• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

基于坐标注意力机制和残差网络的水稻叶片病虫害识别

Improved Identification of Leaf Diseases and Pest Infestations on Rice by Means of Coordinate Attention Mechanism-based Residual Network

  • 摘要:
      目的  针对在自然条件下水稻叶片病虫害的识别效率不高、准确率较低的问题,探索基于ResNet深度学习网络的水稻叶片病虫害识别模型(ResNet50-CA)。
      方法  在ResNet-50的残差卷积模块下引入坐标注意力机制(CA),采用 LeakyReLU 激活函数替代 ReLU 激活函数,使用3个3×3的卷积核替换ResNet-50模型首层卷积层中的7×7卷积核。
      结果  在使用传统卷积神经网络进行水稻叶片病虫害研究发现,ResNet-50能够较好地平衡识别准确率和模型复杂度之间的关系,因此选择在ResNet-50网络模型的基础上加以改进。使用改进后的网络通过微调参数进行水稻叶片病虫害对比性能试验,研究发现在批量样本数为16和学习率为0.0001时,ResNet50-CA获得最高的识别准确率(99.21%),优于传统的深度学习算法。
      结论  改进后的网络能够提取出水稻病虫害更加细微的特征信息,从而取得更高的识别准确率,为水稻叶片病虫害识别提供新思路和方法。

     

    Abstract:
      Objective  A new deep learning network was designed to improve the often-inaccurate identification of diseases and pest infestations on rice.
      Method  The coordinate attention mechanism (CA) was introduced under the residual convolution block of RestNet-50 using the LeakyRelu activation function to replace the Relu activation function as well as the three 3×3 convolution kernels to replace the original 7×7 convolution kernel under the first convolution layer.
      Result   The newly designed ResNet-50-CA effectively balanced the detection accuracy and model simplicity the original method lacked. The improved model was further fine-tuned with experiments to achieve a much-improved detection accuracy of 99.21% in identifying the diseases and infestations on a batch of 16 specimens with a learning rate of 0.0001.
      Conclusion  The superior deep learning algorithm of the current ResNet50-CA system extracted more detailed and accurate information on the diseases and infestations than did the previous model. It could be applied for field and/or clinic diagnosis on rice plants.

     

/

返回文章
返回