Spatial Distribution and Quality of Branches on Two Types of High-grafted Loquat Trees
-
摘要:目的 探讨高接枇杷两种树形的枝梢空间分布特点及质量差异,为高接换种丰产树形的培养提供依据。方法 以高接换种后5年生多主枝自然圆头形和多主枝矮化开心形枇杷品种贵妃为试材,采用改进网格法进行分格定位,根据树高由下至上分为F1(树高0.0~100.0 cm)、F2(树高100.1~200.0 cm)、F3(树高200.1~300.0 cm)、F4(树高>300.0 cm)层,根据中心干距离远近设P1(内部,距离中心干0.0~100.0 cm)、P2(中部,距离中心干100.1~200.0 cm)、P3(外围,距离中心干>200. 0 cm)区。测量方格内代表性枝梢的长度、粗度、叶片数和枝角等,统计枝梢数、花穗数、枝梢抽穗率等。结果 多主枝自然圆头形的树高、叶幕层厚、冠幅、枝梢数、花穗数、枝梢抽穗率、枝角、节间长度均大于多主枝矮化开心形;在水平方向上,两种树形的枝梢数、花穗数主要分布在P2区,其次P1区;在垂直方向上,多主枝自然圆头形枝梢主要分布在F2、F3层,多主枝矮化开心形主要在F2层。多主枝自然圆头形的枝梢抽穗率、枝梢长度、枝梢粗度均为F4>F3>F2层;F2层枝梢数、花穗数、枝梢粗度、枝角为P3>P1,F3层枝梢抽穗率、枝角、节间长度为P3> P1区。多主枝矮化开心形的枝梢数和花穗数为F2>F3层,枝梢长度、粗度为F3>F2层;F2和F3层叶片数、节间长度为P1>P3区,枝角为P3>P1区。结论 两种树形的枝梢主要分布在次高层和次外层,多主枝矮化开心形的枝梢和花穗在冠层内分布更均匀,树冠内膛无枝梢或枝梢量少的低效或无效空间占比更少,为更高效树形。Abstract:Objective Differences in spatial distribution and quality of branches between two types of high-grafted loquat trees were examined.Methods Using 5-year-old high-grafted and replanted naturally round head and dwarf open heart-shaped multiple main branch Guifei loquat trees, an improved grid method was applied to compartmentalize into F1, F2, F3, and F4 layers according to plant height measured from the bottom to the top, as well as P1, P2, and P3 zones according to distance from the central trunk for the experimentation. Length, thickness, number of the leaves and angle of representative branches in the target measurement grids were collected. Numbers of the branches, spikes and heading rates of the branches were counted.Results The plant height, curtain layer thickness, crown width, branch number, spike number, branch heading rate, branch angle, and internode distance of the natural round head trees were greater than those of the dwarf open heart-shaped counterparts. Horizontally, the number of branches and spikes of both types of Guifei loquat trees were mainly distributed in the P2, followed by the P1 zone. Vertically, the trees with a naturally round head were largely distributed in the F2 and F3 layers, while the dwarf trees with an open heart-shaped canopy were predominantly distributed in the F2 layer. The heading rate, length, and thickness of the round head-shaped branches were F4>F3>F2. The number, spikes, thickness, and angle of the branches in the F2 layer were P3>P1. The heading rate, branch angle, and internode distance in the F3 layer were P3>P1. The number of branches and spikes of the dwarf variety were F2>F3, while the length and thickness of the branches F3>F2. The number of leaves and internode distance in the F2 and F3 layers were P1>P3; but the branch angle, P3>P1.Conclusion The branches on the Guifei loquat trees of two differently shaped canopies grew in the sub-high and sub-outer layers of the plant. The branches and spikes on the canopy of the dwarf open heart-shaped trees were more evenly distributed and had less spaces that grew few or no branches in the inner chamber of the crown making the type of tree potentially more productive than the round head variety.
-
Keywords:
- Loquat /
- tree shape /
- branch count /
- branch quality /
- heading number
-
0. 引言
【研究意义】枇杷[Eriobotrya japonica Lindl.]是原产于我国的常绿特色果树,果实春末夏初上市,甜酸适口,深受消费者喜好。福建是我国枇杷主产区,20世纪90年代以来,推广早钟6号、解放钟等枇杷品种,配套集约化栽培技术,有效推动了枇杷产业快速发展。随着生活水平的提高,消费者对枇杷品质的要求也在逐步提高,亟需推广品质更优良的鲜食品种。高接换种技术可利用原有树体的生长基础实现品种快速更新的目的,较新植小苗见效更快、产量损失更少,已成为福建枇杷产区品种更新的主要措施。研究高接换种后幼龄枇杷丰产树冠的快速形成以及枝梢的数量和质量是枇杷高效树形培养的关键。【前人研究进展】果树冠层结构[1,2]、光合特性[3,4]、枝梢类型、比例与分布[5,6]影响冠层内的光照、温度等微域环境[3],进而影响果实品质和产量[2,7],高效树形的培养是苹果(Malus pumila Mill)[8]、桃 [Prunus persica (L.) Batsch][9,10]、梨(Prunus spp)[11,12]等树种的丰产栽培关键技术。枇杷的树形有自然圆头形(主干分层形)、开心形(单层杯状形、双层杯状形)、变则主干形、桌面形等[13],在基本树形的基础上,又延伸出多主枝自然圆头形[14]、疏枝圆头形[15]、双层圆头形[16]、矮化开心形[17]、双层开心形[18]、低干矮冠形[16]等树形,近年来多头高接换种树以多主枝自然圆头形和多主枝开心形为主。枇杷的枝梢数量与单株产量密切相关[19],枝梢生长质量显著影响果实品质和产量,3种不同矮化树体生长型的枇杷品种资源的枝梢生长量和枝梢空间分布特点也不同,随树冠高度增加,枝梢长度、粗度、叶片数等呈增大趋势[20],外围的枝、叶生长影响下部和内膛枝、叶的生长,适宜的枝梢密度是提高整体枝梢质量的重要影响因子,是枇杷高效树形培养的关键技术。【本研究切入点】前人的研究主要侧重于枇杷不同树形培养的技术总结与推广,但不同树形的主要结果部位、树冠不同部位的枝梢分布特点、质量差异等对枇杷生长与结果的具体影响因子尚不明确。【拟解决的关键问题】本研究拟结合枇杷品种结构调整优化过程中高接换种技术的推广,探讨高接换种后多主枝自然圆头形和多主枝矮化开心形两种树形,冠层内不同部位、不同层次的枝梢分布特点及质量差异,为高接换种后丰产树形的培养提供参考。
1. 材料与方法
1.1 试验材料
试验在福建省莆田市城厢区常太镇宏耕农业有限公司枇杷基地(东经118.879°,北纬25.543°)进行,基地位于东圳水库上游,海拔200 m左右,坡向东南,梯台宽度2~4 m。该地属南亚热带海洋性季风气候,年平均气温18~20 ℃,平均日照时数1996 h,无霜期330~350 d,年降雨量1400~1900 mm。试验树株距4.0 m,原定植品种为解放钟,树龄10 a,干高40~80 cm,第一级主枝2~4个。多头高接品种为贵妃,高接在一级主枝上,嫁接口高度100.0 cm左右,每株高接2~6个接穗。试验调查2种树形:(1)多主枝自然圆头形:高接成活后,树冠内选留2~4个不同方位的健壮新梢培养为主枝,主枝不摘心、不短截修剪,每个主枝上间隔60.0~100.0 cm分层培养1~3个副主枝,定型后的树高控制在350.0 cm左右;(2)多主枝矮化开心形:待高接新梢老熟后,树冠不同方位选留2~4个生长健壮的新梢培养为主枝,用编织绳向树冠外围不同方位拉枝,枝角70~90°,主枝上间隔30~50 cm留1~2个健壮枝梢培养为副主枝,新梢老熟后采用拉枝措施矮化树形,定型后的树高控制在250.0 cm左右。两种树形定型后(图1-A、B),均采用1个中心枝+1个侧枝方式留梢,其余肥水、花果管理一致,树体长势均健壮。
1.2 调查方法
2017年11月枇杷抽穗期,分别从两种树形中选择树体长势、生长量较一致的高接换种5年生试验树各6株,2株1个小区,3次重复。因该基地枇杷树体的枝梢量总体偏少,试验参考邓朝军等[20]的方法加以调整对树冠进行分格定位,以主干为中心,用长度100.0 cm定制铝塑管将树冠分割成长宽高100.0 cm×100.0 cm×100.0 cm的立方体小格,并对每个立方体进行定位、编号。调查树高、冠幅、叶幕层厚及各个立方体内的枝梢数、花穗数,计算枝梢抽穗率(枝梢抽穗率/%=花穗数/总枝梢数×100),将每个立方体内的枝梢数和花穗数定义为枝梢密度和花穗密度,单位为个·m−3;测量每个立方体内有代表性的枝梢长度、粗度和枝角,统计每个枝梢上的叶片数,计算节间长度。用卷尺测量树高、冠幅、叶幕层厚、枝梢长度,用游标卡尺(0.01 mm)测量枝梢粗度,用数显量角器(精度0.1°)测量枝角。
为了更好定位和表述,垂直方向上,根据离地高度将树冠分为F1层(树高0.0~100.0 cm)、F2层(树高100.1~200.0 cm)、F3层(树高200.1~300.0 cm)、F4层(树高>300.0 cm);水平方向上,根据与主干距离分为P1区(内部,距离中心干0.0~100.0 cm)、P2区(中部,距离中心干100.1~200.0 cm)、P3区(外围,距离中心干>200. 0 cm)(图1-C)。因两种处理的嫁接口高度100.0 cm左右,F1层内均无枝梢,分析时以叶幕层所在范围为主。
1.3 数据处理与分析
用Excel 2007、DPS7.0分析数据,Origin 2018绘图。
2. 结果与分析
2.1 枇杷两种树形的树体生长量差异
由表1可知,高接后5年生贵妃枇杷多主枝自然圆头形的树高、叶幕层厚、冠幅、枝梢数、花穗数、枝梢抽穗率、枝角、节间长度均显著或极显著大于多主枝矮化开心形,其中多主枝自然圆头形的树高和叶幕层厚分别比多主枝矮化开心形增大40.6%和61.8%,枝梢数和花穗数分别增多37.4%和50.5%,枝梢抽穗率提高7.1%,节间长度增高13.3%,枝梢更直立,枝角增大9.9°,粗长比增加0.02,但枝梢长度、粗度和叶片数分别比多主枝矮化开心形减少14.0%、9.1%和20.7%。由此可知,多主枝自然圆头形的树体生长量较多主枝矮化开心形显著增大,尤其是枝梢数和花穗数明显增加,但枝梢长势总体上弱于多主枝矮化开心形。
表 1 贵妃枇杷两种树形的树体生长量比较Table 1. Growth of two types of loquat tree项目Item 多主枝自然圆头形
Naturally round head tree
with multiple main branches多主枝矮化开心形
Dwarf, open heart-shaped
tree with multiple main branches树高 Tree height/cm 355.67±25.11aA 253.07±2.65bB 冠幅 Crown diameter Canopy/cm 500.67±47.16×447.67±61.17aA 427.67±33.56×356.33±31.82bB 树况 Tree condition 叶幕层厚 Thickness of canopy layers/cm 303.21±19.97aA 187.39±12.50bB 枝梢数 Number of branches 191.26±26.51aA 139.38±24.54bB 花穗数 Number of flower spikes 146.27±8.33aA 97.06±11.71bB 枝梢抽穗率 Flowering branch rate/% 76.65±14.57aA 69.60±9.54bA 长度 Length/cm 38.89±3.93bA 45.24±3.29aA 粗度 Diameter/mm 10.95±0.82bB 12.04±0.94aA 枝梢 Branch tip 叶片数 leave number 23.44±3.06bB 29.29±2.32aA 枝角 Branch/° 40.46±6.03aA 30.58±3.68bB 节间长度 Internode length/cm 1.79±0.17aA 1.58±0.14bA 粗长比 Shoot length/diameter ratio 0.28±0.01aA 0.26±0.01bA 同一列中大写字母表示0.01显著水平差异、小写字母表示0.05显著水平差异。下同。
In the same column, majuscule indicate a significant level difference of 0.01 and lowercase letters indicate a significant level difference of 0.05. The same below.2.2 枇杷两种树形冠层内枝梢和花穗的分布特点
2.2.1 两种树形冠层内枝梢和花穗的水平分布特点
从贵妃枇杷冠层枝梢数和花穗数的水平分布来看,多主枝自然圆头形冠层的单位投影面积内枝梢数为9个·m−2、花穗数7个·m−2(图2-A);P1区分布23.16%的枝梢、22.67%的花穗,单位投影面积内枝梢数9~13个·m−2、平均11个·m−2,花穗数2~15个·m−2、平均7个·m−2,平均枝梢抽穗率76.57%;P2区占总枝梢数的63.68%、占总花穗数的64.67%,单位投影面积内枝梢数6~15个·m−2、平均10个·m−2,花穗数4~15个·m−2、平均8个·m−2,平均枝梢抽穗率80.29%;P3区占枝梢数13.16%、占花穗数12.67%,单位投影面积内枝梢数2~8个·m−2、平均4个·m−2,单位投影面积内花穗数2~5个·m−2、平均3个·m−2,平均枝梢抽穗率82.64%。
图 2 两种树形冠层内枝梢和花穗的水平分布A、B为多主枝自然圆头形;C、D为多主枝矮化开心形;X、Y轴数值为与主干距离。Figure 2. Horizontal distribution of branches (left) and panicles (right) on canopies of two types of loquat treeA、B: Naturally round head tree with multiple main branches;C、D: dwarf, open heart-shaped tree with multiple main branches;The X-axis and Y-axis value is the distance from the trunk.多主枝矮化开心形冠层内单位投影面积的枝梢数8个·m−2、花穗数6个·m−2(图2-B);37.76%的枝梢、28.43%的花穗分布在P1区,该区的枝梢密度较大且分布均匀,单位投影面积的枝梢数13~14个·m−2、平均13个·m−2,花穗数6~10个·m−2、平均7个·m−2,平均枝梢抽穗率53.87%;60.84%的枝梢数、69.61%花穗数分布在P2区,该区的枝梢、花穗分布差异较大,单位投影面积的枝梢数1~14个·m−2、平均7个·m−2,花穗1~12个·m−2、平均6个·m−2,平均枝梢抽穗率83.80%;P3区仅个别区有枝梢和花穗。
从水平分布来看,两种树形的枝梢数、花穗数均主要分布在P2区,其次是P1区,但P1区的单位投影面积的枝梢数、花穗数均较P2区多;多主枝矮化开心形与多主枝自然圆头形相比,P1区的枝梢数增多3个·m−2、枝梢抽穗率降低22.70个百分点、花穗分布更均匀,P2区的枝梢数减少3个·m−2、花穗数减少2个·m−2、枝梢抽穗率差异不显著,P3区无枝梢和花穗。
2.2.2 两种树形冠层内枝梢和花穗的垂直分布特点
由图3可知,多主枝自然圆头形的枝梢和花穗主要分布在F2层(40.96%、36.05%)和F3层(44.15%、46.26%),F4层仅占15.43%、17.69%,枝梢数和花穗数均表现为F3层>F2层>F4层,枝梢抽穗率为F4层(95.13%)>F3层(82.23%)>F2层(69.03%);多主枝矮化开心形冠层内66.43%的枝梢、69.31%的花穗分布在F2层,其余枝梢与花穗分布在F3层,单位面积内的枝梢数和花穗数表现为F2层>F3层,但两层间的枝梢抽穗率差异小(F2层74.95%、F3层70.66%)。
2.2.3 两种树形冠层内不同部位枝梢和花穗的分布特点
由图4-A可知,多主枝自然圆头形冠层可分割成4层84个体积1 m3的立方体小格,扣除F1层24个后,叶幕层分成60个体积1 m3的小格;叶幕层内无枝梢的小格10个,占16.67%,其中F2层3个、F3层5个、F4层2个;格内枝梢数1~9个·m−3、花穗数1~8个·m−3,其中1~4个·m−3枝梢、花穗的小格数分别有34个和40个,占56.67%、66.67%;≥5个·m−3枝梢和花穗的小格分别有16个、9个,占26.67%、15.00%。28.57%、30.69%的枝梢分布在F2、F3层的P2区,10.05%、10.58%分布在F3、F4层P1区,P3区仅F2、F3层有9.52%、3.17%,F3、F4层P1区和F3层P2区平均枝梢数5个·m−3,其次是F2层P2区4个·m−3,其余区域仅1~2个·m−3,花穗数也有相同趋势。
图 4 两种树形冠层内不同部位枝梢(左图)和花穗(右图)分布情况A、B为多主枝自然圆头形;C、D多主枝矮化开心形;X、Y轴数值为与主干距离。Figure 4. Distribution of branches (left) and panicles (right) in parts of canopies of two types of loquat treeA、B: Naturally round head tree with multiple main branches;C、D: Dwarf, open heart-shaped tree with multiple main branches;The X-axis and Y-axis value is the distance from the trunk.多主枝矮化开心形有3层48个立方体小格,扣除F1层16个后,叶幕层可分成32个体积1 m3的小格(图4-B);叶幕层内无枝梢的小格2个,均在F3层,占6.25%;各小格内枝梢数1~11个·m−3、花穗数1~9个·m−3,其中1~4个·m−3枝梢、花穗的分别有15个和22个,占46.88%、68.75%,≥5个·m−3枝梢、花穗的有15个和7个,占46.88%、21.88%。49.65%、12.06%的枝梢分布在F2、F3层的P2区,16.31%、21.99%分布在F2、F3层的P1区,除F3层P2区平均枝梢数1个·m−3,F2层P1、P2区及F3层P1区分别达6、8个·m−3。
可见,两种树形均表现冠层外围的枝梢、花穗更多;冠层上层枝梢、花穗较多的,其对应下层的枝梢、花穗数较少,说明了冠层上层的枝梢、花穗数量会影响下层的枝梢、花穗数量,多主枝矮化开心形与多主枝自然圆头形相比,冠层内枝梢、花穗的分布更均匀。
2.3 枇杷两种树形冠层内不同部位枝梢质量差异
2.3.1 两种树形冠层内枝梢质量的水平分布差异
由表2可知,多主枝自然圆头形P1区的枝梢长度、枝梢粗度、叶片数的值最大,P3区最小,分别相差8.88 cm、0.92 mm、3片;多主枝矮化开心形P1区的枝梢长度、叶片数的值最大,P2区的枝梢粗度最大、枝梢长度最小。多主枝矮化开心形P1、P2区的枝梢长度、粗度、叶片数均分别较多主枝自然圆头形P1、P2、P3区的大,两种树形P1、P2、P3区间的枝角、节间长度差异不显著。两种树形均表现与主干水平距离越小,枝梢的生长量越大。
表 2 两种树形枝梢性状的水平分布特点Table 2. Horizontal distribution of branch traits on two types of loquat tree树形
Tree shape水平分区
Horizontal partitioning枝梢长度
Shoot length/cm枝梢粗度
Shoot thickness/ mm叶片数
Number of blades/leaf节间长度
Internode length/cm枝角
Branch/°多主枝自然圆头形
Naturally round head tree
with multiple main branchesP1 39.70±3.96bc 11.78±0.95ab 24.00±2.00bc 1.64±0.14a 30.24±1.53a P2 36.74±3.12c 11.22±0.85ab 21.58±1.98c 1.70±0.14a 38.88±3.65a P3 30.82±6.43d 10.86±0.86b 20.83±2.64c 1.53±0.11a 46.08±2.90a 多主枝矮化开心形
Dwarf, open heart-shaped
tree with multiple main branchesP1 47.78± 1.30a 12.38±0.63a 30.50±1.29a 1.58±0.03a 31.35±2.95a P2 42.60±5.35ab 12.51±0.92a 28.33±1.87ab 1.50±0.15a 38.21±5.92a 多主枝矮化开心形P3区无枝梢。
Multi-main branch dwarfing open-center P3 area without branch tip.2.3.2 两种树形冠层内枝梢质量的垂直分布质量
由表3可知,多主枝自然圆头形F4层的枝梢长度、枝梢粗度、叶片数的值均显著大于F3层,F2层最小,F4层分别较F2层大16.43 cm、2.43 mm、7片,节间长度以F4层最大、F3层最小,F2层枝角较F3、F4层增加21.98%、37.00%;多主枝矮化开心形以F3层的枝梢长度、枝梢粗度及叶片数的值最大,分别较F2层大5.74 cm、1.5 mm、3片,F2层的枝角较F3层大38.14%,两层间的节间长度无显著差异。两种树形均表现随冠层的高度增加,枝梢生长量显著增大,多主枝自然圆头形的最上层与最下层的枝梢长度、粗度、叶片数等的差异大于多主枝矮化开心形上下层的差异,两种树形顶层除节间长度有显著差异外,其余性状差异均不显著,而多主枝矮化开心形底层(F2)的枝梢长度、粗度、叶片数均大于多主枝自然圆头形的底层。
表 3 两种树形枝梢质量的垂直分布特点Table 3. Vertical distribution of branch traits on two types of loquat tree树形
Tree shape层级
Vertical hierarchy枝梢长度
Shoot length/cm枝梢粗度
Shoot thickness/mm叶片数
Number of blades/leaf节间长度
Internode length/cm枝角
Branch/°多主枝自然圆头形
Naturally round head tree
with multiple main branchesF4 48.49±5.03a 12.88±0.28a 26.3±1.32a 1.85±0.09a 31.27±3.96ab F3 33.13±3.51c 11.38±0.44b 21.68±2.27b 1.54±0.10b 35.12±3.85ab F2 32.06±3.69c 10.45±0.47c 19.96±1.15b 1.69±0.10ab 42.84±5.02a 多主枝矮化开心形
Dwarf, open heart-shaped tree
with multiple main branchesF3 46.44±6.74a 12.80±1.03a 30.20±2.83a 1.53±0.14b 28.97±4.02b F2 40.70±3.57b 11.36±0.27b 26.87±0.92a 1.51±0.12b 40.02±7.14ab 多主枝矮化开心形F4层无枝梢。
Multi-main branch dwarfed open-center F4 layer without branch tip.3. 讨论
3.1 不同树形对贵妃枇杷冠层内枝梢分布的影响
已有研究表明,奥林达夏橙自然圆头形枝梢多分布在树冠上层和外部,开心形抽生春梢总量最多,且可改善光照、扩大结果面积、改良枝组结构、提高果实品质[21];库尔勒香梨疏散分层形与开心形的骨干枝数量差异不明显,主要分布在树冠下层与中部,一年生枝总数差异明显,主要分布在冠层中层与外围[22];苹果开心形的枝量和叶面积指数小于小冠疏层形、疏散分层形、纺锤形,但4种树形的叶片在冠层内的主要分布区域不同[23],苹果三主枝疏散分层形郁闭大树改造成树冠成高干开心形,通过降低树高、增大干高,减少枝、叶量,可改善了树体的通风透光条件,实现产量增加和品质提高[24],但若枝梢量偏少,透光率偏高,冠层的光利用效率将降低[25]。本研究表明多主枝自然圆头形和多主枝矮化开心形均表现60%~70%的枝梢分布在与中心干水平距离100.1~200.0 cm区域,其次是0.0~100.0 cm区域,但0.0~100.0 cm区域多主枝矮化开心形的枝梢数较多主枝自然圆头形多,而100.1~200.0 cm区域以多主枝自然圆头形的枝梢数更多;垂直分布上,多主枝自然圆头形85.11%集中在树高100.1~300.0 cm,多主枝矮化开心形66.43%的枝梢集中分布在树高100.1~200.0 cm范围。枝梢数量对枇杷的单株产量影响密切[19],足够数量的枝梢是实现高产的保证,将冠层内单位体积的枝梢数<1个·m−3当作无效区,1~4个·m−3为低效区,≥5个·m−3为正常区,多主枝矮化开心形冠层内无效区和低效区的占比均少于多主枝自然圆头形,因此,仅就枝梢数量而言,多主枝矮化开心形的生产效率高于多主枝自然圆头形。
3.2 不同树形对贵妃枇杷枝梢生长质量的影响
苹果分层纺锤形冠层结构的主枝长、粗和产量随冠层高度的增加而减小[2],叶幕层厚度超过2m会影响苹果产量和品质[26];燕红桃树四挺身形树形冠内相对光照强度在20%以上,光照分布均匀,果实品质较优,是更适宜树形[26][27]。枇杷枝梢粗度、长度、叶片数等性状与开花结果的关系密切,适当长势的枝梢可实现大果、优质、丰产,但成年枇杷树要求有较高的光照条件[28],自然生长树冠的上部或外围枝梢的长势多数更粗壮[20],外围过多的枝梢易造成内膛或下部的荫蔽,枝叶质量 下降,且易落叶,造成树势衰弱甚至死亡[28]。本研究中,两种树形均表现树冠垂直高度上的枝梢质量的差异大于水平方向的差异,两种树形顶层间的枝梢长度、粗度、叶片数、枝角的差异均不显著,而多主枝自然圆头形的顶层与底层间的差异大于多主枝矮化开心形,多主枝矮化开心形的底层枝梢长度、粗度、叶片数均显著大于多主枝自然圆头形底层,说明上层枝梢对下层枝梢生长的遏制作用更明显,树冠的层次数越多,下层枝梢生长受到的影响越大。
3.3 贵妃枇杷适宜的枝梢密度
不同的树种均有适宜的高光效树形和留梢量,太行山区大果型板粟品种黑燕青、燕魁留枝量4~6个·m−2,中小型品种燕山早丰、紫珀留枝量6~8个·m−2,产量高,树势稳,质量好[29];燕红桃树每株留918个枝的果实品质及单株产量最高[30]。枇杷是常绿果树,叶片大且相互间遮蔽严重,所以自然圆头形的树冠内膛枝普遍因外围枝叶的遮挡而长势细弱。贵妃枇杷的新梢抽发能力较强[31],若不加控制,易造成枝梢数量偏多,影响枝梢的质量。本试验中,多主枝自然圆头形和多主枝矮化开心形外层枝梢数5~6个·m−3,次高层和次外层枝梢数也能达到4~6个·m−3,但多主枝自然圆头形F2层枝梢数量明显减少、质量降低、花穗数少或无。由此认为,要培养高光效的枇杷树形,贵妃枇杷外围和次外围枝梢数5~6个·m−3为宜,单位投影面积枝梢数10~12个·m−2,叶幕层厚度宜小于2 m,冠幅小于5 m。
此外,在枇杷生产上,疏花疏果套袋、枝梢管理等人工成本等占总成本的60%以上,近年来随人工工资的增长,成本占比有增大趋势。田间操作时,枝梢、花穗着生高度超过2 m,人工无法直接操作,需要借助钩子或爬树操作,管理效率显著降低,攀爬等操作还增大了安全风险。试验中,多主枝自然圆头形的树冠生长量、枝梢数、花穗数均较多主枝矮化开心形显著增多,属单株产量更高的树形,但有60%左右的枝梢和花穗分布在树高2~4 m的位置,而多主枝矮化开心形的60%多的枝梢和花穗分布在树高1~2 m的位置,更方便管理操作。
4. 结论
多主枝自然圆头形较多主枝矮化开心形冠层的树体生长量更大、枝梢数量和花穗数更多,两种树形的枝梢主要分布在次高层和次外层,多主枝矮化开心形冠层内的枝梢分布更均匀,且树冠内膛无枝梢或枝梢量少的低效或无效空间占比更少,为更高效树形。
-
图 2 两种树形冠层内枝梢和花穗的水平分布
A、B为多主枝自然圆头形;C、D为多主枝矮化开心形;X、Y轴数值为与主干距离。
Figure 2. Horizontal distribution of branches (left) and panicles (right) on canopies of two types of loquat tree
A、B: Naturally round head tree with multiple main branches;C、D: dwarf, open heart-shaped tree with multiple main branches;The X-axis and Y-axis value is the distance from the trunk.
图 4 两种树形冠层内不同部位枝梢(左图)和花穗(右图)分布情况
A、B为多主枝自然圆头形;C、D多主枝矮化开心形;X、Y轴数值为与主干距离。
Figure 4. Distribution of branches (left) and panicles (right) in parts of canopies of two types of loquat tree
A、B: Naturally round head tree with multiple main branches;C、D: Dwarf, open heart-shaped tree with multiple main branches;The X-axis and Y-axis value is the distance from the trunk.
表 1 贵妃枇杷两种树形的树体生长量比较
Table 1 Growth of two types of loquat tree
项目Item 多主枝自然圆头形
Naturally round head tree
with multiple main branches多主枝矮化开心形
Dwarf, open heart-shaped
tree with multiple main branches树高 Tree height/cm 355.67±25.11aA 253.07±2.65bB 冠幅 Crown diameter Canopy/cm 500.67±47.16×447.67±61.17aA 427.67±33.56×356.33±31.82bB 树况 Tree condition 叶幕层厚 Thickness of canopy layers/cm 303.21±19.97aA 187.39±12.50bB 枝梢数 Number of branches 191.26±26.51aA 139.38±24.54bB 花穗数 Number of flower spikes 146.27±8.33aA 97.06±11.71bB 枝梢抽穗率 Flowering branch rate/% 76.65±14.57aA 69.60±9.54bA 长度 Length/cm 38.89±3.93bA 45.24±3.29aA 粗度 Diameter/mm 10.95±0.82bB 12.04±0.94aA 枝梢 Branch tip 叶片数 leave number 23.44±3.06bB 29.29±2.32aA 枝角 Branch/° 40.46±6.03aA 30.58±3.68bB 节间长度 Internode length/cm 1.79±0.17aA 1.58±0.14bA 粗长比 Shoot length/diameter ratio 0.28±0.01aA 0.26±0.01bA 同一列中大写字母表示0.01显著水平差异、小写字母表示0.05显著水平差异。下同。
In the same column, majuscule indicate a significant level difference of 0.01 and lowercase letters indicate a significant level difference of 0.05. The same below.表 2 两种树形枝梢性状的水平分布特点
Table 2 Horizontal distribution of branch traits on two types of loquat tree
树形
Tree shape水平分区
Horizontal partitioning枝梢长度
Shoot length/cm枝梢粗度
Shoot thickness/ mm叶片数
Number of blades/leaf节间长度
Internode length/cm枝角
Branch/°多主枝自然圆头形
Naturally round head tree
with multiple main branchesP1 39.70±3.96bc 11.78±0.95ab 24.00±2.00bc 1.64±0.14a 30.24±1.53a P2 36.74±3.12c 11.22±0.85ab 21.58±1.98c 1.70±0.14a 38.88±3.65a P3 30.82±6.43d 10.86±0.86b 20.83±2.64c 1.53±0.11a 46.08±2.90a 多主枝矮化开心形
Dwarf, open heart-shaped
tree with multiple main branchesP1 47.78± 1.30a 12.38±0.63a 30.50±1.29a 1.58±0.03a 31.35±2.95a P2 42.60±5.35ab 12.51±0.92a 28.33±1.87ab 1.50±0.15a 38.21±5.92a 多主枝矮化开心形P3区无枝梢。
Multi-main branch dwarfing open-center P3 area without branch tip.表 3 两种树形枝梢质量的垂直分布特点
Table 3 Vertical distribution of branch traits on two types of loquat tree
树形
Tree shape层级
Vertical hierarchy枝梢长度
Shoot length/cm枝梢粗度
Shoot thickness/mm叶片数
Number of blades/leaf节间长度
Internode length/cm枝角
Branch/°多主枝自然圆头形
Naturally round head tree
with multiple main branchesF4 48.49±5.03a 12.88±0.28a 26.3±1.32a 1.85±0.09a 31.27±3.96ab F3 33.13±3.51c 11.38±0.44b 21.68±2.27b 1.54±0.10b 35.12±3.85ab F2 32.06±3.69c 10.45±0.47c 19.96±1.15b 1.69±0.10ab 42.84±5.02a 多主枝矮化开心形
Dwarf, open heart-shaped tree
with multiple main branchesF3 46.44±6.74a 12.80±1.03a 30.20±2.83a 1.53±0.14b 28.97±4.02b F2 40.70±3.57b 11.36±0.27b 26.87±0.92a 1.51±0.12b 40.02±7.14ab 多主枝矮化开心形F4层无枝梢。
Multi-main branch dwarfed open-center F4 layer without branch tip. -
[1] 李静江, 杨复康, 宋永宏, 等. 杏树不同树形冠层分析研究 [J]. 果树资源学报, 2021, 2(4):11−15. LI J J, YANG F K, SONG Y H, et al. Canopy analysis of apricot trees with different tree shapes [J]. Journal of Fruit Resources, 2021, 2(4): 11−15.(in Chinese)
[2] 张雲慧, 李文胜, 周文静, 等. 苹果分层纺锤形冠层结构与果实产量品质的关系 [J]. 新疆农业科学, 2018, 55(7):1218−1226. ZHANG Y H, LI W S, ZHOU W J, et al. Study on the relationship between apple layered spindle canopy structure and yield and quality [J]. Xinjiang Agricultural Sciences, 2018, 55(7): 1218−1226.(in Chinese)
[3] 刘珊珊, 令狐田, 赵志霞, 等. 不同树形对砀山酥梨冠层结构、光合特性及果实品质的影响 [J]. 果树资源学报, 2022, 3(5):41−49. LIU S S, LINGHU T, ZHAO Z X, et al. Effects of different tree shapes on canopy structure, photosynthetic characteristics, fruit quality of ‘Dangshan’ pear [J]. Journal of Fruit Resources, 2022, 3(5): 41−49.(in Chinese)
[4] 罗家坤, 高磊, 郑焕, 等. 阳光玫瑰葡萄WH树形枝条垂化处理对叶片光合特性及果实品质的影响 [J]. 果树学报, 2022, 39(11):2064−2073. LUO J K, GAO L, ZHENG H, et al. Effect of branch drooping treatment on photosynthetic characteristics and fruit quality in Shine Muscat grapevines with WH-shaped tree shape [J]. Journal of Fruit Science, 2022, 39(11): 2064−2073.(in Chinese)
[5] 张晓云, 唐玉薇, 王凯, 等. 苹果冠层枝梢类型对光能截获效率和光合生产力影响的模拟分析 [J]. 园艺学报, 2022, 49(4):709−722. ZHANG X Y, TANG Y W, WANG K, et al. Simulation analysis of effects of shoot type composition on canopy light interception efficiency and photosynthetic productivity in apple trees [J]. Acta Horticulturae Sinica, 2022, 49(4): 709−722.(in Chinese)
[6] 田海青, 赵艳艳, 梁振旭, 等. 京白梨郁闭园树体结构改造对冠层光照分布、枝类组成与果实品质的影响 [J]. 西北农业学报, 2020, 29(10):1576−1582. TIAN H Q, ZHAO Y Y, LIANG Z X, et al. Effect of tree form improvment on light penetration, branch composition and fruit quality in canopy overcrowd ‘jingbai’ pear orchard [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(10): 1576−1582.(in Chinese)
[7] 陈久红, 马建江, 李永丰, 等. 香梨不同树形冠层结构、光合特性及产量品质的比较 [J]. 河南农业科学, 2021, 50(8):113−123. CHEN J H, MA J J, LI Y F, et al. Comparison of canopy structure, photosynthetic characteristics, yield and quality of Korla fragrant pear with different tree shapes [J]. Journal of Henan Agricultural Sciences, 2021, 50(8): 113−123.(in Chinese)
[8] 杨学林. 苹果高光效树形及其冬剪技术 [J]. 南方农业, 2019, 13(12):51−52. YANG X L. Apple tree shape with high light efficiency and its winter shear technology [J]. South China Agriculture, 2019, 13(12): 51−52.(in Chinese)
[9] 张红欢, 杨兴旺, 王莹莹, 等. 桃高光效省力化树形研究进展 [J]. 中国果树, 2023(7):10−14. DOI: 10.16626/j.cnki.issn1000-8047.2023.07.002 ZHANG H H, YANG X W, WANG Y Y, et al. Research progress of peach tree shapes with high photosynthetic efficiency and labor saving [J]. China Fruits, 2023(7): 10−14.(in Chinese) DOI: 10.16626/j.cnki.issn1000-8047.2023.07.002
[10] 刘丽, 李秋利, 高登涛, 等. 树形对桃树生长、产量和品质的影响 [J]. 果树学报, 2022, 39(1):36−46. LIU L, LI Q L, GAO D T, et al. Effects of tree shapes on growth, yield and quality of peach [J]. Journal of Fruit Science, 2022, 39(1): 36−46.(in Chinese)
[11] 闫帅, 张莹, 曹玉芬, 等. 西南地区梨轻简化栽培品种和树形综合评价 [J]. 果树学报, 2023, 40(2):274−285. YAN S, ZHANG Y, CAO Y F, et al. Comprehensive evaluation on pear varieties and tree shapes used for labor-saving and simplified cultivation in Southwest of China [J]. Journal of Fruit Science, 2023, 40(2): 274−285.(in Chinese)
[12] 蔚露, 牛自勉, 程晓廷, 等. 梨高光效果园标准化生产关键技术 [J]. 果树资源学报, 2021, 2(4):39−43. YU L, NIU Z M, CHENG X T, et al. Standardized production technique of high light-efficiency pear orchard [J]. Journal of Fruit Resources, 2021, 2(4): 39−43.(in Chinese)
[13] 胡又厘, 林顺权. 世界枇杷研究与生产 [J]. 世界农业, 2002(1):18−20. DOI: 10.3969/j.issn.1002-4433.2002.01.006 HU Y L, LIN S Q. World loquat research and production [J]. World Agriculture, 2002(1): 18−20.(in Chinese) DOI: 10.3969/j.issn.1002-4433.2002.01.006
[14] 袁丽华. 枇杷整形修剪的标准化与专业化 [J]. 现代农业科技, 2016(5):114,118. YUAN L H. Standardization and specialization of loquat shaping and pruning [J]. Modern Agricultural Science and Technology, 2016(5): 114,118.(in Chinese)
[15] 戴曲顺, 许奇志, 邓朝军, 等. “贵妃”枇杷两种树形枝梢生长与果实品质表现 [J]. 中国南方果树, 2018, 47(6):31−33. DAI Q S, XU Q Z, DENG (C /Z)J, et al. Shoot growth and fruit quality performance of two tree-shaped loquat varieties “Guifei” [J]. South China Fruits, 2018, 47(6): 31−33.(in Chinese)
[16] 张彦苹, 郑俊华, 周青, 等. 苏州地区枇杷设施栽培技术 [J]. 现代农业科技, 2022(21):94−97. ZHANG Y P, ZHENG J H, ZHOU Q, et al. Protected cultivation techniques of loquat in Suzhou area [J]. Modern Agricultural Science and Technology, 2022(21): 94−97.(in Chinese)
[17] 刘小英, 黄飞龙, 张游南, 等. ‘东湖早’枇杷在莆田的引种表现及丰产栽培技术 [J]. 福建热作科技, 2022, 47(1):61−63,66. LIU X Y, HUANG F L, ZHANG Y N, et al. Introduction performance and high yield cultivation technique of loquat’Donghuzao’ in Putian [J]. Fujian Science & Technology of Tropical Crops, 2022, 47(1): 61−63,66.(in Chinese)
[18] 陈英子, 胡远党, 李建军, 等. 宁海白枇杷绿色栽培技术 [J]. 上海农业科技, 2020(5):84−85,133. CHEN Y Z, HU Y D, LI J J, et al. Green cultivation techniques of Ninghai white loquat [J]. Shanghai Agricultural Science and Technology, 2020(5): 84−85,133.(in Chinese)
[19] 陈秀萍, 姜帆, 黄爱萍, 等. 枇杷种质资源幼龄树丰产性鉴定及模糊综合评判 [J]. 热带作物学报, 2010, 31(12):2103−2110. CHEN X P, JIANG F, HUANG A P, et al. Evaluation on the Fielding ability of little seedlings among loquat germplasm and its fuzzy comprehensive estimation [J]. Chinese Journal of Tropical Crops, 2010, 31(12): 2103−2110.(in Chinese)
[20] 邓朝军, 陈秀萍, 许奇志, 等. 3种矮化生长型枇杷种质的枝梢生长及空间分布 [J]. 果树学报, 2019, 36(2):185−194. DENG C J, CHEN X P, XU Q Z, et al. Research on shoot growth and spatial distribution of three dwarf-growth type loquat genotypes [J]. Journal of Fruit Science, 2019, 36(2): 185−194.(in Chinese)
[21] 刘雪峰, 胡德玉, 马晓丽, 等. 不同树形柑橘冠层春梢、叶片营养及果实的空间分布[J/OL]. 甘肃农业大学学报, 2023. LIU X F, HU D Y, MA X L, et al. Spatial distribution of spring shoot, leaf nutrition and fruit in citrus canopy with different tree shapes[J/OL]. Journal of Gansu Agricultural University, 2023. (in Chinese)
[22] CHENG X L, LIAO K, LI N, et al. Analysis on the composition and structure of branches of two kinds of tree shapes in Korla fragrant pear [J]. Agricultural Science & Technology, 2013, 14(7): 954−958.
[23] 高照全, 赵晨霞, 程建军, 等. 我国4种主要苹果树形冠层结构和辐射三维分布比较研究 [J]. 中国生态农业学报, 2012, 20(1):63−68. DOI: 10.3724/SP.J.1011.2012.00063 GAO Z Q, ZHAO C X, CHENG J J, et al. Tree structure and 3-D distribution of radiation in canopy of apple trees with different canopy structures in China [J]. Chinese Journal of Eco-Agriculture, 2012, 20(1): 63−68.(in Chinese) DOI: 10.3724/SP.J.1011.2012.00063
[24] 张显川, 高照全, 付占方, 等. 苹果树形改造对树冠结构和冠层光合能力的影响 [J]. 园艺学报, 2007, 34(3):537−542. ZHANG X C, GAO Z Q, FU Z F, et al. Influences of tree form reconstruction on canopy structure and photosynthesis of apple [J]. Acta Horticulturae Sinica, 2007, 34(3): 537−542.(in Chinese)
[25] 高登涛, 韩明玉, 李丙智, 等. 渭北3种不同类型苹果园冠层特征及光照特性 [J]. 果树学报, 2007, 24(3):259−262. GAO D T, HAN M Y, LI B Z, et al. Canopy characteristics and light distribution in three types of apple orchards in Weibei area, Shaanxi Province [J]. Journal of Fruit Science, 2007, 24(3): 259−262.(in Chinese)
[26] BĂLAN V, CIMPOIES G. Culture system of trees fruit production efficiency in relation to light as an output influencing factor [J]. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca:Horticulture, 2009, 66: 120−125.
[27] 张学英, 贾浩, 邸葆, 等. 不同树形对燕红桃树体冠层光照分布及生长结果的影响 [J]. 中国果树, 2023(3):91−95. ZHANG X Y, JIA H, DI B, et al. Effects of different tree shapes of ‘Yanhong’ peach on canopy light distribution and growth and fruiting [J]. China Fruits, 2023(3): 91−95.(in Chinese)
[28] 单幼霞. 光胁迫对枇杷果实发育期间生理生化的影响[D]. 杭州: 浙江农林大学, 2018. SHAN Y X. The effect of light stress on physiological and biochemical characteristics on loquat during fruit development[D]. Hangzhou: Zhejiang A & F University, 2018. (in Chinese)
[29] 武红霞, 陈彦军, 王荣荣, 等. 太行山区4个板栗品种留枝量与产量关系分析 [J]. 烟台果树, 2020(2):13−14. WU H X, CHEN Y J, WANG R R, et al. Analysis on the relationship between branch retention and yield of four chestnut varieties in Taihang Mountain area [J]. Yantai Fruits, 2020(2): 13−14.(in Chinese)
[30] 张海旺. 桃树不同留枝量对冠层参数变化及果实产量和品质的影响 [J]. 辽宁林业科技, 2017(6):15−19. ZHANG H W. Effects of different shoot amounts after pruning on canopy parameter variation and fruit yield and quality [J]. Liaoning Forestry Science and Technology, 2017(6): 15−19.(in Chinese)
[31] 蒋际谋, 邓朝军, 许奇志, 等. 贵妃枇杷在重庆万州的表现及关键栽培技术 [J]. 中国南方果树, 2016, 45(4):149−151. DOI: 10.13938/j.issn.1007-1431.20150373 JIANG J M, DENG (C /Z)J, XU Q Z, et al. Performance and key cultivation techniques of Guifei loquat in Wanzhou, Chongqing [J]. South China Fruits, 2016, 45(4): 149−151.(in Chinese) DOI: 10.13938/j.issn.1007-1431.20150373