Effects of Aqueous Extract of Panax quinquefolium Stems and Leaves in Diet on Growth and Meat Quality of Quails
-
摘要:目的 探讨西洋参茎叶提取物对鹌鹑生长性能、肌肉品质的影响,为西洋参茎叶作为添加剂开发利用提供依据。方法 将150只1日龄鹌鹑,随机分成5组,每组3个重复,每个重复10只鹌鹑。空白对照组(CON)饲喂基础日粮,抗生素对照组(KSS)在基础日粮中添加阿莫西林(100 mg·kg−1),3个试验组在基础日粮中分别添加1%(SD)、1.5%(SZ)和2%(SG)西洋参茎叶提取物。试验期50 d,预饲期5 d,正饲期45 d。结果 从鹌鹑生长性能来看,SZ组可显著提高鹌鹑平均日增质量(P<0.05),同时显著降低料肉比(P<0.05)。从鹌鹑肉嫩度来看,与CON组和KSS组相比,试验组鹌鹑胸肌与腿肌剪切力显著降低(P<0.05),肉嫩度均增强,其中SZ组肉嫩度最佳;从鹌鹑肉中营养成分来看,鹌鹑胸肌中蛋白质含量SG组显著高于CON组(P<0.05),SZ和SG组脂肪含量显著高于CON组和KSS组(P<0.05);鹌鹑腿肌中蛋白质含量SZ和SG组显著高于CON组和KSS组(P<0.05),脂肪含量SZ组显著高于CON组和KSS组(P<0.05);胸肌和腿肌中水分含量各组间差异不显著(P>0.05)。从鹌鹑肌肉中脂肪酸含量来看,与CON组相比,各试验组鹌鹑胸肌中不饱和脂肪酸含量降低不显著( P >0.05),SZ组鹌鹑腿肌中不饱和脂肪酸含量显著升高( P <0.05);从鹌鹑肌肉中肌苷酸含量来看,SZ组鹌鹑胸肌和腿肌中肌苷酸含量均显著高于KSS组( P <0.05);从鹌鹑肌肉中氨基酸含量来看,SD、SZ和SG组鹌鹑胸肌和腿肌中必需氨基酸和风味氨基酸含量均显著高于KSS组(P<0.05)。从H.E.染色结果来看,各试验组鹌鹑的肝肾组织结构均未见异常。鹌鹑生长激素(Growth hormone, GH)基因(GH基因)表达水平各试验组均显著高于CON组(P<0.05),且SZ组鹌鹑生长激素(GH)基因表达量最高。结论 西洋参茎叶提取物可加速鹌鹑生长,改善肌肉品质,增加肌肉风味,且对肝肾发育无不良影响,安全性比较高,可代替抗生素作为中草药饲料添加剂进一步开发利用。Abstract:Objective Effects of inclusion of an aqueous extract from stems and leaves of Panax quinquefolium L. in forage on growth and meat quality of quails were investigated.Methods One-hundred-fifty one-day-old quails were randomly divided into 5 groups with three replicates in each group and 10 birds per replicate. The groups included a blank control that was fed with the basic diet (CON), an antibiotic control (KSS) with 100 mg·kg−1 amoxicillin added to the feed, one trial group supplemented with 1% of the extract (SD), one with 1.5% of the extract (SZ), and another with 2% of the extract (SG). The feeding lasted for 50 d that included a 5 d preliminary adaptation period.Results On growth performance, the quails in the SZ group significantly increased the average daily body weight gain (P<0.05), while reduced the feed to meat ratio (P<0.05). On meat tenderness, the shear force on the breast and leg muscles of the birds in the treatment groups was significantly lower than that of CON or KSS (P<0.05) with the quails in the SZ group being the most tender. On nutritional value, the breast meat of the SG quails had the significantly higher protein than that of CON counterparts (P<0.05), whereas those of the SZ and SG quails significantly higher fat than that of the CON or KSS birds (P<0.05). However, the leg muscles of either CON or KSS quails contained significantly less protein than SZ and SG quails (P<0.05) and less fat than SZ quails (P<0.05). No significant differences among the groups in the moisture content of breast and leg meats (P>0.05) were observed. Compared with the CON group, the unsaturated fatty acid content in the chest muscle of quails in each experimental group was not significantly reduced (P> 0.05 ), and the unsaturated fatty acid content in the leg muscle of quails in the SZ group was significantly increased (P< 0.05 ) . The content of inosinic acid in quail muscle, the content of inosinic acid in breast muscle and leg muscle of SZ group was significantly higher than that of KSS group (P< 0.05 ). Contents of essential amino acids and flavor amino acids in breast muscle and leg muscle of quails in SD, SZ and SG groups were significantly higher than those in KSS group (P< 0.05 ). The H. E. staining showed no abnormality in the liver and kidney of the quails under treatment. The expression of growth hormone (GH) gene in the treatment birds was significantly higher than that in CON group (P<0.05) with that of the SZ quails having the highest.Conclusion Addition of the aqueous extract of P. quinquefolium L. stems and leaves in the feed accelerated the growth, improved the meat tenderness, accentuated the meat flavor of the quails without adverse effect on the liver or kidney of the birds. The plant extract appeared to be a highly safe diet supplement applicable to replace antibiotics in raising quails.
-
0. 引言
【研究意义】秀珍菇学名肺形侧耳[Pleurotus pulmonarius(Fr.)Quél.],因朵型小巧,又名袖珍菇,是中温型结实食用菌[1]。秀珍菇不仅营养丰富,富含人体必需氨基酸、蛋白质等,风味独特[2-6],还具有抗氧化、抗肿瘤、降血压、降血糖和提高免疫力等功能[7-10]。与平菇(糙皮侧耳)相比,因采收时成熟度小,质地更为鲜嫩,口感更为滑嫩,深受消费者喜爱。木霉是秀珍菇栽培上的重要竞争性杂菌,其主要与秀珍菇菌丝竞争营养,由于木霉生长快,繁殖能力强,繁殖系数高,一旦出现,极易爆发,严重时导致大量菌包废弃,造成较大经济损失[11-12]。研究秀珍菇不同菌株适宜生长条件,阐明秀珍菇与木霉共培养特性,对秀珍菇栽培菌种的选择及温度管理具有重要指导意义。【前人研究进展】秀珍菇自1998年由我国台湾地区引入大陆,并在福建罗源试种150万袋获得成功后,在福建、浙江、河南、山东、安徽、江苏等地开始大面积栽培[13-16]。秀珍菇栽培地区和面积的增加也逐渐提高了产量,2019年全国秀珍菇产量超过30万t,较上一年增长20.27%[17]。目前我国虽然已认定了多个秀珍菇品种,但许多栽培者偏好于 “台秀”57菌株[18-19]。温度是食用菌正常生长的必要条件,主要影响食用菌菌丝的生长速度,以及子实体的分化数量和质量[20]。培养基质为食用菌的生长提供必需的营养物质,培养基质是否适宜决定了菌株菌丝和子实体的质量。秀珍菇常用PDA培养基培养,菌丝生长良好[21]。冯志勇等研究发现,秀珍菇菌丝生长的最适碳源、氮源组合是酵母粉和可溶性淀粉,菌丝粗壮,生长速度快[22]。【本研究切入点】采用传统方式栽培,秀珍菇菌性变化明显,在生产上易引起菌棒满菌后退菌、开袋出菇少,甚至不出菇、易感染霉菌等现象,导致秀珍菇栽培的不稳定性,使生产者遭受经济损失。2015–2018年全国秀珍菇产值曾一度下降[23]。据栽培者经验判断,产生这些问题的主要原因可能是菌种退化,导致秀珍菇菌种退化以及秀珍菇菌丝易受木霉病菌侵染的原因有待深入研究。【拟解决的关键问题】旨从温度和培养基质方面着手,观察秀珍菇菌丝在不同培养基和温度条件下,菌丝形态和生长情况。筛选出秀珍菇菌丝生长的适宜温度和培养基条件;探寻秀珍菇与木霉菌丝适宜生长的温度差异,为秀珍菇科学栽培提供理论支撑。
1. 材料与方法
1.1 试验材料
1.1.1 供试菌株
X98ly-13、Y710-14、Xd-13菌株保存于福建省农业科学院食用菌研究所,X903-1与X86-1是多孢分离获得的新材料,亲本分别为X903与X86。木霉菌株(T001)分离自秀珍菇菌包,并经形态学鉴定为哈茨木霉(Trichoderma harzianum)。
1.1.2 培养基配方
马铃薯琼脂葡萄糖培养基(PDA):马铃薯(200 g)、琼脂粉(20 g)、葡萄糖(20 g)、水(1 000 mL)。马铃薯琼脂葡萄糖+淀粉培养基(PDSA):马铃薯(200 g)、琼脂粉(20 g)、葡萄糖(20 g)、可溶性淀粉(5 g)、水(1 000 mL)。 马铃薯琼脂葡萄糖+酵母培养基(PDYA):马铃薯(200 g)、琼脂粉(20 g)、葡萄糖(20 g)、酵母粉(5 g)、水(1 000 mL)。马铃薯琼脂葡萄糖+淀粉+酵母培养基(PDSYA):马铃薯(200 g)、琼脂粉(20 g)、葡萄糖(20 g)、酵母粉(2.5 g)、可溶性淀粉(2.5 g)、水(1 000 mL)。
1.2 试验方法
1.2.1 不同温度对秀珍菇和木霉菌丝生长的影响
将秀珍菇和木霉菌丝块接种在PDA培养基质中,分别放在不同温度条件(25、28、30、32、34、36 ℃)的培养箱中,记录萌发时间,平板菌丝生长速度以平板中菌落半径日增长量计算。
1.2.2 PDA与半合成培养基对秀珍菇菌丝生长的影响
将秀珍菇菌株分别接种在PDA、PDSA、PDYA和PDSYA培养基,记录萌发时间,菌丝生长速度以平板中菌落半径日增长直径计算。
1.2.3 秀珍菇与木霉共培养
将秀珍菇和木霉菌块分别接在距培养皿边缘2 cm的两端 ,每个处理重复3次,标上菌株号,在不同温度的恒温箱中培养,定期观察。
1.3 数据分析
通过Excel 2007和DPS 7.05,对数据进行记录和差异显著性分析。
2. 结果与分析
2.1 温度对秀珍菇菌丝生长及与木霉共培养的影响
秀珍菇菌株在不同温度条件下的生长速度情况见表1。5个菌株在25、28、30 ℃萌发时间均为24 h。当温度超过30 ℃,随着温度逐渐升高,萌发时间逐渐加长。34 ℃ 5个菌株的萌发时间均为72 h以上。X98ly-13、Xd-13、903-1、86-1等4个菌株在25、28、30 ℃菌丝生长速度无显著性差异,但与30和32 ℃有极显著差异。Y710-14菌株菌丝生长最快的温度为30 ℃,与其他4个温度有极显著差异。从满皿时间来看,菌丝最快满皿的菌株为Xd-13,在25、28 ℃,均为5 d。Y710-14、Xd-13菌丝在30 ℃,均为5.33 d。86-1菌株菌丝生长最慢,在32、34 ℃,满皿时间均超过20 d。36 ℃时,秀珍菇菌丝长期处于萌发状态,生长非常缓慢。
表 1 温度对秀珍菇菌丝生长速度的影响Table 1. Effects of temperature on mycelial growth of P. pulmonarius菌株
Strain温度
Temperature/
℃萌发时间
Germination
time/h菌丝生长速度
The growth rate of
mycelia
/(mm·d−1)满皿时间
Full petri
dish time/dX98ly-13 25 24 8.63±0.01 Aa 6 28 24 8.25±0.01 Aab 6 30 24 7.96±0.05 ABbc 6 32 24 7.50±0.01 Bc 6.33 34 72 0.92±0.02 Cd >15 Y710-14 25 24 7.42±0.06 Bc 6.67 28 24 8.00±0.03 Bb 6 30 24 8.83±0.01 Aa 5.33 32 24~48 6.46±0.01 Cd 8.33 34 72 0.83±0.03 De >15 Xd-13 25 24 8.88±0.02 Aa 5 28 24 7.63±0.01 Aa 5 30 24 8.38±0.03 ABb 5.33 32 24~48 7.75±0.03 Bc 6.67 34 72 0.92±0.01 Cd >15 903-1 25 24 7.86±0.08 Aa 6 28 24 7.71±0.01 Aa 6 30 24 7.71±0.02 Aa 6 32 24~48 6.29±0.06 Bb 7.67 34 72 0.67±0.01 Cc >15 86-1 25 24 5.38±0.04 Aa 9 28 24 4.46±0.09 ABa 10 30 24 4.38±0.09 ABa 11.33 32 24~48 3.08±0.05 Bb 20.33 34 72 0.46±0.01 Cc >21 注:表中不同大小写字母表示同一菌株在不同温度条件下菌丝生长速度有极显著差异(P<0.01)和显著差异(P<0.05)。
Note: Data with different uppercase and lowercase letters on same column indicate significant differences at P<0.01 and P<0.05, respectively.试验结果表明,木霉在不同温度下菌丝的生长速度有差异(表2)。6种温度条件,25~32 ℃,木霉菌丝生长势旺盛,其中28 ℃木霉菌丝生长最快,约2 d长满90 mm培养皿,随着温度升高,菌丝生长速度变慢,34 ℃,木霉菌丝生长速度明显减弱,约3 d长满90 mm培养皿。36 ℃,木霉菌丝生长非常缓慢,菌丝泛黄,生长势最弱。同时测定了Xd-13菌丝、木霉菌丝在不同温度下的生长情况及秀珍菇菌丝与木霉菌丝的共培养情况(图1)。结果表明,在相同条件下,木霉菌丝的生长速度与秀珍菇菌丝的生长速度有极显著差异,秀珍菇菌丝的生长速度明显慢于木霉菌丝,且秀珍菇菌丝对木霉菌丝无拮抗现象,秀珍菇菌丝很快被完全覆盖,失去竞争力。
表 2 木霉在不同温度条件下菌丝生长情况Table 2. Mycelial growth of T. harzianum at different temperatures温度
Temperature/
℃萌发时间
Germination
time/h菌丝生长速度
Growth rate of mycelia/
(mm·d−1)满皿
时间
Full petri
dish time/d覆盖秀珍菇
菌丝时间
Infect mycelia of
Pleurotus
pulmonarius
time/h25 <24 19.33±0.03 Bb 2.21 48 28 <24 20.5±0.05 Aa 2.21 48 30 <24 19.33±0.03 Bb 2.5 48 32 24 18.5±0.05 Bc 3 48~54 34 24~48 14.67±0.03 Cd 3 54~72 36 72 3.17±0.03 De / / 注:表中不同大小写字母表示菌株在不同温度条件下菌丝生长速度有极显著差异(P<0.01)和显著差异(P<0.05)。
Note: Data with different uppercase and lowercase letters on same column indicate significant differences at P<0.01 and P<0.05, respectively.图 1 秀珍菇(XD-13)木霉(T001)菌丝在不同温度条件下生长及共培养情况注:①A:秀珍菇菌丝;B:木霉菌丝;C:秀珍菇和木霉菌丝共培养;②图中平皿从左到右处理温度依次为25、28、32 ℃(上排),34、36 ℃(下排)。Figure 1. Mycelial growth of P. pulmonarius (XD-13) and T. harzianum (T001) in cocultivation at different temperaturesNote: ① A: mycelia of P. pulmonarius; B: mycelia of T. harzianum; C: mycelia of P. pulmonarius and T. harzianum. ② Plate temperatures from left to right at 25 ℃, 28 ℃, and 32 ℃ on upper row; 34 ℃ and 36 ℃ on bottom row.2.2 培养基对秀珍菇菌丝生长的影响
温度为25 ℃时,5个秀珍菇菌株在四种培养基上的生长速度均无显著性差异,萌发时间均为24 h,生长情况见图2。X98ly-13菌株在PDYA培养基中的生长速度稍快于PDSYA培养基,在PDSA培养基中菌丝生长速度最慢。添加淀粉或酵母粉的培养基均可促进Y710-14、Xd-13和903-1菌株菌丝的生长,其中PDYA培养基对Y710-14菌丝日生长速度最快,PDSA培养基对Xd-13菌丝生长促进作用最明显,PDSYA培养基对903-1菌株菌丝的促进作用最大。5个秀珍菇菌株在PDYA培养基中的生长势最强,其次为PDSYA培养基,PDSA和PDA培养基中的菌丝生长势正常。加淀粉时秀珍菇菌丝普遍比正常菌丝更白,呈现乳白色。
图 2 5个菌株在不同培养基条件下菌丝的生长情况注:①A:X98ly-13菌株;B:Y710-14菌株;C:XD-13菌株;D:903-1菌株;E:86-1菌株。②平皿从左至右依次为PDA、PDSA、PDYA、PDSYA培养基。Figure 2. Mycelial growth of 5 strains of P. pulmonarius cultured on different mediaNote: ①A:X98ly-13; B: Y710-14; C: XD-13; D: 903-1; E: 86-1. ② Plates from left to right represent culture media PDA, PDSA, PDYA, and PDSYA.25 ℃条件下,秀珍菇不同菌株在4种培养基中菌丝的生长速度情况如表3所示,Xd-13菌丝生长速度均最快;86-1菌株生长速度最慢,与其他4个菌株的菌丝生长速度有极显著差异。PDSA培养基条件下,Y710-14菌株菌丝生长速度与Xd-13和X98ly-13无显著性差异,与903-1菌株有极显著差异。PDA和PDSYA培养基条件下,X98ly-13菌株菌丝的生长速度稍快于Y710-14菌株,PDSA和PDYA培养基条件下,X98ly-13菌株菌丝的生长速度稍慢于 Y710-14菌株,但它们之间均无显著性差异。
表 3 秀珍菇不同菌株在4种培养基中的菌丝生长情况分析Table 3. Mycelial growth of 5 strains of P. pulmonarius on 4 different culture media培养基
Culture
medium菌株
Strain菌丝生长速度
The growth rate
of mycelia/
(mm·d−1)菌丝特征
Mycelia characteristicsPDA X98ly-13 8.42±0.38 Aa 生长速度快、粗壮浓密、洁白 Y710-14 8.05±1.04 Aa 生长速度较快、浓密、洁白 XD-13 8.67±0.90 Aa 生长速度快、气生菌丝多、洁白 903-1 7.72±0.36 Aa 生长速度中等、较密、洁白 86-1 6.06±0.88 Bb 生长速度慢、粗壮浓密、洁白 PDSA X98ly-13 7.78±1.20 Bb 生长速度快、粗壮浓密、乳白 Y710-14 8.44±0.46 ABab 生长速度快、浓密、乳白 XD-13 9.28±0.51 Aa 生长速度快、气生菌丝多、乳白 903-1 7.56±0.58 Bb 生长速度中等、较密、乳白 86-1 6.00±0.56 Cc 生长速度慢、粗壮浓密、乳白 PDYA X98ly-13 8.58±0.66 Aab 生长速度快、粗壮浓密、洁白 Y710-14 8.78±0.75 Aa 生长速度快、浓密、洁白 XD-13 8.89±0.82 Aa 生长速度快、气生菌丝多、洁白 903-1 7.83±0.35 Ab 生长速度正常、较密、洁白 86-1 6.22±0.62 Bc 生长速度慢、粗壮浓密、洁白 PDSYA X98ly-13 8.22±0.71 Aa 生长速度快、粗壮浓密、洁白 Y710-14 8.11±0.49 Aa 生长速度快、浓密、洁白 XD-13 8.75±0.69 Aa 生长速度快、气生菌丝多、洁白 903-1 8.05±0.81 Aa 生长速度正常、较密、洁白 86-1 6.72±0.36 Bb 生长速度慢、粗壮浓密、洁白 注:表中不同大、小写字母表示不同菌株在相同培养基条件下菌丝生长速度有极显著差异(P<0.01)和显著差异(P<0.05)。
Note: Means within a column followed by different uppercase and lowercase letters indicate significant difference at P<0.01 or P<0.05, respectively.3. 讨论与结论
不同温度对5种秀珍菇菌株的菌丝生长均有不同程度的影响,同一温度条件,不同菌株生长速度有差异。其中4个菌株菌丝适宜生长温度范围均为25~30 ℃,在此温度范围菌丝生长速度无显著性差异,但与32 ℃和34 ℃条件有极显著差异,最适生长温度为25 ℃,这与王再明等的研究结果一致[19, 20],Y710-14菌株菌丝最适生长温度为30 ℃。试验结果表明,5个菌株在32 ℃,菌丝生长速度变慢,34 ℃秀珍菇菌丝生长非常缓慢。可见,秀珍菇菌株菌丝正常生长的临界温度介于32~34 ℃。这为秀珍菇生产上菌包包心温度的控制提供重要参考。Y710-14菌株菌丝最适生长温度较高,推断其应为中温偏高型菌株。秀珍菇常规栽培的品种为中温型菌株,为适应夏季规模化生产,雷潇等筛选了适宜湖南夏季设施化栽培的秀珍菇优良菌株26和秀58高温品种[24]。可见,不同秀珍菇菌株菌丝生长对温度要求有差异,温度是影响秀珍菇菌丝生长的重要因子,在生产上应根据地区气候条件和种植模式情况,选择适宜的秀珍菇菌株。秀珍菇菌丝生长速度的快慢除了与温度有关,可能还与菌株自身特性有关系,菌株菌丝生长速度快慢是否影响栽培出菇的产量与品质,有待更进一步探究。
吴小平等曾通过PDA平板筛选,发现香菇(Lentinula edodes)、鲍鱼菇(Pleurotus cystidiosus)和杏鲍菇(Pleurotus cryngi)等食用菌菌丝对木霉都没有抗性,但发现秀珍菇部分菌株对木霉有抗性[25]。本试验结果表明秀珍菇(XD-13)菌丝对木霉(T001)无拮抗作用。由此推断,在生产中遇上高温高湿天气,菇房、菌包中潜在的木霉病菌大量快速繁殖,当菌包温度介于32~34 ℃,秀珍菇菌丝与木霉菌丝之间的生长势相差更大,秀珍菇菌丝很快就失去竞争力,于是出现“绿包”现象,造成经济损失。要想避免秀珍菇生产过程中“绿包”现象的发生,首先菌包灭菌要彻底,保持菇房环境整洁卫生,其次可筛选出对木霉有抗性的秀珍菇新品种。
半合成培养基培养试验表明,秀珍菇同一菌株在3种添加淀粉或酵母粉的不同培养基上生长速度与对照PDA培养基无显著性差异。但添加酵母粉及酵母粉与淀粉组合的培养基,菌丝的生长势明显增强,菌丝更浓密,这与冯志勇等的研究结果一致[22],且添加淀粉培养基的菌丝普遍比正常菌丝白,呈现乳白色。有关营养物质的添加浓度,经添加营养物质培养的秀珍菇菌株活力是否更强,保藏时间是否更长,在栽培出菇阶段产量和品质表现等,有待深入研究。
-
图 3 西洋参茎叶提取物对鹌鹑GH基因表达的影响
不同字母代表组间显著差异(P<0.05),相同字母代表组间差异不显著(P>0.05)。
Figure 3. Effect of P. quinquefolium extract on GH expression in quails
Data are mean±standard deviation; those with different lowercase letters represent significant difference at P<0.05; those with same letter indicate no significant difference at p>0.05.
表 1 基础饲粮组成及营养成分水平
Table 1 Formulation and proximate analysis of experimental diets (单位:g·kg−1)
组成
Component项目
Iterm0~20 d
饲料
0–20 d
diet21~45 d
饲料
21–45 d
diet原料
Ingridients玉米 Corn 540 510 大豆粕 Bean pulp 270 260 米糠 Imported fishmeal 100 90 骨粉 Rice bran 50 100 禽用多维 Bone meal 15 15 微量元素预混料
Multivitamins trace elements premix2.5 2.5 赖氨酸 Lysine 2.5 2.5 蛋氨酸 Methionine 6 6 食盐 Salt 1 1 石粉 Stone powder 12 12 养分
Nutrients粗蛋白 Crude protein 243.8 229.4 钙 Ca 4 4 磷 P 13.3 12.3 粗脂肪 Crude fat 146.3 153.7 粗纤维 Crude fiber 34.3 25.3 粗灰分 Crush ash 61.0 69.1 赖氨酸 Lysine 11.2 8.7 蛋氨酸 Methionine 4.7 3.8 微量元素预混料向饲料提供Mg 300 mg·kg−1、Mn 90 mg·kg−1、Zn 100 mg·kg−1、Cu 7 mg·kg−1、I 0.3 mg·kg−1、Fe 80 mg·kg−1 。
Premixed forage contained 300 mg·kg−1 Mg, 90 mg·kg−1 Mn, 100 mg ·kg−1 Zn, 7 mg·kg−1 Cu, 0.3 mg·kg−1 I, and 80 mg·kg−1 Fe.表 2 西洋参茎叶提取物对鹌鹑生长性能的影响
Table 2 Effect of P. quinquefolium extract on growth of quails
组别
Group平均日增质量
Average daily gain/
(g·d−1)平均日采食量
Average daily feed intake/
(g·d−1)料肉比
Feed-weight
rateCON 3.41±0.26b 19.77±1.43a 5.81±0.42a KSS 3.5±0.39b 19.64± 1.25a 5.62±0.36a SD 3.87±0.07ab 19.77± 1.43a 5.11±0.40a SZ 4.08±0. 11a 18.42± 1.45a 4.51±0.36b SG 3.82±0.26ab 18.78± 1.37a 4.92±0.36ab 表中数据为平均值±标准偏差,不同小写字母代表组间差异显著(P<0.05)。下同。
Data are mean±standard deviation; those with different lowercase letters represent significant difference at P<0.05. Same for below.表 3 西洋参茎叶提取物对鹌鹑胸肌和腿肌剪切力的影响
Table 3 Effect of P. quinquefolium extract on shear strength of quail pectoral and leg muscles
组别
Group剪切力 Shear force/N 胸肌 Pectoral muscle 腿肌 Leg muscle CON 28.58±1.87a 22.23±2.09a KSS 17.88±1.32b 15.20±1.99b SD 13.06±0.98bc 11.75±1.37c SZ 10.90±0.91c 9.70±1.72c SG 14.31±1.34bc 11.21±2.03c 表 4 西洋参茎叶提取物鹌鹑肌肉常规营养成分的影响
Table 4 Effect of P. quinquefolium extract on common nutrients in quail meat
(单位:%) 组别
Group胸肌 Pectoralis 腿肌 Thigh muscle 蛋白质
Protein脂肪
Fat水分
Moisture蛋白质
Protein脂肪
Fat水分
MoistureCON 21.94±2.31b 1.17±0.14b 72.37±6.47a 21.27±3.02b 1.16±0.13b 74.16±7.49a KSS 24.34±1.46a 1.27±0.11b 70.89±8.15a 21.41±2.69b 1.82±0.16b 74.53±9.24a SD 23.60±2.34ab 1.52±0.09ab 70.34±6.83a 23.07±2.48ab 2.71±0.05ab 72.98±10.01a SZ 23.97±1.65ab 1.77±0.15a 71.21±9.45a 23.94±1.94a 3.06±0.04a 73.08±6.17a SG 24.24±1.58a 1.70±0.17a 69.90±8.34a 23.72±3.02a 2.47±0.07ab 71.08±4.92a 表 5 西洋参茎叶提取物对鹌鹑胸肌中脂肪酸含量的影响
Table 5 Effect of P. quinquefolium extract on fatty acids in quail breast meat
(单位:g·hg−1) 脂肪酸 Fatty acid CON KSS SD SZ SG 肉豆蔻酸 Myristic acid — — — — — 棕榈酸 Palmitic acid 17.41±1.08a 18.29±0.66a 18.27±2.08a 19.39±2.08a 19.73±1.48a 硬脂酸 Stearic acid 7.53±0.19b 14.57±0.26a 11.11±0.37a 13.31±0.44a 14.54±0.21a 棕榈油酸 palmitoleic acid * 5.20±0.08a 2.95±0.06b 4.08±0.98a 4.47±0.88a 3.16±0.79ab 油酸 Oleic acid * 27.74±1.05a 23.05±1.11b 26.69±1.89a 26.96± 1.39a 25.88±1.28a 亚油酸 Linoleic acid ** 35.54±2.28a 32.86±2.66a 33.49±1.81a 33.19±2.16a 34.41±1.03a 亚麻酸 Linolenic acid ** 1.96±0.08 — — — — 花生四烯酸 Arachidonic acid ** 2.65±0.12c 7. 19±0.61b 6.09±0.13b 6.74±0.64b 9.23±0.37a 不饱和脂肪酸 Unsaturated fatty acids 73.09±4.07a 66.05±3.98b 72.40±3.67a 69.36±5.44ab 69.68±4.81ab *为单不饱和脂肪酸,**为多不饱和脂肪酸,—为未检出。表6同。
* indicates monounsaturated fat acids; ** indicates unsaturated fat acids; - means not detected. Same for Table 6.表 6 西洋参茎叶提取物对鹌鹑腿肌中脂肪酸含量的影响
Table 6 Effect of P. quinquefolium extract on fatty acids in quail leg meat
(单位:g·hg−1) 脂肪酸 Fatty acid CON KSS SD SZ SG 肉豆蔻酸 Myristic acid — — — 0.34±0.03a — 棕榈酸 Palmitic acid 16.95±0.23b 19.81±0.37ab 20.76±0.36a 18.92±0.06ab 17.58±0.44ab 硬脂酸 Stearic acid 8.61±0. 15c 13.32±0.51b 19.84±0.45a 9.09±0.21bc 15.62±0.32ab 棕榈油酸 Palmitoleic acid * 2.89±0.14a 3.75±0.01a 2.24±0.02a 3.92±0.03a 2.53±0. 11a 油酸 Oleic acid * 28.97±0.87a 24.84± 1.61b 26.67±0.17ab 28.02±0.06a 23.45± 1.21b 亚油酸 Linoleic acid ** 35.08±0.27a 30.28±0.65b 31.24±0. 16b 35.02±0.38a 32.25± 1.05ab 亚麻酸 Linolenic acid ** 1.81±0.04 — — 1.72±0.09 — 花生四烯酸 Arachidonic acid ** 4.11±0.22b 8.00±0.10a 9.27±0.12a 8.99±1.02a 8.59±0.37a 不饱和脂肪酸 Unsaturated fatty acids 72.86±4.37b 66.87±3.77b 69.42±3.32b 77.67±2.24a 66.82±5.91b 表 7 西洋参茎叶提取物对鹌鹑肉中肌苷酸含量的影响
Table 7 Effect of P. quinquefolium extract on inosinic content in quail meat
组别
Group肌苷酸 Inosinic acid/(mg·kg−1) 胸肌
Pectoral muscle腿肌
Leg muscleCON 1704.62±7.90b 1381.65±4.77a KSS 1707.59± 8.85b 971.85±4.47b SD 1962.23± 8.28a 1285.06±3.26a SZ 2001.24±4.42a 1389.54±2.41a SG 1734. 12± 11.38b 1349.02±6.73a 表 8 西洋参茎叶提取物对鹌鹑胸肌中氨基酸含量的影响
Table 8 Effect of P. quinquefolium extract on amino acids in quail breast meat
(单位:g·hg−1) 氨基酸 Amino acids CON KSS SD SZ SG 谷氨酸 Glutamic acid# 3.52±0.11ab 2.91±0.09b 3.56±0.12ab 3.85±0.13a 3.63±0.25ab 天冬氨酸 Aspartic acid# 2.21±0.13ab 1.86±0.26b 2.22±0.25ab 2.43±0.05a 2.26±0.54ab 甘氨酸 Glycine# 1.12±0.11a 1.44±0.21a 1.10±0.31a 1.15±0.19a 0.99±0.06a 丙氨酸 Alanine# 1.41±0. 23a 1.18±0.09a 1.39±0.09a 1.49±0.13a 1.33±0.09a 酪氨酸 Tyrosine# 0.78±0.07a 0.60± 0.04a 0.85±0.17a 0.92±0.05a 0.92±0.21a 苯丙氨酸 Phenylalanine*# 1.05±0.21a 0.83±0.05a 1.09±0. 11a 1.04±0.18a 1.06± 0.15a 异亮氨酸 Isoleucine 1.08±0.06a 0.86±0.08a 1.14±0.15a 1.23±0.07a 1.13±0.05a 赖氨酸 Lysine* 2.14±0.21ab 1.78±0.11b 2.15±0.13ab 2.27±0.16a 2.13±0.37ab 缬氨酸 Valine * 1.13±0.08a 0.83±0.06a 1.18±0.15a 1.24±0.21a 1.16±0.26a 蛋氨酸 Methionine * 0.61±0.06a 0.50±0.08a 0.62±0.11a 0.73±0.09a 0.65±0.04a 苏氨酸 Threonine * 0.96±0.06a 0.88±0.08a 1.09±0.04a 1.17±0.05a 1.10±0.09a 丝氨酸 Serine 0.87±0.05a 0.68±0.09a 0.98±0.11a 1.04±0.03a 0.97±0.08a 亮氨酸 Leucine* 2.06±0.15ab 1.68±0.14b 2.11±0.24ab 2.27±0.19a 2.13±0.27ab 组氨酸 Histidine** 0.67±0.11a 0.51±0.04a 0.70±0.08a 0.76±0.16a 0.72±0.14a 精氨酸 Arginine** 1.35±0.13b 1.35±0.16b 1.51±0.14ab 1.61±0.15a 1.49±0.09ab 脯氨酸 Proline 0.46±0.02b 1.40±0.06a 0.81±0.03ab 0.93±0.05a 0.94±0.07a 总氨基酸 Total amino acids 21.42±2.05ab 19.29±1.95b 22.50±2.31ab 24.13±3.01a 22.61±3.47ab 必需氨基酸 Essential amino acids 9.03±1.01a 7.36±0.96b 9.38±0.76a 9.95±.088a 9.36±1.24a 风味氨基酸 Flavor amino acids 10.09±0.65a 8.82±0.78b 10.21±0.21a 10.88±0.84a 10.10±0.93a *为必需氨基酸;**为半必需氨基酸;#为风味氨基酸。表9同。
* indicates essential amino acid; ** indicates semi-essential amino acid; # indicates flavor amino acids. Same for Table 9.表 9 西洋参茎叶提取物对鹌鹑腿肌中氨基酸含量的影响
Table 9 Effect of P. quinquefolium extract on amino acids in quail leg meat
(单位:g·hg−1) 氨基酸 Amino acids CON KSS SD SZ SG 谷氨酸 Glutamic acid# 2.00±0.23b 1.84±0.26b 3.51±0.31a 3.85±0.13a 3.34±0.21a 天冬氨酸 Aspartic acid# 1.28±0.24b 1.11±0.27b 2.02±0.25ab 2.20±0.16a 1.94±0.33ab 甘氨酸 Glycine# 0.64±0.05b 0.58±0.11b 1.17±0.23a 1.03±0.09a 0.81±0.02ab 丙氨酸 Alanine# 0.75±0.11b 0.66±0.12b 1.22±0.08a 1.23±0.13a 1.08±0.11ab 酪氨酸 Tyrosine# 0.53±0.02ab 0.47± 0.03b 0.89±0.05a 0.87±0.06a 0.77±0.05ab 苯丙氨酸 Phenylalanine*# 0.70±0.07b 0.59±0.05b 0.95±0.06a 1.03±0.11a 0.94± 0.05a 异亮氨酸 Isoleucine 0.72±0.04ab 0.55±0.05b 1.00±0.02a 1.11±0.07a 0.95±0.04a 赖氨酸 Lysine* 1.36±0.24b 1.03±0.18b 1.87±0.12a 2.19±0.29a 1.92±0.31a 缬氨酸 Valine * 0.71±0.12ab 0.56±0.13b 0.97±0.35a 1.07±0.27a 0.98±0.18a 蛋氨酸 Methionine * 0.36±0.04ab 0.28±0.03b 0.58±0.07ab 0.64±0.05a 0.59±0.03ab 苏氨酸 Threonine * 0.69±0.06ab 0.53±0.04b 0.97±0.08a 1.05±0.04a 0.96±0.06a 丝氨酸 Serine 0.56±0.02b 0.49±0.03b 0.94±0.03a 0.98±0.06a 0.87±0.05ab 亮氨酸 Leucine* 1.30±0.12b 1.03±0.14b 1.87±0.09a 2.08±0.15a 1.85±0.07a 组氨酸 Histidine** 0.34±0.02ab 0.27±0.02b 0.50±0.03ab 0.59±0.02a 0.53±0.04a 精氨酸 Arginine** 1.02±0.07bc 0.69±0.05c 1.46±0.04a 1.52±0.07a 1.26±0.11ab 脯氨酸 Proline 0.31±0.03b 0.30±0.02b 0.86±0.04a 0.78±0.03a 0.53±0.02ab 总氨基酸 Total amino acids 13.27±1.23b 10.98±1.77b 20.78±1.54a 22.22±1.63a 19.32±1.86a 必需氨基酸 Essential amino acids 5.84±0.42b 4.57±0.51b 8.21±0.57a 9.17±0.85a 8.19±0.83a 风味氨基酸 Flavor amino acids 5.90±0.95b 5.25±0.83b 9.76±1.03a 10.21±0.89a 8.88±0.77a -
[1] 舒思洁. 西洋参及其活性成分的药理学研究进展 [J]. 时珍国医国药, 2006, 17(12):2603−2604. SHU S J. Pharmacological research progress of American ginseng and its active components [J]. LiShiZhen Medicine and Materia Medica Research, 2006, 17(12): 2603−2604.(in Chinese)
[2] 汪亚菁, 苏宁, 金建明. 西洋参茎叶化学成分研究进展 [J]. 中国现代中药, 2016, 18(9):1224−1229. WANG Y J, SU N, JIN J M. Review on chemical constituents of Panax quinquefolium L. stems and leaves [J]. Modern Chinese Medicine, 2016, 18(9): 1224−1229.(in Chinese)
[3] 杨春. 中草药饲料添加剂在畜禽机体的作用机理 [J]. 中兽医学杂志, 2022(12):100−102. YANG C. Mechanism of Chinese herbal medicine feed additives in livestock and poultry [J]. Chinese Journal of Traditional Veterinary Science, 2022(12): 100−102.(in Chinese)
[4] 刘敏. 中草药饲料添加剂在畜禽养殖中的应用及发展前景 [J]. 中国动物保健, 2022, 24(6):83−84. LIU M. Application and development prospect of Chinese herbal medicine feed additives in livestock and poultry breeding [J]. China Animal Health, 2022, 24(6): 83−84.(in Chinese)
[5] 李巧云. 中草药饲料添加剂的主要功能及常用种类 [J]. 新农村, 2018(4):31−32. LI Q Y. Main functions and common types of Chinese herbal medicine feed additives [J]. New Countryside, 2018(4): 31−32.(in Chinese)
[6] 王永茹, 范蓓, 孙晶, 等. 中草药饲料添加剂对动物品质影响的研究进展 [J]. 中国饲料, 2022(16):45−49. WANG Y R, FAN B, SUN J, et al. Research progress of Chinese herbal medicine additive feed on the quality of animals [J]. China Feed, 2022(16): 45−49.(in Chinese)
[7] JACHIMOWICZ K, WINIARSKA-MIECZAN A, TOMASZEWSKA E. The impact of herbal additives for poultry feed on the fatty acid profile of meat [J]. Animals, 2022, 12(9): 1054. DOI: 10.3390/ani12091054
[8] SAINI R, CHHIKARA S K, SUBHASISH S, et al. Effect of herbal Aloe vera (Aloe barbadensis) as feed additive on body weight and biochemical parameters in tropical buffalo calves [J]. Indian Journal of Animal Nutrition, 2022, 39(1): 23−29. DOI: 10.5958/2231-6744.2022.00003.2
[9] 逄世峰, 李亚丽, 许世泉, 等. 西洋参不同部位人参皂苷类成分研究 [J]. 中国林副特产, 2015(2):1−3,9. PANG S F, LI Y L, XU S Q, et al. Investigation of ginsenosides in different parts of Panax quinque folius [J]. Forest by-Product and Speciality in China, 2015(2): 1−3,9.(in Chinese)
[10] 徐丽华, 王新茗, 于金倩, 等. 西洋参茎叶的化学成分和药理作用研究进展 [J]. 食品与药品, 2021, 23(3):278−284. XU L H, WANG X M, YU J Q, et al. Advances in chemical constituents and pharmacological effects of stems and leaves of Panax quinquefolium [J]. Food and Drug, 2021, 23(3): 278−284.(in Chinese)
[11] 冯坤苗, 孟洪涛, 张强, 等. 西洋参茎叶中多糖提取优化及其抗病毒活性研究 [J]. 辽宁中医药大学学报, 2017, 19(4):52−55. FENG K M, MENG H T, ZHANG Q, et al. Optimization of extraction of polysaccharide from Panax quinquefolius stems and leaves and its antiviral activity [J]. Journal of Liaoning University of Traditional Chinese Medicine, 2017, 19(4): 52−55.(in Chinese)
[12] 王庆. 鹌鹑GH、GHR基因多态性与生产性能相关性研究[D]. 哈尔滨: 东北农业大学, 2010. WANG Q. Study on relationships between GH、GHR gene polymorphism and performance in quail[D]. Harbin: Northeast Agricultural University, 2010. (in Chinese)
[13] 李鹏升, 张申林, 韩金恒, 等. 中草药复合添加剂对高龄蛋鸡血清生化指标、抗氧化能力及蛋黄营养成分的影响 [J]. 中国家禽, 2022, 44(9):61−65. LI P S, ZHANG S L, HAN J H, et al. Effects of Chinese herbal medicine compound additives on serum biochemical indexes, antioxidant capacity and yolk nutrients in aged laying hens [J]. China Poultry, 2022, 44(9): 61−65.(in Chinese)
[14] 刘砚涵, 宫晓玮, 李复煌, 等. 中草药饲料添加剂对北京鸭生长性能、免疫指标及肉品质的影响 [J]. 中国农业大学学报, 2020, 25(2):77−84. LIU Y H, GONG X W, LI F H, et al. Effects of Chinese herbal medicine additives on the growth performance, blood immune indexes and meat quality of Pekin ducks [J]. Journal of China Agricultural University, 2020, 25(2): 77−84.(in Chinese)
[15] 寇宇斐, 朱文斌, 李飞, 等. 饲粮中添加不同比例全株桑枝叶对育肥湖羊生长性能、养分表观消化率、血清抗氧化指标和瘤胃发酵参数的影响 [J]. 动物营养学报, 2021, 33(5):2776−2785. KOU Y F, ZHU W B, LI F, et al. Effects of diets with different proportions of whole mulberry on growth performance, nutrient apparent digestibility, serum antioxidant indexes and rumen fermentation parameters of fattening hu sheep [J]. Chinese Journal of Animal Nutrition, 2021, 33(5): 2776−2785.(in Chinese)
[16] 李俊峰, 刘千辉, 苏凤艳, 等. 人参茎叶对鹌鹑生长、免疫器官指数和血液生化指标的影响 [J]. 西北农林科技大学学报(自然科学版), 2017, 45(3):31−36,42. LI J F, LIU Q H, SU F Y, et al. Effect of ginseng stem and leaf on growth performance, immune organ indices and blood biochemical indices of quail [J]. Journal of Northwest A & F University (Natural Science Edition), 2017, 45(3): 31−36,42.(in Chinese)
[17] KARA K, ŞENTÜRK M, GUCLU B K, et al. Effect of catechins on fattening performance, meat quality, some antioxidant and blood parameters and fattening costs in Japanese quail (Coturnix coturnix japonica) [J]. British Poultry Science, 2016, 57(4): 522−530. DOI: 10.1080/00071668.2016.1174977
[18] 吴俊, 吴萍萍, 许二学, 等. 中草药饲料添加剂对皖南草鸡生长性能、抗病能力和肉品质影响的研究 [J]. 饲料研究, 2022, 45(9):56−59. WU J, WU P P, XU E X, et al. Effect of Chinese herbal medicine feed additives on growth performance, disease resistance and meat quality of Wannan grass chickens [J]. Feed Research, 2022, 45(9): 56−59.(in Chinese)
[19] 吕亚宁, 贺琛昕, 兰旅涛. 猪肌内脂肪与肉品质的关系及其影响因素的研究进展 [J]. 中国畜牧兽医, 2020, 47(2):554−563. LYU Y N, HE C X, LAN L T. Research advances on the relationship between intramuscular fat and meat quality and influence factor of intramuscular fat in pigs [J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(2): 554−563.(in Chinese)
[20] IWAMOTO E, OKA A, IWAKI F. Effects of the fattening period on the fatty acid composition of fat deposits and free amino acid and inosinic acid contents of the longissimus muscle in carcasses of Japanese Black steers [J]. Animal Science Journal, 2009, 80(4): 411−417. DOI: 10.1111/j.1740-0929.2009.00648.x
[21] 席斌, 李大伟, 郭天芬, 等. 不同品种鸡肌肉中氨基酸、脂肪酸及肌苷酸比较 [J]. 甘肃农业大学学报, 2020, 55(2):46−53. XI B, LI D W, GUO T F, et al. Comparative study on amino acid, fatty acid and IMP of chicken from different poultry species [J]. Journal of Gansu Agricultural University, 2020, 55(2): 46−53.(in Chinese)
[22] 王小亚, 唐宏, 陈大海, 等. 高、低肌内脂肪含量的贵州黄鸡的肉品质研究 [J]. 饲料研究, 2022, 45(15):102−105. WANG X Y, TANG H, CHEN D H, et al. Study on meat quality of Guizhou yellow chickens with high and low intramuscular fat content [J]. Feed Research, 2022, 45(15): 102−105.(in Chinese)
[23] 周茜, 杨建乔, 董小涵, 等. 复方中草药对肉鸡生长性能、肌肉品质、免疫功能和肠道菌群的影响 [J]. 食品工业科技, 2017, 38(17):84−87,155. ZHOU Q, YANG J Q, DONG X H, et al. Effects of Chinese herbal formulation on the growth performance, meat quality, immune organ index and intestinal microbiota of broilers [J]. Science and Technology of Food Industry, 2017, 38(17): 84−87,155.(in Chinese)
[24] 李辉. 日粮添加藤茶提取物对文昌鸡生长性能、肉品质及肠道发育的影响[D]. 海口: 海南大学, 2022. LI H. Effects of rattan tea extract on growth performance, meat quality and intestinal development of Wenchang chicken[D]. Haikou: Hainan University, 2022. (in Chinese)
[25] 苏凤艳, 刘千辉, 刘畅, 等. 复方黄芪对鹌鹑生长性能、血液生化指标和免疫机能的影响 [J]. 中国畜牧杂志, 2017, 53(4):103−107. SU F Y, LIU Q H, LIU C, et al. Effects of compound astragalus on growth performance, blood biochemical indexes and immune function of quail [J]. Chinese Journal of Animal Science, 2017, 53(4): 103−107.(in Chinese)
[26] 陈圆, 李红伟, 冯惠婷, 等. 3种植物添加剂对惠阳胡须鸡肌肉氨基酸、脂肪酸组成与含量的影响 [J]. 中国畜牧兽医, 2018, 45(7):1833−1840. CHEN Y, LI H W, FENG H T, et al. Effect of three kinds of plant additives on the content and composition of amino acids and fatty acids in muscle of Huiyang bearded chicken [J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(7): 1833−1840.(in Chinese)
-
期刊类型引用(3)
1. 卯明娟,刘迪,周会明,白玉英,洪鹏,王佳琳,杨流波,陈真敏. 基于高产胞外粗多糖的白灵芝发酵茶培养基配方优化. 食品工业科技. 2024(04): 93-100 . 百度学术
2. 闫静,王伟科,陆娜,宋吉玲,周祖法. 利用孢子紫外诱变选育秀珍菇新菌株. 中国食用菌. 2024(02): 38-45 . 百度学术
3. 胡佳,陈鑫. 高温天气因素对杏鲍菇不同生长阶段的影响. 中国农学通报. 2024(36): 57-62 . 百度学术
其他类型引用(0)