• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

基于转录组测序的金钱蒲类黄酮生物合成基因的表达分析

Expressions of Flavonoid Biosynthesis Genes in Acorus gramineus Determined by Transcriptome Sequencing

  • 摘要:
      目的  高通量测序获取金钱蒲(Acorus gramineus)7个不同组织转录组信息,为不同组织中类黄酮化学成分合成差异提供分子信息,进而在分子水平上研究金钱蒲不同组织内类黄酮化学成分合成差异。
      方法  利用高通量测序技术平台完成金钱蒲7个不同部位的转录组测序,对unigenes进行功能注释,借助注释结果挖掘类黄酮生物合成通路,筛选通路中的差异表达基因(Differentially expressed genes,DEGs)并进行表达量分析。
      结果  共获得高质量数据39.91~42.97 M,总碱基量为5.98~6.45 Gb,Q30碱基百分比大于94.05%,GC含量为47.81%~50.32%。18616条unigenes在GO数据库中获得62 506个注释,根据功能划分为细胞组分、分子功能及生物过程三大类,分别对应 6、14、21个亚类,大量基因分布在细胞解剖实体、连接、催化活性和细胞过程等亚类中。10124条unigenes 富集在 KEGG 数据库的5大类19个亚类中,从其中筛选出4条类黄酮生物合成途径,14个关键酶,63个差异表达酶基因。这些基因在金钱蒲7个组织中具有表达差异性,表明这些结构基因在类黄酮生物合成过程中于不同部位发挥作用。
      结论  研究结果丰富了金钱蒲的遗传信息,也为进一步解析金钱蒲类黄酮生物合成基因功能提供参考依据。

     

    Abstract:
      Objective  Transcriptomes of Acorus gramineus tissues were applied to molecularly differentiating flavonoid synthesis genes in the organs.
      Methods  The high-throughput sequencing technology was employed to obtain the transcriptomes of the genes in 7 organs of A, gramineus. Thereby, the functions of unigenes were annotated, the flavonoid biosynthesis pathway deciphered, the differentially expressed genes (DEGs) in the pathway screened, and an expression analysis performed.
      Results  A total of 39.91 to 42.97 M of high-quality data were secured with 5.98–6.45 Gb bases, more than 94.05% Q30 bases, and a GC content of 47.81%–50.32%. From the GO database, 62506 were annotated to classify the 18616 unigenes into 3 functional groups that included cellular components, molecular functions, and biological processes corresponding to 6, 14, and 21 subcategories, respectively. Numerous genes were distributed in the subcategories, such as cellular anatomical entities, connections, catalytic activities, and cellular processes. There were 10124 unigenes enriched in the 5 major categories and 19 subclasses of the KEGG database. From which, 4 flavonoid biosynthesis pathways, 14 key enzymes, and 63 DEGs were screened. The transcriptomes in 7 tissues of A. gramineus obtained in this study led to the identification of 63 DEGs involved in 4 flavonoid biosynthesis pathways. These genes differed in expressions in the organs indicating their diversified roles in the flavonoid biosynthesis in A. gramineus
      Conclusion  The research results have enriched the genetic information of A. gramineus and provided a reference for further elucidating the functional genes involved in the biosynthesis of flavonoids in A. gramineus.

     

/

返回文章
返回