylase, there were type I, type II and hybrid type I/II, respectively.
      Conclusion  The genetic analysis of important agronomic traits of Ziliangyou 737 provided molecular evidence for its high yield, high quality, good adaptability and seed coat color, and provided reference for further utilization of related favorable alleles
  • 【研究意义】紫黑米作为一种重要的功能稻米,富含多种维生素、花色苷及微量元素,是天然的药、食兼用的功能性保健食品,深受消费者喜爱 [1]。紫黑米种皮内沉积的花色苷是花青素与糖结合的产物,其中花青素具有抗氧化清除自由基、降低血脂、抗癌、消炎等作用[2-3],已被广泛应用于食品、化妆品、医药及保健品[4-5]。此外花青素作为天然染料应用于纺织品的研究也有所报道[6]。作为中国消费量最大的功能稻米,紫黑米具有广阔的市场前景和工业加工价值。分子标记辅助选择可以极大提升作物育种效率,加快育种进程。利用与目标基因紧密连锁的分子标记解析品种农艺性状遗传构成,可为品种的进一步应用和改良提供分子依据。【前人研究进展】我国紫黑米资源丰富,但多数代表品种均存在生育期长、产量低、抗性差等问题[7]。20世纪80年代特种稻种质资源的创新利用研究开始兴起[8],迄今已培育出黑糯1号、晚籼紫宝等一系列新的紫黑米种质[9-15]。然而与普通稻米育种研究相比,特种稻育种应用分子辅助技术的还比较少。唐清杰等应用分子标记检测和分析了海丰黑糯2号的抗病虫基因[16]。王军等[17]对香糯龙晴4号的紫色和香味进行了基因型分析。许峰等[18]将稻瘟病抗性基因导入香血糯335,并与中间品系杂交,选育出了香血稻515。刘耀光课题组[19]通过开发的新一代高效多基因载体系统TGS II(TransGene Stacking II),把花青素合成相关的8个关键基因转入水稻,实现了花青素在水稻胚乳特异合成,创造出首例富含花青素的水稻新种质“紫晶米”。【本研究切入点】前人对紫黑米的研究着重于新种质的创制和应用,分子辅助育种也仅限于个别性状基因的转育,全面解析优异种质遗传特性的研究尚鲜见报道。【拟解决的关键问题】紫两优737是福建省农科院水稻研究所利用自育的紫糯两系不育系紫392S[20]与紫糯恢复系福恢737配组育成的杂交紫糯稻新品种,是国内首个通过省级审定的紫糯两系杂交稻,填补了国内外紫糯两系杂交稻品种空白。该品种在云南、福建、安徽、广西多地试种示范,产量高、品质好、适应性广、富含花青素,具有很好的应用前景。本研究以紫两优737及其亲本紫392S、福恢737为材料,采用重要农艺性状相关基因的特异性标记对其进行检测,分析紫两优737及其亲本携带的有利等位基因,为该品种的进一步利用提供科学依据。

    供试水稻材料为紫两优737,以及双亲紫392S和福恢737。所检测基因座位上的对照材料包含日本晴、9311、珍汕97和明恢63等,详见表1

    表  1  检测10个基因的相关标记信息
    Table  1.  Markers’ information for 10 genes
    基因
    Gene
    标记
    Marker
    引物序列
    Primer sequence (5′-3′)
    退火温度
    Annealing temperature/℃
    等位基因参照
    Allele reference
    Gn1a Gn1a-M1[21] CTCTTGCTTCATTATCAATC 55 明恢63 Minghui 63
    AAACTACACAAGAATCTGCT
    GS3 GS3-Pst[21]
    (限制性内切酶 Restriction enzyme:PstⅠ
    TATTTATTGGCTTGATTTCCTGTG 55 珍汕97 Zhenshan 97,明恢63 Minghui 63
    GCTGGTTTTTTACTTTCATTTGCC
    Hd3a hd3afnp inner[22] AGCGGCAGGAGaGTCTACAA 62 日本晴 Nipponbare, Kasalath
    TCaGGATCATCGTTAGCTAGGG
    hd3afnp outer AAtCGAGGGGAGTATATTGCTAGT
    GCTaCATGAGAGACCTTAGCCTT
    Hd1 Si9337[23] AGATGTCCCTTCACTTCAGC 60 9311,日本晴 Nipponbare
    CGAAACGGCCCTTGATCC
    wx We 2-2[24] CACTACAAGACACACTTGCAC 55 荆糯6 Jingnuo 6, 9311
    GTCATCTAGCCCACCACCTT
    Wx-t1[25] ATGTCGGCTCTCACCACG 55 荆糯6 Jingnuo 6, 9311
    ACCGACCGCTGCTGCTTG
    484/W2R[26]
    (限制性内切酶 Restriction enzyme:AccⅠ)
    CTTTGTCTATCTCAAGACAC 55 9311,明恢63 Minghui 63
    TTTCCAGCCCAACACCTTAC
    PCR- Acc [27]
    (限制性内切酶 Restriction enzyme:AccⅠ)
    GCTTCACTTCTCTGCTTGTG 55 日本晴Nipponbare, 明恢63 Minghui 63
    ATGATTTAACGAGAGTTGAA
    Sbe1 Sbe1[28] GAGTTGAGTTGCGTCAGATC 57 9311,日本晴 Nipponbare
    AATGAGGTTGCTTGCTGCTG
    sbe3-rs RS/Spe[29]
    (限制性内切酶 Restriction enzyme:SpeⅠ)
    ATGTGATGTGCTGGATTTGG 55 密阳 23 Miyang 23,宜优673 Yiyou 673
    TGTGGTTTTCATACCGTTCTTA
    AGPlar AGPlar M1[30] CGTTCAGGTTCAGGCAATCA 58 珍汕97 Zhenshan 97, 9311
    GGAAGGGTGGTGATGTGGAG
    PUL PUL M2[30] GACAACCGTCCGCTTTAGTTTC 58 9311, 宜优673 Yiyou 673
    GCATTTGAGAGGGTTTGGATTC
    Pb CAPSPb [31]
    (限制性内切酶 Restriction enzyme:BamHⅠ)
    AAATCAGTTGTCCCGTCCA 58 9311,日本晴 Nipponbare
    TTAGGGAGTTGGTGATGGG
    下载: 导出CSV 
    | 显示表格

    应用13个分子标记(表1)对紫392S、福恢737、紫两优737的重要农艺性状相关基因的基因型进行检测。其中产量性状相关基因2个,抽穗期相关基因2个,品质相关基因5个,紫色种皮基因1个。13个标记引物序列来自前人文献报道[21-31]

    采用CTAB法提取水稻基因组DNA,DNA质量及浓度使用Thermo Scientific NanoDrop 2000检测。PCR反应体系(10 μl):5 μl含染料2× Hieff® PCR Master mix(Yeasen Biotechnology (Shanghai) Co., Ltd.),引物1 μl (4引物标记为各引物等量混合,10 μmol·L−1),DNA模板2 μl(50~150 ng·μl−1),ddH2O 2 μL。

    PCR反应程序:94 ℃预变性5 min; 94 ℃变性30 S,55~62 ℃退火30 s,72 ℃延伸1 min,35个循环;72 ℃延伸10 min。

    根据扩增产物片段大小,分别采用6%非变性聚丙烯酰胺凝胶和1.5%琼脂糖凝胶电泳分离,Gelstain显色。

    紫两优737在云南、福建和安徽等省区试的产量表现[1,20]表2),三地区试中紫两优737的产量均超过7500 kg·hm−2,云南区试中,紫两优737比对照癸能紫米的增产幅度达到152.1%。

    表  2  紫两优737在云南、福建和安徽区域试验产量表现[1,20]
    Table  2.  Yield performance of Ziliangyou 737 in regional trails in Yunnan, Fujian and Anhui
    试验类型
    Type of test
    品种
    Varieties
    平均产量
    Average Yield/(kg·hm−2
    比对照增减产
    Ratio compared with CK/%
    云南区试 Reginal trial in Yunnan 紫两优737 Ziliangyou 737 7566.90 152.1.0
    癸能紫米 Guinengzimi(CK) 3002.10
    福建区试 Reginal trial in Fujian 紫两优737 Ziliangyou 737 7505.48 −3.82
    宜优673 Yiyou 673(CK) 7804.07
    安徽区试 Reginal trial in Anhui 紫两优737 Ziliangyou 737 8441.63 −0.16
    Ⅱ优838(CK) 8456.55
    下载: 导出CSV 
    | 显示表格

    Gn1aGS3均为水稻产量性状的主要构成因子,Gn1a基因定位于水稻第1染色体,是控制水稻每穗实粒数的主效QTL。采用YAN等[21]针对Gn1a基因非翻译区存在的16 bp碱基缺失而开发的STS标记,以明恢63为对照对供试材料进行检测。结果显示所有检测材料均扩增出大小约为113 bp的片段(图1-A),即紫两优737及双亲在Gn1a座位上均携带高产突变型Ha-Gn1a

    图  1  水稻产量因子Gn1aGS3基因相关标记对紫两优737及其亲本的检测结果
    A:Gn1a-M1。M:20bp DNA Marker;1:明恢63;2:宜优673;3:紫392S;4:福恢737;5:紫两优737。B: GS3-PstⅠ,原始扩增产物(左)和酶切产物(右)。M:100 bp DNA Marker; 1:珍汕97,2:明恢63,3:紫392S,4:福恢737;5:紫两优737。
    Figure  1.  Detection of Ziliangyou 737 and its parents with markers for rice yield components Gn1a and GS3
    A: Gn1a-M1. M: 20bp DNA Marker; 1: Minghui 63; 2: Yiyou 673; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. B: GS3-PstⅠ, original amplified products(left) and enzyme digestion products (right). M: 100 bp DNA Marker; 1: Zhengshan 97; 2: Minghui 63; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737.

    GS3位于第3染色体,是控制水稻粒重和粒长的主效QTL,也是控制水稻粒宽和籽粒充实度的微效QTL。YAN等[21]根据GS3基因第2外显子的单核苷酸差异设计CAPS标记GS3-PstⅠ。短粒型在该变异位点为半胱氨酸密码子(TGC),长粒型为终止密码子(TGA),该变异位点能被限制性内切酶PstⅠ识别。以珍汕97和明恢63为对照,采用GS3-PstⅠ标记对供试材料进行检测,各品种均扩增出大小约为512 bp的片段,经酶切处理后,仅有珍汕97的扩增产物被酶切成大小约为294 bp和218 bp的两个片段(图1-B),表明紫两优737及其两个亲本在GS3座位上均携带长粒型等位基因MH- GS3

    抽穗期是决定水稻品种区域与季节适应性的重要因素,且对水稻抽穗期控制具有主效作用的基因往往对产量和株高也有重要作用[23]Hd3a编码的成花素是调控水稻抽穗通路的关键因子,在短日照下促进抽穗,长日照下推迟抽穗。利用常远等[22]根据Hd3a第4外显子的碱基突变设计的共显性分子标记hd3afnp对供试材料进行检测。结果显示,紫392S、福恢737和紫两优737的基因型分别为Hd3aNiphd3aKasaHd3aNip/hd3aKasa图2-A)。

    图  2  水稻Hd3aHd1基因相关标记对紫两优737及其亲本的检测结果
    A: hd3afnp。M:100 bp DNA Marker;1:日本晴;2:Kasalath;3:紫392S;4:福恢737;5:紫两优737。B:Si9337。M:20 bp DNA Marker;1:日本晴;2:9311;3:紫392S;4:福恢737;5:紫两优737。
    Figure  2.  Detection of Ziliangyou 737 and its parents with markers for Hd3a and Hd1
    A: hd3afnp. M: 100 bp DNA Marker; 1: Nipponbare; 2: Kasalath; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. B: Si9337. M: 20 bp DNA Marker; 1: Nipponbare; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737.

    Hd1在短日照下激活Hd3a的表达、促进开花,长日照条件下抑制Hd3a的表达、延迟开花。陈俊宇等[23]根据珍汕97B和密阳46 Hd1基因内的序列差异设计了InDel标记Si9337,用该标记鉴定紫392S、福恢737、紫两优737的Hd1基因型,结果表明其基因型分别为Hd1japHd1indHd1jap /Hd1ind图2-B)。

    紫两优737在云南、福建区试的稻米品质测试结果显示紫两优737米质好,其直链淀粉含量分别为2.6%、2.1%、1.2%,胶稠度分别为90、97 、100 mm[1]表3)。

    表  3  紫两优737在云南、福建区域试验稻米品质[1]
    Table  3.  Rice quality of Ziliangyou 737 in regional trails in Yunnan and Fujian
    类别 Types糙米率
    Brown rice percentage/%
    精米率
    Head rice percentage/%
    整精米率
    Head rice percentage/%
    粒长
    Grain length/mm
    长宽比 Ratio of grain length to width直链淀粉 Amylase content/%碱消值 Alkali value胶稠度
    Gel consistency/mm
    云南区试Regional trial in Yunnan78.469.455.36.32.72.67.090
    福建区试 Reginal trial of in Fujian79.368.565.16.42.92.17.097
    下载: 导出CSV 
    | 显示表格

    采用基于糯稻基因组第2外显子上23 bp插入片段设计的共显性STS标记We2-2[24]和Wx-t1[25]对紫392S、福恢737及紫两优737的蜡质基因进行检测,三个品种均扩增出糯稻特征条带(图3-A、图3-B),表明三个品种均含糯稻蜡质基因wx

    图  3  糯稻蜡质基因相关标记对紫两优737及其亲本的检测结果
    A:We 2-2。M:20 bp DNA Marker;1:荆糯6;2:9311;3:紫392S;4:福恢737;5:紫两优737。B:Wx-t1。M:20 bp DNA Marker;1:荆糯6;2:9311;3:紫392S;4:福恢737;5:紫两优737。C:484/W2R,原始扩增产物(左)和酶切产物(右);M:100 bp DNA Marker;1:9311;2:明恢63;3:紫392S;4:福恢737;5:紫两优737。D:PCR-AccⅠ,原始扩增产物(左)和酶切产物(右);M:100 bp DNA Marker;1:9311;2:明恢63;3:紫392S;4:福恢737;5:紫两优737。
    Figure  3.  Detection of Ziliangyou 737 and its parents with markers for wx
    A: We 2-2. M: 20 bp DNA Marker; 1: Jingnuo 6; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. B: Wx-t1. M: 20 bp DNA Marker; 1: Jingnuo 6; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. C: 484/W2R, original amplified products (left) and enzyme digestion products (right); M: 100 bp DNA Marker; 1: 9311; 2: Minghui 63; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. D: PCR-AccⅠ, original amplified products (left) and enzyme digestion products (right); M: 100 bp DNA Marker; 1: 9311; 2: Minghui 63; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737.

    水稻蜡质基因第1内含子+1的碱基类型与稻米中直链淀粉含量类型直接相关。当该位置的碱基为G时,能产生较多大小为2.3 kb的Wx基因成熟mRNA,从而积累更多GBSS蛋白,使得稻米中直链淀粉含量较高;当第1内含子碱基为T时,无法正常剪接,Wx翻译受阻,合成的GBSS蛋白较少,使得稻米中直链淀粉含量较低[32]。采用标记484/W2R和PCR-AccⅠ对供试材料进行检测。结果显示,所有供试材料均分别扩增出大小约为250 bp和460 bp的目标条带,但均不能被酶切(图3-C图3-D),说明紫392S,福恢737及紫两优737 wx基因第1内含子+1位碱基均为T型,即表现为低直链淀粉含量。

    采用严长杰等[27]根据籼粳差异开发的STS标记,对供试材料的Sbe1基因型进行检测,发现紫两优737及其亲本均扩增出与籼型对照一致的大小约为548 bp的条带(图4-A),说明待测材料均携带Sbe1i型等位基因。

    图  4  水稻淀粉合成相关基因、紫色种皮基因Pb相关标记对紫两优737及其亲本的检测结果
    A:Sbe1。M:100 bp DNA Marker。1:9311;2:明恢63;3:紫392S;4:福恢737;5:紫两优737。B:AGPlar M1。M:20 bp DNA Marker;1:珍汕97B;2:9311;3:紫392S;4:福恢737;5:紫两优737。C:PUL M2。M:20 bp DNA Marker;1:9311;2:宜优673;3:紫392S;4:福恢737;5:紫两优737。D:RS/SpeⅠ,原始扩增产物(左)和酶切产物(右)。M:100 bp DNA Marker;1:密阳23;2:宜优673;3:紫392S;4:福恢737;5:紫两优737。E:CAPSPb,原始扩增产物(左)和酶切产物(右)。M:100 bp DNA Marker;1:日本晴; 2:9311;3:紫392S;4:福恢737;5:紫两优737。
    Figure  4.  Detection of Ziliangyou 737 and its parents with markers for starch synthesis-related genes and Pb gene
    A: Sbe1. M: 100 bp DNA Marker. 1: 9311; 2: Minghui 63; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. B: AGPlar M1. M: 20 bp DNA Marker; 1: Zhenshan 97B; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. C: PUL M2. M: 20 bp DNA Marker; 1: 9311; 2: Yiyou 673; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. D: RS/SpeⅠ, original amplified products (left) and enzyme digestion products (right). M: 100 bp DNA Marker; 1: Miyang 23; 2: Yiyou 673; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. E: CAPSPb, original amplified products (left) and enzyme digestion products (right). M: 100 bp DNA Marker; 1: Nipponbare; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737.

    使用焦磷酸化酶大亚基基因AGPlar核心标记AGPlar M1[30]对供试材料进行鉴定,结果表明紫392S为Ⅰ型等位基因,福恢737为Ⅱ型等位基因,紫两优737为Ⅰ/Ⅱ杂合型(图4-B)。

    极限糊精酶基因PUL为编码脱分支酶基因之一,研究表明PUL基因对稻米蒸煮食用品质的部分理化指标如胶稠度等有显著影响[33]。采用田志喜等[30]开发的核心分子标记PUL M2对供试品种进行鉴定,三个品种均扩增出与9311一致的条带,即Ⅱ型等位基因(图4-C)。

    抗性淀粉(RS)具有降血糖血脂、促进肠道健康等重要的保健功能。采用基于控制水稻RS含量基因sbe3-rs的突变位点开发的RS/SpeⅠ功能标记[29]检测供试材料。所有材料均扩增出了大小约为571 bp的条带,且都被酶切成大小约为375 bp和196 bp两个条带(图4-D),表明与对照密阳23一样均为野生型SBE3

    用根据紫色果皮Pb与白色果皮pb等位基因在第7外显子的差异设计的CAPSPb标记[31]检测供试材料。紫两优737、紫392S、福恢737和对照日本晴、9311均扩增出大小约为1198bp的目标条带,经BamHⅠ酶切处理后,紫两优737及其亲本的扩增产物均被切开(图4-E),表明所有材料均携带紫色果皮等位基因型。

    水稻杂种优势利用在普通稻米育种实践中已经被广泛使用。本课题组采用杂交育种方法,利用紫392S与福恢737配组选育出具有紫黑色种皮的紫糯两系特种稻新品种紫两优737[1]。紫两优737是国内首个通过省级审定的紫糯两系杂交稻,填补了国内外紫糯两系杂交稻品种空白。紫两优737的成功培育,是本课题组对杂种优势原理的创新性应用,成功开拓了紫糯稻两系法杂种优势利用的新途径。经云南、福建、安徽多地示范种植,紫两优737表现出适应好、产量高,直链淀粉含量低,糯性好,食用口感佳等优点[34]

    紫两优737在云南、福建、安徽种植的品种亩产量均超过500 kg,在提高紫糯米品种产量方面取得了重大突破。检测结果表明,紫两优737及其亲本在穗实粒数主效基因Gn1a座位上均携带高产等位基因Ha-Gn1a;在粒重和粒长主效基因GS3座位上均携带长粒型等位基因MH-GS3。这些基因的存在为紫两优737区别于其他常规紫糯稻的高产特性奠定了分子基础。

    抽穗期是决定水稻品种适应地区和季节的关键性状,紫两优737对环境适应性好,已经通过云南省(滇审稻2019004)、福建省(闽审稻20200067)、安徽省(皖审稻20212002)品种审定和广西引种备案。抽穗期基因的检测结果为我们解释紫两优737适应性好这一特征提供了一些分子依据。Hd3a编码的成花素是水稻抽穗调控通路中的关键因子,来自aus稻品种Kasalath的ha3aKasa相对来自温带粳稻品种日本晴的Hd3aNip是高光效基因,但会导致水稻开花推迟,影响正常生产[22]。紫两优737在该基因位点的基因型则属于产量高和抽穗延迟适中的杂合态Hd3aNip/hd3aKasa。此外抽穗期基因Hd1在短日照下激活Hd3a的表达,促进开花;长日照下抑制Hd3a表达,延迟开花[23],紫两优737在该位点也是杂合型Hd1jap /Hd1ind

    长期以来,糙米存在蒸煮难度大、食味欠佳的问题,阻碍了人们消费黑米的意愿,因而改善黑米的蒸煮食味品质是寻找开发稻米产能和营养富矿的“金钥匙”[35]。本课题培育的紫两优737具有直链淀粉含量低,糯性好,适口性好的优点。安徽区试中,紫两优737米质鉴定结果符合优质三等优质糯稻品种品质规定要求。品质相关基因检测结果表明,紫两优737的双亲均携带紫色种皮基因Pb,糯稻蜡质基因wx,淀粉分支酶基因Sbe1iSBE3以及极限糊精酶基因PUL。在焦磷酸化酶大亚基基因AGPlar座位上,双亲分别为Ⅰ和Ⅱ型。严长杰等[28]的试验表明,蜡质基因对淀粉的理化特性具有决定性作用,在该位点不同等位基因的崩解值(Breakdown Value, BDV)、冷胶粘度(Cool Paste Viscosity, CPV)、回复值(Consistency Value, CSV)、直链淀粉含量(Amylose Content, AC)和胶稠度(Gel Consistency, GC)等都有显著或极显著差异。紫两优737含有糯稻蜡质基因wx,且其第1内含子+1的碱基类型均为T型,这一检测结果跟前人研究一致。韩月澎等[36]对籼、粳两个糯性突变品种的研究表明籼稻糯性突变品种的wx基因第1内含子剪切位点+1位的碱基由G突变为T,而粳稻糯性突变品种则与原品种相同(均为T)。进而推测wx基因第1内含子+1位碱基为T是糯稻品种的特征,该变异使得品种具有中等直链淀粉含量(AC)和较软的胶稠度(GC)[37]

    除上述基因之外,紫两优737还携带一些其他性状的有利等位基因,如分蘖角基因TAC1、氮高效利用基因NRT1.1B等。前人研究表明硝酸盐转运蛋白NRT1.1B的自然变异是导致水稻籼粳间氮利用效率差异的重要原因,田间试验证明携带籼型等位基因NRT1.1B的粳稻品种在正常施肥条件下增产15%[38]。这些基因对紫两优737优异农艺性状形成的贡献还有待进一步探讨。

    综上所述,本研究通过分析紫糯两系特种稻紫两优737重要农艺性状的遗传构成,初步阐释了紫两优737具有的高产、适应性好、优质等优异农艺性状的分子基础。研究结果为紫两优737及其亲本在育种和生产上的进一步应用提供了理论依据,也为后续的定向改良工作奠定了基础。

  • 图  1   水稻产量因子Gn1aGS3基因相关标记对紫两优737及其亲本的检测结果

    A:Gn1a-M1。M:20bp DNA Marker;1:明恢63;2:宜优673;3:紫392S;4:福恢737;5:紫两优737。B: GS3-PstⅠ,原始扩增产物(左)和酶切产物(右)。M:100 bp DNA Marker; 1:珍汕97,2:明恢63,3:紫392S,4:福恢737;5:紫两优737。

    Figure  1.   Detection of Ziliangyou 737 and its parents with markers for rice yield components Gn1a and GS3

    A: Gn1a-M1. M: 20bp DNA Marker; 1: Minghui 63; 2: Yiyou 673; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. B: GS3-PstⅠ, original amplified products(left) and enzyme digestion products (right). M: 100 bp DNA Marker; 1: Zhengshan 97; 2: Minghui 63; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737.

    图  2   水稻Hd3aHd1基因相关标记对紫两优737及其亲本的检测结果

    A: hd3afnp。M:100 bp DNA Marker;1:日本晴;2:Kasalath;3:紫392S;4:福恢737;5:紫两优737。B:Si9337。M:20 bp DNA Marker;1:日本晴;2:9311;3:紫392S;4:福恢737;5:紫两优737。

    Figure  2.   Detection of Ziliangyou 737 and its parents with markers for Hd3a and Hd1

    A: hd3afnp. M: 100 bp DNA Marker; 1: Nipponbare; 2: Kasalath; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. B: Si9337. M: 20 bp DNA Marker; 1: Nipponbare; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737.

    图  3   糯稻蜡质基因相关标记对紫两优737及其亲本的检测结果

    A:We 2-2。M:20 bp DNA Marker;1:荆糯6;2:9311;3:紫392S;4:福恢737;5:紫两优737。B:Wx-t1。M:20 bp DNA Marker;1:荆糯6;2:9311;3:紫392S;4:福恢737;5:紫两优737。C:484/W2R,原始扩增产物(左)和酶切产物(右);M:100 bp DNA Marker;1:9311;2:明恢63;3:紫392S;4:福恢737;5:紫两优737。D:PCR-AccⅠ,原始扩增产物(左)和酶切产物(右);M:100 bp DNA Marker;1:9311;2:明恢63;3:紫392S;4:福恢737;5:紫两优737。

    Figure  3.   Detection of Ziliangyou 737 and its parents with markers for wx

    A: We 2-2. M: 20 bp DNA Marker; 1: Jingnuo 6; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. B: Wx-t1. M: 20 bp DNA Marker; 1: Jingnuo 6; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. C: 484/W2R, original amplified products (left) and enzyme digestion products (right); M: 100 bp DNA Marker; 1: 9311; 2: Minghui 63; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. D: PCR-AccⅠ, original amplified products (left) and enzyme digestion products (right); M: 100 bp DNA Marker; 1: 9311; 2: Minghui 63; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737.

    图  4   水稻淀粉合成相关基因、紫色种皮基因Pb相关标记对紫两优737及其亲本的检测结果

    A:Sbe1。M:100 bp DNA Marker。1:9311;2:明恢63;3:紫392S;4:福恢737;5:紫两优737。B:AGPlar M1。M:20 bp DNA Marker;1:珍汕97B;2:9311;3:紫392S;4:福恢737;5:紫两优737。C:PUL M2。M:20 bp DNA Marker;1:9311;2:宜优673;3:紫392S;4:福恢737;5:紫两优737。D:RS/SpeⅠ,原始扩增产物(左)和酶切产物(右)。M:100 bp DNA Marker;1:密阳23;2:宜优673;3:紫392S;4:福恢737;5:紫两优737。E:CAPSPb,原始扩增产物(左)和酶切产物(右)。M:100 bp DNA Marker;1:日本晴; 2:9311;3:紫392S;4:福恢737;5:紫两优737。

    Figure  4.   Detection of Ziliangyou 737 and its parents with markers for starch synthesis-related genes and Pb gene

    A: Sbe1. M: 100 bp DNA Marker. 1: 9311; 2: Minghui 63; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. B: AGPlar M1. M: 20 bp DNA Marker; 1: Zhenshan 97B; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. C: PUL M2. M: 20 bp DNA Marker; 1: 9311; 2: Yiyou 673; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. D: RS/SpeⅠ, original amplified products (left) and enzyme digestion products (right). M: 100 bp DNA Marker; 1: Miyang 23; 2: Yiyou 673; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737. E: CAPSPb, original amplified products (left) and enzyme digestion products (right). M: 100 bp DNA Marker; 1: Nipponbare; 2: 9311; 3: Zi 392S; 4: Fuhui 737; 5: Ziliangyou 737.

    表  1   检测10个基因的相关标记信息

    Table  1   Markers’ information for 10 genes

    基因
    Gene
    标记
    Marker
    引物序列
    Primer sequence (5′-3′)
    退火温度
    Annealing temperature/℃
    等位基因参照
    Allele reference
    Gn1a Gn1a-M1[21] CTCTTGCTTCATTATCAATC 55 明恢63 Minghui 63
    AAACTACACAAGAATCTGCT
    GS3 GS3-Pst[21]
    (限制性内切酶 Restriction enzyme:PstⅠ
    TATTTATTGGCTTGATTTCCTGTG 55 珍汕97 Zhenshan 97,明恢63 Minghui 63
    GCTGGTTTTTTACTTTCATTTGCC
    Hd3a hd3afnp inner[22] AGCGGCAGGAGaGTCTACAA 62 日本晴 Nipponbare, Kasalath
    TCaGGATCATCGTTAGCTAGGG
    hd3afnp outer AAtCGAGGGGAGTATATTGCTAGT
    GCTaCATGAGAGACCTTAGCCTT
    Hd1 Si9337[23] AGATGTCCCTTCACTTCAGC 60 9311,日本晴 Nipponbare
    CGAAACGGCCCTTGATCC
    wx We 2-2[24] CACTACAAGACACACTTGCAC 55 荆糯6 Jingnuo 6, 9311
    GTCATCTAGCCCACCACCTT
    Wx-t1[25] ATGTCGGCTCTCACCACG 55 荆糯6 Jingnuo 6, 9311
    ACCGACCGCTGCTGCTTG
    484/W2R[26]
    (限制性内切酶 Restriction enzyme:AccⅠ)
    CTTTGTCTATCTCAAGACAC 55 9311,明恢63 Minghui 63
    TTTCCAGCCCAACACCTTAC
    PCR- Acc [27]
    (限制性内切酶 Restriction enzyme:AccⅠ)
    GCTTCACTTCTCTGCTTGTG 55 日本晴Nipponbare, 明恢63 Minghui 63
    ATGATTTAACGAGAGTTGAA
    Sbe1 Sbe1[28] GAGTTGAGTTGCGTCAGATC 57 9311,日本晴 Nipponbare
    AATGAGGTTGCTTGCTGCTG
    sbe3-rs RS/Spe[29]
    (限制性内切酶 Restriction enzyme:SpeⅠ)
    ATGTGATGTGCTGGATTTGG 55 密阳 23 Miyang 23,宜优673 Yiyou 673
    TGTGGTTTTCATACCGTTCTTA
    AGPlar AGPlar M1[30] CGTTCAGGTTCAGGCAATCA 58 珍汕97 Zhenshan 97, 9311
    GGAAGGGTGGTGATGTGGAG
    PUL PUL M2[30] GACAACCGTCCGCTTTAGTTTC 58 9311, 宜优673 Yiyou 673
    GCATTTGAGAGGGTTTGGATTC
    Pb CAPSPb [31]
    (限制性内切酶 Restriction enzyme:BamHⅠ)
    AAATCAGTTGTCCCGTCCA 58 9311,日本晴 Nipponbare
    TTAGGGAGTTGGTGATGGG
    下载: 导出CSV

    表  2   紫两优737在云南、福建和安徽区域试验产量表现[1,20]

    Table  2   Yield performance of Ziliangyou 737 in regional trails in Yunnan, Fujian and Anhui

    试验类型
    Type of test
    品种
    Varieties
    平均产量
    Average Yield/(kg·hm−2
    比对照增减产
    Ratio compared with CK/%
    云南区试 Reginal trial in Yunnan 紫两优737 Ziliangyou 737 7566.90 152.1.0
    癸能紫米 Guinengzimi(CK) 3002.10
    福建区试 Reginal trial in Fujian 紫两优737 Ziliangyou 737 7505.48 −3.82
    宜优673 Yiyou 673(CK) 7804.07
    安徽区试 Reginal trial in Anhui 紫两优737 Ziliangyou 737 8441.63 −0.16
    Ⅱ优838(CK) 8456.55
    下载: 导出CSV

    表  3   紫两优737在云南、福建区域试验稻米品质[1]

    Table  3   Rice quality of Ziliangyou 737 in regional trails in Yunnan and Fujian

    类别 Types糙米率
    Brown rice percentage/%
    精米率
    Head rice percentage/%
    整精米率
    Head rice percentage/%
    粒长
    Grain length/mm
    长宽比 Ratio of grain length to width直链淀粉 Amylase content/%碱消值 Alkali value胶稠度
    Gel consistency/mm
    云南区试Regional trial in Yunnan78.469.455.36.32.72.67.090
    福建区试 Reginal trial of in Fujian79.368.565.16.42.92.17.097
    下载: 导出CSV
  • [1] 黄庭旭, 郑建华, 游晴如, 等. 两系特种稻新品种紫两优737的选育与应用 [J]. 福建农业学报, 2020, 35(11):1171−1178. DOI: 10.19303/j.issn.1008-0384.2020.11.001

    HUANG T X, ZHENG J H, YOU Q R, et al. Breeding and application of new two-line special rice variety ziliangyou 737 [J]. Fujian Journal of Agricultural Sciences, 2020, 35(11): 1171−1178.(in Chinese) DOI: 10.19303/j.issn.1008-0384.2020.11.001

    [2] 杨加珍, 曾亚文, 杜娟, 等. 紫黑米种质功能成分综合研究与利用 [J]. 生物技术进展, 2015, 5(1):47−53. DOI: 10.3969/j.issn.2095-2341.2015.01.07

    YANG J Z, ZENG Y W, DU J, et al. Comprehensive utilization and research of functional components of purple black rice germplasm [J]. Current Biotechnology, 2015, 5(1): 47−53.(in Chinese) DOI: 10.3969/j.issn.2095-2341.2015.01.07

    [3] 常徽, 糜漫天, 凌文华. 黑米花色苷及联合化疗药物对不同肿瘤细胞增殖的影响 [J]. 第三军医大学学报, 2007, 29(20):1943−1946. DOI: 10.3321/j.issn:1000-5404.2007.20.006

    CHANG H, MI M T, LING W H. Effects of anthocyanin-rich extract from black rice alone or combined with chemotherapeutic agents on proliferation of different cancer cells [J]. Acta Academiae Medicinae Militaris Tertiae, 2007, 29(20): 1943−1946.(in Chinese) DOI: 10.3321/j.issn:1000-5404.2007.20.006

    [4]

    CHANG H, YU B, YU X P, et al. Anticancer activities of an anthocyanin-rich extract from black rice against breast cancer cells in vitro and in vivo [J]. Nutrition and Cancer, 2010, 62(8): 1128−1136. DOI: 10.1080/01635581.2010.494821

    [5] 路宏朝, 王杨科, 李丽霞, 等. 黑米花青苷复方胶囊对实验性肝损伤的保护作用 [J]. 食品科学, 2013, 34(3):261−263.

    LU H Z, WANG Y K, LI L X, et al. Protective effect of black rice anthocyanin compound capsule against experimental hepatic injury [J]. Food Science, 2013, 34(3): 261−263.(in Chinese)

    [6] 贾艳梅, 郝旭, 赵龙. 黑米花青素对丝绸的染色及其抗紫外线性能 [J]. 现代纺织技术, 2022, 30(3):174−178,185. DOI: 10.19398/j.att.202105035

    JIA Y M, HAO X, ZHAO L. Dyeing behavior and anti-ultraviolet property of silk fabric dyed with black rice anthocyanin [J]. Advanced Textile Technology, 2022, 30(3): 174−178,185.(in Chinese) DOI: 10.19398/j.att.202105035

    [7] 赵腾芳. 黑糯稻品种资源的考察 [J]. 云南农业科技, 1985(1):29−31,27.

    ZHAO T F. Investigation on black glutinous rice variety resources [J]. Yunnan Agricultural Science and Technology, 1985(1): 29−31,27.(in Chinese)

    [8] 韩龙植, 南钟浩, 全东兴, 等. 特种稻种质创新与营养特性评价 [J]. 植物遗传资源学报, 2003, 4(3):207−213. DOI: 10.3969/j.issn.1672-1810.2003.03.006

    HAN L Z, NAN Z H, QUAN D X, et al. Prebreeding and nutritive characteristic evaluation of special rice [J]. Journal of Plant Genetic Resources, 2003, 4(3): 207−213.(in Chinese) DOI: 10.3969/j.issn.1672-1810.2003.03.006

    [9] 王延春, 夏志辉, 刘迪, 等. 特种稻新品种中科黑糯1号的选育 [J]. 种子, 2013, 32(10):105−106. DOI: 10.3969/j.issn.1001-4705.2013.10.032

    WANG Y C, XIA Z H, LIU D, et al. Breeding of a new special rice variety zhongke Heinuo No. 1 [J]. Seed, 2013, 32(10): 105−106.(in Chinese) DOI: 10.3969/j.issn.1001-4705.2013.10.032

    [10] 黎用朝, 闵军, 刘三雄, 等. 特种稻新品种晚籼紫宝的选育与应用 [J]. 中国稻米, 2015, 21(3):75−76. DOI: 10.3969/j.issn.1006-8082.2015.03.020

    LI Y C, MIN J, LIU S X, et al. Breeding and application of new indica rice variety wanxianzibao [J]. China Rice, 2015, 21(3): 75−76.(in Chinese) DOI: 10.3969/j.issn.1006-8082.2015.03.020

    [11] 闵军, 黎用朝, 刘三雄, 等. 紫米型新品种丽人紫的选育 [J]. 中国稻米, 2015, 21(6):107−108. DOI: 10.3969/j.issn.1006-8082.2015.06.027

    MIN J, LI Y C, LIU S X, et al. Breeding of new indica rice variety lirenzi with brown rice [J]. China Rice, 2015, 21(6): 107−108.(in Chinese) DOI: 10.3969/j.issn.1006-8082.2015.06.027

    [12] 台德卫, 蒋光月, 姚自鸣, 等. 功能性水稻新品种品黑一号的选育及营养安全研究初报 [J]. 安徽农学通报, 2016, 22(5):20−21,115. DOI: 10.3969/j.issn.1007-7731.2016.05.009

    TAI D W, JIANG G Y, YAO Z M, et al. Preliminary report of the breeding and nutritional evaluation of a newly bred black rice variety pinhei 1 [J]. Anhui Agricultural Science Bulletin, 2016, 22(5): 20−21,115.(in Chinese) DOI: 10.3969/j.issn.1007-7731.2016.05.009

    [13] 唐清杰, 王惠艰, 严小微. 特种稻品种海丰黑糯2号的选育及栽培技术要点 [J]. 中国稻米, 2018, 24(1):111−112. DOI: 10.3969/j.issn.1006-8082.2018.01.029

    TANG Q J, WANG H J, YAN X W. Breeding and application of new special rice Haifengheinuo 2 [J]. China Rice, 2018, 24(1): 111−112.(in Chinese) DOI: 10.3969/j.issn.1006-8082.2018.01.029

    [14] 黄春毓, 张志英, 李伟荣, 等. 紫色特种稻坤两优1号的选育及应用 [J]. 种子, 2019, 38(12):128−131,141. DOI: 10.16590/j.cnki.1001-4705.2019.12.128

    HUANG C Y, ZHANG Z Y, LI W R, et al. Breeding and application of purple special rice kunliangyou No. 1 [J]. Seed, 2019, 38(12): 128−131,141.(in Chinese) DOI: 10.16590/j.cnki.1001-4705.2019.12.128

    [15] 张志英, 陈春莲, 李伟荣, 等. 紫黑色特种两系杂交水稻新组合坤两优22 [J]. 杂交水稻, 2020, 35(4):96−98. DOI: 10.16267/j.cnki.1005-3956.20190902.220

    ZHANG Z Y, CHEN C L, LI W R, et al. Kunliangyou 22, a new purple-black special two-line hybrid rice combination [J]. Hybrid Rice, 2020, 35(4): 96−98.(in Chinese) DOI: 10.16267/j.cnki.1005-3956.20190902.220

    [16] 唐清杰, 韩义胜, 严小微. 多抗基因聚合的特种稻海丰黑糯2号抗病虫鉴定和分子标记检测 [J]. 分子植物育种, 2018, 16(2):466−471. DOI: 10.13271/j.mpb.016.000466

    TANG Q J, HAN Y S, YAN X W. Identification of resistance to diseases and pests and molecular market detection of a special rice variety Haifengheinuo 2 with multiple gene polymerization [J]. Molecular Plant Breeding, 2018, 16(2): 466−471.(in Chinese) DOI: 10.13271/j.mpb.016.000466

    [17] 王军, 杨金欢, 杨杰, 等. 优质紫香糯龙晴4号的紫色和香味的基因型分析 [J]. 分子植物育种, 2011, 9(6):688−691. DOI: 10.3969/mpb.009.000688

    WANG J, YANG J H, YANG J, et al. Genotypic identification of the fragrance and purple in the high quality sticky rice Longqing4 [J]. Molecular Plant Breeding, 2011, 9(6): 688−691.(in Chinese) DOI: 10.3969/mpb.009.000688

    [18] 许峰, 宋学堂, 陈露, 等. 香血稻515的选育及栽培技术 [J]. 中国稻米, 2021, 27(1):109−110,113.

    XU F, SONG X T, CHEN L, et al. Breeding and cultivation techniques of Xiangxuedao 515 [J]. China Rice, 2021, 27(1): 109−110,113.(in Chinese)

    [19] 朱丽, 钱前. 突破复杂性状多基因转化技术壁垒, 首创胚乳花青素高积累的水稻新种质 [J]. 植物学报, 2017, 52(5):539−542. DOI: 10.11983/CBB17126

    ZHU L, QIAN Q. Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in endosperm: Significant breakthrough in transgene stacking system, new progress in rice biofortification [J]. Chinese Bulletin of Botany, 2017, 52(5): 539−542.(in Chinese) DOI: 10.11983/CBB17126

    [20] 郑建华, 王洪飞, 周鹏, 等. 籼型紫黑糯稻光温敏核不育系紫392S选育与应用 [J]. 杂交水稻, 2021, 36(6):13−17. DOI: 10.16267/j.cnki.1005-3956.20200928.306

    ZHENG J H, WANG H F, ZHOU P, et al. Breeding and application of PTGMS line zi 392S of indica-type glutinous rice with purple-black grains [J]. Hybrid Rice, 2021, 36(6): 13−17.(in Chinese) DOI: 10.16267/j.cnki.1005-3956.20200928.306

    [21]

    YAN C J, YAN S, YANG Y C, et al. Development of gene-tagged markers for quantitative trait loci underlying rice yield components [J]. Euphytica, 2009, 169(2): 215−226. DOI: 10.1007/s10681-009-9937-0

    [22] 常远, 吴苏亭, 杨毅荣, 等. 4引物分子标记鉴定水稻高光效基因型hd3aKasa [J]. 杂交水稻, 2020, 35(4):75−80.

    CHANG Y, WU S T, YANG Y R, et al. Identification of the genotype of hd3aKasa with a high photosynthetic efficiency in rice by a Tetra-primer molecular marker [J]. Hybrid Rice, 2020, 35(4): 75−80.(in Chinese)

    [23] 陈俊宇, 王凯, 龚俊义, 等. RFT1与Hd1所在区间对水稻抽穗期、株高和千粒重的作用 [J]. 中国水稻科学, 2013, 27(2):117−121. DOI: 10.3969/j.issn.1001-7216.2013.02.002

    CHEN J Y, WANG K, GONG J Y, et al. Effects of the RFT1 region and Hd1 region on heading date, plant height and thousand-grain weight in rice(Oryza sativa) [J]. Chinese Journal of Rice Science, 2013, 27(2): 117−121.(in Chinese) DOI: 10.3969/j.issn.1001-7216.2013.02.002

    [24] 孙华钦, 田洁, 郑家奎, 等. 糯稻和非糯稻蜡质基因的新STS分子标记 [J]. 应用与环境生物学报, 2006, 12(4):461−463. DOI: 10.3321/j.issn:1006-687X.2006.04.004

    SUN H Q, TIAN J, ZHENG J K, et al. New STS molecular markers for waxy gene of glutinous and nonglutinous rices [J]. Chinese Journal of Applied & Environmental Biology, 2006, 12(4): 461−463.(in Chinese) DOI: 10.3321/j.issn:1006-687X.2006.04.004

    [25] 谢会兰. 水稻淀粉合成相关基因分子标记的建立及其遗传网络初步探析[D]. 扬州: 扬州大学, 2007

    XIE H L. Establishment of molecular markers related to rice starch synthesis and preliminary analysis of its genetic network[D]. Yangzhou: Yangzhou University, 2007. (in Chinese)

    [26] 侯立恒, 夏明元, 戚华雄, 等. 利用Wx基因分子标记辅助选择技术培育中等直链淀粉含量的水稻恢复系 [J]. 中国农学通报, 2009, 25(14):32−36.

    HOU L H, XIA M Y, QI H X, et al. Developing restorer lines with intermediate amylose content by molecular marker-assisted selection in rice [J]. Chinese Agricultural Science Bulletin, 2009, 25(14): 32−36.(in Chinese)

    [27] 蔡秀玲, 刘巧泉, 汤述翥, 等. 用于筛选直链淀粉含量为中等的籼稻品种的分子标记 [J]. 植物生理与分子生物学学报, 2002, 28(2):137−144.

    CAI X L, LIU Q Q, TANG S Z, et al. Development of a molecular marker for screening the rice cultivars with intermediate amylose content in Oryza sativa subsp. indica [J]. Acta Photophysiologica Sinica, 2002, 28(2): 137−144.(in Chinese)

    [28] 严长杰, 田舜, 张正球, 等. 水稻栽培品种淀粉合成相关基因来源及其对品质的影响 [J]. 中国农业科学, 2006, 39(5):865−871. DOI: 10.3321/j.issn:0578-1752.2006.05.001

    YAN C J, TIAN S, ZHANG Z Q, et al. The source of genes related to rice grain starch synthesis among cultivated varieties and its contribution to quality [J]. Scientia Agricultura Sinica, 2006, 39(5): 865−871.(in Chinese) DOI: 10.3321/j.issn:0578-1752.2006.05.001

    [29] 杨瑞芳, 白建江, 方军, 等. 分子标记辅助选择选育高抗性淀粉水稻新品种 [J]. 核农学报, 2015, 29(12):2259−2267. DOI: 10.11869/j.issn.100-8551.2015.12.2259

    YANG R F, BAI J J, FANG J, et al. Establishment of marker-assisted selection system for breeding rice varieties with high resistant starch content [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(12): 2259−2267.(in Chinese) DOI: 10.11869/j.issn.100-8551.2015.12.2259

    [30] 田志喜, 严长杰, 钱前, 等. 水稻淀粉合成相关基因分子标记的建立 [J]. 科学通报, 2010, 55(26):2591−2601. DOI: 10.1360/csb2010-55-26-2591

    TIAN Z X, YAN C J, QIAN Q, et al. Establishment of molecular markers for genes related to starch synthesis in rice [J]. Chinese Science Bulletin, 2010, 55(26): 2591−2601.(in Chinese) DOI: 10.1360/csb2010-55-26-2591

    [31] 王芳权, 杨杰, 范方军, 等. 水稻紫色果皮的延迟遗传及Pb基因功能标记开发 [J]. 中国水稻科学, 2014, 28(6):605−611. DOI: 10.3969/j.issn.1001-7216.2014.06.006

    WANG F Q, YANG J, FAN F J, et al. Delayed inheritance of purple pericarp in rice and development of functional marker for Pb gene [J]. Chinese Journal of Rice Science, 2014, 28(6): 605−611.(in Chinese) DOI: 10.3969/j.issn.1001-7216.2014.06.006

    [32] 连玲, 潘丽燕, 朱永生, 等. 杂交水稻骨干亲本Wx基因第一内含子+1位碱基多态性分析 [J]. 福建农业学报, 2019, 34(12):1355−1363.

    LIAN L, PAN L Y, ZHU Y S, et al. Polymorphisms on first base of wx gene intron 1 in parents of hybrid rice [J]. Fujian Journal of Agricultural Sciences, 2019, 34(12): 1355−1363.(in Chinese)

    [33] 康翠芳, 向珣朝, 龙小林, 等. 水稻淀粉合成相关基因SSⅠ、SSⅢ-1和PUL对稻米品质的影响 [J]. 农业生物技术学报, 2015, 23(3):311−319. DOI: 10.3969/j.issn.1674-7968.2015.03.004

    KANG C F, XIANG X C, LONG X L, et al. Effects of the starch-synthesizing genes SSⅠ, SSⅢ-1 and PUL on rice(Oryza sativa L. ) quality [J]. Journal of Agricultural Biotechnology, 2015, 23(3): 311−319.(in Chinese) DOI: 10.3969/j.issn.1674-7968.2015.03.004

    [34] 王洪飞, 陈建云, 郑建华, 等. 两系特种稻紫两优737在云南高原种植表现及丰产栽培技术 [J]. 福建稻麦科技, 2020, 38(2):21−24. DOI: 10.3969/j.issn.1008-9799.2020.02.010

    WANG H F, CHEN J Y, ZHENG J H, et al. Planting performance and high-yielding cultivation techniques of two-line special rice ziliangyou 737 in Yunnan Plateau [J]. Fujian Science and Technology of Rice and Wheat, 2020, 38(2): 21−24.(in Chinese) DOI: 10.3969/j.issn.1008-9799.2020.02.010

    [35] 张启发. 保障粮食安全, 促进营养健康: 黑米主食化未来可期 [J]. 华中农业大学学报, 2021, 40(3):1−2.

    ZHANG Q F. Ensuring food security and promoting nutrition and health: Making black rice staple food for the future [J]. Journal of Huazhong Agricultural University, 2021, 40(3): 1−2.(in Chinese)

    [36] 韩月澎, 徐明良, 严长杰, 等. 水稻糯性突变对淀粉理化特性的影响 [J]. 中国水稻科学, 2004, 18(2):125−129. DOI: 10.3321/j.issn:1001-7216.2004.02.008

    HAN Y P, XU M L, YAN C J, et al. Effect of wx mutation on starch physical-chemical properties in rice [J]. Chinese Journal of Rice Science, 2004, 18(2): 125−129.(in Chinese) DOI: 10.3321/j.issn:1001-7216.2004.02.008

    [37] 孙业盈, 吕彦, 董春林, 等. 水稻Wx基因与稻米AC、GC和GT的遗传关系 [J]. 作物学报, 2005, 31(5):535−539. DOI: 10.3321/j.issn:0496-3490.2005.05.001

    SUN Y Y, LYU Y, DONG C L, et al. Genetic relationship among wx gene, AC, GC and GT of rice [J]. Acta Agronomica Sinica, 2005, 31(5): 535−539.(in Chinese) DOI: 10.3321/j.issn:0496-3490.2005.05.001

    [38]

    HU B, WANG W, OU S J, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies [J]. Nature Genetics, 2015, 47(7): 834−838. DOI: 10.1038/ng.3337

图(4)  /  表(3)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  212
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-06-12
  • 刊出日期:  2023-07-27

目录

/

返回文章
返回