Volatiles and Amino Acids in Pericarp of Yellow Passion Fruit at Fruit Development Stages
-
摘要:目的 研究不同发育期黄金百香果果皮挥发性成分和游离氨基酸成分的组成和动态变化规律,明确关键呈味氨基酸和特征差异挥发性成分,为黄金百香果果皮的芳香调控、产品开发及综合利用等提供参考。方法 采用氨基酸分析仪和顶空固相微萃取气质联用仪(HS-SPME-GC-MS),检测不同发育期(T1~T7)果皮中的游离氨基酸和挥发性物质,并进行差异性分析。结果 果皮中共检测出游离氨基酸(Free amino acid, FAA)15种。呈味氨基酸中的芳香类氨基酸含量最高,在T7时达到最大值(98.48 mg·hg−1),占比为39.03%。OPLS-DA和滋味活度值(TAV)分析表明,胱氨酸为影响香气形成的关键呈味氨基酸。果皮中共检测出90种挥发性物质,T1~T6时期以醛类为主,T7时期以萜烯类为主。OPLS-DA和ROAV分析表明,特征差异挥发性成分有9种,其中T1~T5时期以1-辛烯-3-酮为主,其次为苯甲醛(T1~T4时期)和庚醛(T5时期),T6和T7时期以(E)-β-大马烯酮的贡献作用最大。结论 胱氨酸是影响黄金百香果果皮香气形成的关键呈味氨基酸。黄金百香果果皮挥发性物质在不同发育期存在特异性,其中果皮着色期(T1~T5)以1-辛烯-3-酮为主,完全成熟期(T6和T7)以(E)-β-大马烯酮的贡献作用最大。Abstract:Objective Studying the composition and dynamic changes of volatile components and free amino acids (FAAs) in the pericarp of Yellow Passion Fruit during different growth stages, and clarifying the key flavor amino acids and characteristic volatile components, can provide references for the aroma regulation, product development, and comprehensive utilization of Yellow Passion Fruit pericarp.Method Using amino acid analyzer and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS), the FAAs and volatile compounds in the pericarp of different growth stages (T1–T7) were detected and analyzed for differences.Result A total of 15 types of FAAs were detected in the pericarp. Among the flavor amino acids, aromatic amino acids had the highest content, reaching a maximum of 98.48 mg·hg−1 at T7, accounting for 39.03%. OPLS-DA and TAV analyses indicated that cystine was the key flavor amino acid that affects aroma formation. A total of 90 volatile compounds were detected in the pericarp. Aldehydes were dominant during the T1–T6 stages, while terpenes were dominant at T7. OPLS-DA and ROAV analyses showed that there were 9 types of characteristic volatile compounds with differential expression. Among them, 1-octen-3-one was the dominant compound during the T1~T5 stages, followed by benzaldehyde (T1–T4 stages) and heptanal (T5 stage). During the T6 and T7 stages, (E)-β-damascone contributed the most.Conclusion Cystine was the crucial flavoring amino acid associated with the aroma formation of the pericarp. The volatile composition varied by fruit development stages, such as 1-octene 3-one was the dominant component when the pericarp was forming color in T1-T5, while (E)- β -damalenone when the fruit was maturing in T6 and T7.
-
Keywords:
- Yellow Passion Fruit /
- fruit growth stages /
- pericarp /
- free amino acids /
- volatile components
-
0. 引言
【研究意义】稻瘟病是水稻最主要病害之一,每年可造成水稻10%~30%减产,严重年份部分稻区甚至出现绝收[1-2]。因此,稻瘟病防治一直是水稻生产和育种的重中之重。长期实践证明,培育和种植抗病水稻品种是防治稻瘟病最经济、安全和有效的措施,而发掘和鉴定稻瘟病抗性基因对于开展水稻抗病育种具有重要意义。【前人研究进展】截至目前,全世界已鉴定了100多个稻瘟病抗性基因,至少24个基因被克隆,包括Pib、Pi-ta、Pi9、Pi2、Piz-t、Pigm、Pid2、Pi37、Pi36、Pik-m、Pi5、Pit、Pid3、Pid3-A4、Pi54、Pish、Pik-p、Pia、Pik、Pi-CO39、Pi25、Pi1、pi21和Pb1等[3-4],促进了水稻抗稻瘟病分子育种的发展。然而,一方面抗性基因表现出对稻瘟菌生理小种高度专化性,另一方面由于稻瘟菌生理小种存在易变性,抗性基因在利用数年后抗性容易丧失,因此寻找和鉴定更多新的抗性基因一直被植物病理工作者和水稻育种家重视。近年来,兴起一种快速简单的性状定位的方法——混合群体分离分析法(Bulked Segregant Analysis,BSA),其基于临时(如F1、F2分离群体)或永久群体(如重组自交系、近等基因系)表现出明显差异的个体,通过构建DNA混池进行基因定位。BSA已被应用于水稻质量性状基因[5]和数量性状基因(QTL)[6-7]的定位。【本研究切入点】谷丰B是福建省农业科学院水稻研究所选育的具有广谱、持久抗稻瘟病的优良品种,种植20多年仍表现出稳定抗性[8]。该材料为挖掘广谱持久抗性基因及研究抗性分子机制带来了契机。【拟解决的关键问题】本研究以谷丰B和日本晴分别作为稻瘟病抗病和感病亲本,配制F2代遗传群体,接种稻瘟菌并鉴定表型。依据水稻稻瘟病抗性评价分级标准,选出极端材料构建感、抗池。通过BSA测序分析,初步确定谷丰B抗性基因连锁区间。本研究旨在为谷丰B抗性基因精细定位及基因克隆奠定基础,并为分子标记辅助选择提供标记资源。
1. 材料与方法
1.1 试验材料
水稻材料谷丰B、福恢838、甬优1号、圭630、福恢718、IR0462和日本晴均由福建省农业科学院生物技术研究所提供。以抗病品种谷丰B为母本和感病品种日本晴为父本,杂交获得F1和F2遗传群体。
稻瘟菌株501-3、KJ201、IR16-1、RB22、RB6、2Y838-1和CHNOS由福建省农业科学院生物技术研究所保存。
1.2 稻瘟病接种鉴定
稻瘟菌接种在燕麦(或米糠)培养基中,25 ℃暗培养5~7 d,随后刮掉表面菌丝并转移至25 ℃光照条件下培养3 d诱导孢子产生,供接种用。
接种试验在福建省农业科学院生物技术研究所寿山实验基地进行,接种方法参考Tian等[3]的方法。水稻幼苗生长至3~4叶龄时,进行人工喷雾接种。接种后接种池覆盖遮光膜密闭24 h,揭开遮光膜后保证棚内相对湿度90%以上,温度24~28 ℃,5~7 d后调查发病情况。
按照国际水稻研究所发布的稻瘟病分级标准进行病级统计[9],即:高抗——无病斑;抗——有针尖大小棕色斑点;中抗——有圆形至椭圆形灰色斑,褐色边缘,直径约1~2 mm;中感——有典型纺锤状病斑,病斑面积小于叶面积的10%;感病——有典型纺锤状病斑,病斑面积占叶面积的10.1%~50%;高感——有典型纺锤状病斑,病斑面积大于叶面积的50%,甚至全叶枯死。
1.3 谷丰B抗病性遗传分析
谷丰B和日本晴的F1和F2群体接种501-3和IR16-1菌株,并统计F2群体抗病和感病植株分离比,采用χ2测验进行分离比适合度检测。
1.4 极端分离混合池重测序
谷丰B与日本晴F2群体接种501-3菌株后,挑选极端抗病单株和极端感病单株各20株,同时取亲本谷丰B和日本晴各10株,采用CTAB方法提取基因组DNA。分别将各自单株DNA等量混合,利用二代测序技术对2个混合池和两亲本进行20×和10×覆盖度的全基因组测序,测序和数据处理由诺禾致源公司(中国)完成。
参考Liang等[10]的方法计算2个分离池的SNP频率(SNP-index),随后对2个子代SNP-index作差(△SNP-index)。对△SNP-index在各个染色体上的分布进行作图,选取95%置信水平作为筛选的阈值,确定连锁区间。
2. 结果与分析
2.1 谷丰B抗病性鉴定
利用7个稻瘟菌株501-3、KJ201、IR16-1、RB22、RB6、2Y838-1和CHNOS对谷丰B、福恢838、甬优1号、圭630、福恢718、IR0462及日本晴等材料进行人工接种。图1和表1结果显示,谷丰B对7个供试菌株均表现高抗性,福恢838、甬优1号、圭630、福恢718和IR0462水稻材料对501-3、IR16-1、RB6和2Y838-1菌株表现出不同程度的感病。上述结果初步表明,谷丰B基因组中可能携带了广谱高抗稻瘟病基因。
表 1 水稻品种稻瘟病抗性鉴定Table 1. Blast resistance of rice cultivars品种 Varieties 菌株 Strains 501-3 KJ201 IR16-1 RB22 CHNOS RB6 2Y838-1 IR0462 S MR S R MR MS S 福恢838 Fuhui838 S MR S MS R S HS 甬优1号 Yongyou1 S MR S MS R S S 圭630 Gui630 HS S HS S R HS MS 福恢718 Fuhui718 MS R MS R R S S 谷丰B Gufeng B HR HR HR HR HR HR HR 日本晴Nipponbare HS HS HS HS S S HS 注: HR: 高抗; R: 抗病; MR: 中抗; MS: 中感; S: 感病; HS: 高感
Note: HR: Highly resistant; R: Resistant; MS: Moderately resistant; MS: Moderately susceptible; S: Susceptible; HS: Highly susceptible.2.2 谷丰B对稻瘟菌501-3和IR16-1的遗传分析
利用501-3和IR16-1菌株对谷丰B和日本晴的F1和F2群体进行接种,分析谷丰B的抗性遗传模式。结果显示,F1群体对501-3和IR16-1菌株均表现高抗,F2植株出现不同程度抗病和感病。将抗病(包括中抗、抗和高抗)和感病(包括中感、感病和高感)植株的分离比按3:1理论比例进行卡方测验,其对应501-3和IR16-1的χ2值分别为33.09和27.98,均显著大于χ(0.05)2=3.84(表2),推测谷丰B基因组存在多个位点影响稻瘟病抗性。
表 2 谷丰B稻瘟病抗性遗传分析Table 2. Genetic analysis on blast resistance of Gufeng B群体
Population菌株
Strains总株数
Total number抗病株数
Number of resistant plants感病株数
Number of susceptible plants期望比
Expected rationχ2 F1(NPB×谷丰B) 501-3 30 30 0 — — IR16-1 30 30 0 — — F2(NPB×谷丰B) 501-3 407 255 152 3:1 33.09 IR16-1 430 275 155 3:1 27.98 注: NPB: 日本晴; χ2(0.05)=3.84
Note: NPB: Nipponbare; χ2 (0.05)=3.84.2.3 BSA测序和数据分析
基于上述结果,采用BSA方法对20个高感单株和20个高抗单株构建的DNA混合池以及亲本进行全基因组测序,共产生 32.66 G原始数据(Raw data)。过滤后获得32.475 G 有效数据(Clean data),各样本的Clean data在9.880~12.177 G,所有样品Q30≥91.52%,GC含量在44.3%~47.59%;通过与日本晴参考基因组比对,各样品比对率均在95.36%以上,4×覆盖度(至少有4个碱基的覆盖)在87.48%~97.69%(表3)。由此可知,各样本数据量足够,测序质量高,测序数据比对结果正常,可用于后续的变异检测及相关分析。
表 3 过滤后的数据统计表Table 3. Statistics on data after screening样本
Sample有效数据量
Clean Base/G准确度
Q30/%GC含量
GC content/%与参考基因组相同片段
Mapped reads匹配率
Mapped ratio/%覆盖度
Coverage/%谷丰 B 9.88 92.44 44.3 62,811,386 95.36 87.48 NPB ND ND ND 74,123,818 98.18 97.59 抗病池 R pool 12.177 92.44 47.26 77,601,474 95.59 97.69 感病池 S pool 10.417 91.52 47.59 66,943,380 96.39 96.94 将亲本谷丰B和日本晴测序结果比较,共筛选1 756 964个SNPs和409 345个InDels位点,数量足以覆盖到整个基因组;各染色体SNP和InDel分布密度分别在4.037~5.902 个·kb−1和0.967~1.300 个·kb−1(表4)。这些多态性位点可被进一步用于基因的定位及关联分析。
表 4 SNPs和InDels在水稻12条染色体的分布Table 4. Distribution of identified SNPs and InDelsk in 12 chromosomes of rice染色体
Chromosome染色体
长度
Chr. LengthSNPs InDels 数量
Number密度
Density /
(个·kb−1)数量
Number密度
Density/
(个·kb−1)Chr.1 43270923 190273 4.397 46279 1.070 Chr.2 35937250 184278 5.128 42618 1.186 Chr.3 36413819 172550 4.739 42505 1.167 Chr.4 35502694 161349 4.545 31762 0.895 Chr.5 29958434 127664 4.261 30080 1.004 Chr.6 31248787 137688 4.406 35460 1.135 Chr.7 29697621 151268 5.094 34762 1.171 Chr.8 28443022 123316 4.336 28761 1.011 Chr.9 23012720 92893 4.037 22257 0.967 Chr.10 23207287 136960 5.902 30171 1.300 Chr.11 29021106 153785 5.299 33329 1.148 Chr.12 27531856 124940 4.538 31361 1.139 总计Total 373245519 1756964 4.707 409345 1.097 2.4 BSA-Seq鉴定谷丰B抗性基因连锁区间
利用SNP位点分析2个混合池△SNP-index,以95%置信水平作为筛选的阈值进行全基因组扫描。结果(图2)发现,位于第6号和第11号染色体的2个区域出现了超过临界值水平的峰,推测这2个区域为稻瘟病抗性关联区域。其对应日本晴基因组上的位置为Chr.6: 10 082-111 397 kb和Chr.11: 120-266 kb,其中6号染色体的关联区域包含Pi2/9抗病位点,而11号染色体关联区域为新的稻瘟病抗性遗传位点。
为了精细定位谷丰B抗稻瘟病基因,从6号染色体的关联区间筛选出了4 006个SNPs和623个InDels标记,从11号染色体的关联区间筛选出了752个SNPs和195个InDels标记。
3. 讨论与结论
抗谱宽、抗性强且持久的抗源是挖掘抗病基因资源,研究稻瘟病抗性分子遗传机制的理想材料,如谷梅4和子预44。Deng等[11]从谷梅4中鉴定了1个广谱持久抗瘟性新位点Pigm,并系统解析了Pigm持久抗病机制;子预44是一个云南地方粳稻品种,截至目前已从该品种挖掘出抗不同稻瘟病菌株的主效基因Pi-zy(t)、Pi-zy3(t)、Pizy6(t)、Pi-zy4(t)和微效基因[12]。本研究人工接种鉴定结果表明,谷丰B基因组中可能携带了广谱高抗稻瘟病基因。通过抗性遗传分析以及利用BSA-seq方法,鉴定到2个稻瘟病抗性关联位点(分别为Chr.6: 10 082-11 397 kb和Chr.11: 120-266 kb)决定了谷丰B对501-3菌株的抗性。其中,6号染色体关联区域可能和Pi2/9基因座有关,而11号染色体关联区域可能是新的稻瘟病抗性遗传位点。
Pi2/9是公认对稻瘟病抗性育种有重要应用价值的位点,位于水稻第6染色体短臂端。截至目前,已报道该基因座上至少有9个稻瘟病抗性基因(Pi2、Piz、Piz-t、Pi9、Pi40、Pi50、Pi26、Pigm、Pi2-2),其中Pi2、Pi9、Pi50以及Pigm已被成功克隆[11,13-14]。张柱坚等[15]利用抗性基因标记鉴定谷丰B可能存在Pigm、Pi-d2和Pi-d3。结合本研究结果,表明谷丰B对501-3菌株的抗性是由Pigm决定的。但有意思的是,研究发现单独突变Pi-d2或Pigm均能够导致谷丰B丧失对501-3菌株抗性[15],说明谷丰B的稻瘟病抗性可能受多个位点共同影响。本研究发现一个新的关联区域(Chr.11: 120-266 kb区域)也可能对谷丰B抵抗501-3菌株侵染起关键作用,该区域包含25个水稻基因(数据来源于NCBI数据库https://www.ncbi.nlm.nih.gov/)。深入研究将有助于明确广谱高抗稻瘟病遗传构成及其分子机制。
广谱持久高抗的抗源常作为优良供体材料,应用于抗病分子育种。然而研究人员时常发现在选育过程中培育的新材料相比于原始供体亲本,其抗谱变窄。这种现象的根本原因在于,我们对亲本广谱高抗稻瘟病遗传构成及其内在机制缺乏了解,限制了分子标记辅助选择准确、有效的应用。本研究结果可为后续合理利用谷丰B抗病亲本培育抗病品种提供有效信息。
-
表 1 发育期黄金百香果果皮游离氨基酸组成
Table 1 FAAs in Yellow Passion Fruit pericarp at fruit growth stages
(单位:mg·g−1) 游离氨基酸
FAAs时期 Period T1 T2 T3 T4 T5 T6 T7 天冬氨酸 Asp 0.1606±0.0069 ab 0.1432±0.0153 b 0.1380±0.0166 b 0.1885±0.0274 a 0.1593±0.0189 ab 0.1553±0.0215 ab 0.1771±0.0282 ab 天冬酰胺 Asn 0.9362±0.1022 b 0.7631±0.0286 c 0.7267±0.0183 c 1.6309±0.1729 a 0.3255±0.0178 de 0.4643±0.0564 d 0.2866±0.0433 e 谷氨酸 Glu 0.1557±0.0239 ab 0.1323±0.0091 bc 0.1712±0.0203 a 0.1769±0.0124 a 0.0725±0.0110 e 0.1012±0.0121 d 0.1154±0.0168 cd 甘氨酸 Gly 0.0073±0.0007 abc 0.0092±0.0011 a 0.0080±0.0009 ab 0.0086±0.0024 ab 0.0038±0.0022 d 0.0058±0.0017 bcd 0.0051±0.0003 cd 丙氨酸 Ala 0.0168±0.0018 cd 0.0228±0.0041 ab 0.0192±0.0031 bc 0.0264±0.0029 a 0.0268±0.0027 a 0.0137±0.0021 d 0.0182±0.0028 bcd 胱氨酸(Cys)2 0.4918±0.0786 c 0.5518±0.0363 c 0.5332±0.0113 c 0.4982±0.0222 c 0.5038±0.0399 c 0.8643±0.0514 b 0.9632±0.0385 a 异亮氨酸 Ile 0.0050±0.0007 c 0.0053±0.0006 c 0.0142±0.0026 a 0.0049±0.0008 c 0.0048±0.0006 c 0.0058±0.0003 c 0.0080±0.0008 b 亮氨酸 Leu 0.0168±0.0024 a 0.0170±0.0028 a 0.0153±0.0006 ab 0.0137±0.0007 ab 0.0136±0.0030 ab 0.0155±0.0014 ab 0.0128±0.0018 b 苯丙氨酸 Phe 0.0128±0.0026 cd 0.0099±0.0012 d 0.0226±0.0028 b 0.0291±0.0057 a 0.0182±0.0028 bc 0.0213±0.0029 b 0.0216±0.0029 b β-氨基异丁酸 β-AiBA 0.3621±0.0340 a 0.3072±0.0291 ab 0.2966±0.0279 b 0.2790±0.0258 b 0.2791±0.0338 b 0.2749±0.0342 b 0.2597±0.0378 b 组氨酸 His 0.2260±0.0167 a 0.1295±0.0210 d 0.1483±0.0059 cd 0.1697±0.0174 bc 0.1843±0.0070 b 0.1701±0.0194 bc 0.2189±0.0074 a 赖氨酸 Lys 0.0132±0.0033 c 0.0112±0.0015 c 0.0127±0.0014 c 0.0199±0.0013 b 0.0128±0.0018 c 0.0225±0.0028 b 0.0273±0.0028 a 氯化铵 NH4 0.0276±0.0021 b 0.0274±0.0018 b 0.0268±0.0015 b 0.0442±0.0037 a 0.0163±0.0032 d 0.0238±0.0019 bc 0.0216±0.0018 c 精氨酸 Arg 0.0236±0.0027 e 0.0218±0.0033 e 0.0237±0.0045 e 0.0578±0.0046 d 0.0989±0.0128 c 0.1240±0.0117 b 0.3583±0.0307 a 脯氨酸 Pro 0.1879±0.0302 b 0.2370±0.0114 a 0.2531±0.0101 a 0.2111±0.0042 b 0.1158±0.0123 c 0.1039±0.0069 c 0.0293±0.0034 d 总游离氨基酸 TOFAA 2.6433±0.2651 b 2.3887±0.0915 b 2.4094±0.0464 b 3.3589±0.2154 a 1.8354±0.0696 c 2.3662±0.1523 b 2.5229±0.1389 b 必需氨基酸 EAA 0.0478±0.0077 b 0.0435±0.0051 b 0.0648±0.0055 a 0.0676±0.0080 a 0.0494±0.0019 b 0.0651±0.0064 a 0.0696±0.0026 a 半必需氨基酸 SAA 0.2496±0.0146 cd 0.1512±0.0199 e 0.1719±0.0090 e 0.2276±0.0200 d 0.2832±0.0174 bc 0.2941±0.0306 b 0.5772±0.0379 a 非必需氨基酸 NEAA 1.9563±0.2181 b 1.8594±0.0470 bc 1.8494±0.0254 bc 2.7406±0.1672 a 1.2075±0.0191 e 1.7084±0.1114 cd 1.5949±0.0997 d 同行数据后不同小写字母表示差异显著(P<0.05)。
Data with different lowercase letters on same row indicate significant difference at P<0.05.表 2 发育期黄金百香果果皮呈味氨基酸含量
Table 2 The pericarp of Yellow Passion Fruit exhibits flavor amino acid content during the growth period (单位:mg·g−1)
呈味氨基酸
Flavor amino acid发育期 Developmental stage T1 T2 T3 T4 T5 T6 T7 鲜味氨基酸 DAA 0.329 4±0.028 4 ab 0.286 7±0.021 4 bc 0.322 0±0.029 0 b 0.385 3±0.026 1 a 0.244 5±0.027 8 c 0.279 0±0.029 9 bc 0.319 7±0.032 9 b 甜味氨基酸 SAA 0.438 0±0.031 3 a 0.398 4±0.036 1 a 0.428 5±0.008 5 a 0.415 8±0.020 9 a 0.330 7±0.019 5 b 0.293 4±0.023 5 bc 0.271 5±0.005 4 c 苦味氨基酸 BAA 0.045 5±0.004 5 e 0.044 1±0.002 6 e 0.053 1±0.005 9 de 0.076 4±0.004 0 d 0.117 3±0.013 5 c 0.145 3±0.011 5 b 0.379 1±0.030 4 a 芳香类氨基酸 AAA 0.504 6±0.081 1 c 0.561 7±0.037 4 c 0.555 8±0.013 3 c 0.527 2±0.022 6 c 0.522 0±0.037 1 c 0.885 6±0.048 7 b 0.984 8±0.041 3 a 同行数据后不同小写字母表示不同时期间差异显著(P<0.05)。
Different lowercase letters after peer data indicate significant differences during different time periods (P<0.05).表 3 发育期黄金百香果果皮中呈味氨基酸及TAV
Table 3 Flavor amino acids and TAVs in Yellow Passion Fruit pericarp at fruit growth stages
种类
Species氨基酸
Amino acid味觉阈值[20]
Taste threshold/ (mg·g−1)滋味活度值 TAV T1 T2 T3 T4 T5 T6 T7 鲜味氨基酸 DAA Asp 1.00 0.161 0.143 0.152 0.188 0.159 0.155 0.177 Glu 0.30 0.52 0.44 0.48 0.59 0.24 0.34 0.38 Lys 0.50 0.03 0.02 0.02 0.04 0.03 0.04 0.05 甜味氨基酸 SAA Gly 1.30 0.01 0.01 0.01 0.01 0.00 0.00 0.00 Ala 0.60 0.03 0.04 0.03 0.04 0.04 0.02 0.03 His 0.20 1.13 0.65 0.89 0.85 0.92 0.85 1.09 Pro 3.00 0.06 0.08 0.07 0.07 0.04 0.03 0.01 苦味氨基酸 BAA Ile 0.90 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Leu 1.90 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Arg 0.50 0.05 0.04 0.05 0.12 0.20 0.25 0.72 芳香类氨基酸 AAA (Cys)2 0.02 24.59 27.59 26.09 24.91 25.19 43.21 48.16 Phe 0.90 0.01 0.01 0.01 0.03 0.02 0.02 0.02 表 4 发育期黄金百香果果皮挥发性物质的气味描述、香气阈值及相对香气活度值
Table 4 Description, threshold, and ROAV of volatiles in Yellow Passion Fruit pericarp at fruit growth stages
挥发性物质
Volatile substances香气阈值
Odor thresholds /(μg·kg−1)相对气味活度值 ROAV 香气描述
Odor descriptionT1 T2 T3 T4 T5 T6 T7 异戊醛
3-Methyl butanal1.10[21] 0.00 0.00 0.00 0.00 3.84 0.05 0.02 巧克力味、麦芽味[22] 庚醛
Heptanal3.00[23-25] 5.40 4.21 4.18 4.62 57.09 0.62 0.28 油味、草味[22] (E)-2-己烯醛
(E)-2-Hexenal17.00[25-29] 15.77 15.31 10.52 10.19 30.97 0.57 0.20 草味、脂肪味[22] 1-辛烯-3-酮
1-Octen-3-one0.05[23] 100.00 100.00 100.00 100.00 100.00 1.45 0.86 蘑菇味[22,23] 正辛醛
Octanal0.70[25,29] 16.76 22.09 33.84 24.96 30.14 1.03 0.17 脂肪味、蜂蜜、柑橘、柠檬、果味[22,23,25] 苯甲醛
Benzaldehyde350.00[29,30] 43.70 52.19 52.63 48.49 5.41 0.09 0.00 樱桃、杏仁味,烤肉,焦糖,苦味[31-33] 苯乙醛
Phenylacetaldehyde4.00[23,25,29,34] 0.00 0.00 0.00 1.71 4.10 0.10 0.03 刺鼻的绿色气味、风信子、花香、玫瑰味[23,25] (E)-β-大马烯酮
(E)-β-Damascenone0.00075[24] 0.00 0.00 0.00 0.00 0.00 100.00 100.00 玫瑰、花香,蜂蜜味、甜香,果香、烤苹果味[24,25] γ-癸内酯
γ-Decalactone1.00[23] 4.27 2.41 6.51 9.40 31.99 0.28 0.08 桃味、杏、椰子、果香,甜味[22,23,26,35] -
[1] RINALDI M M, COSTA A M, FALEIRO F G, et al. Conservação pós-colheita de frutos de Passiflora setacea DC. submetidos a diferentes sanitizantes e temperaturas de armazenamento[J]. Brazilian Journal of Food Technology, 2017, 20: ■-■(页码?请补充). RINALDI M M, COSTA A M, FALEIRO F G, et al. Conservação pós-colheita de frutos de Passiflora setacea DC. submetidos a diferentes sanitizantes e temperaturas de armazenamento [J]. Brazilian Journal of Food Technology, 2017, 20−e2016046.
[2] 冯颖, 张萍萍, 赵存朝, 等. 响应面优化百香果果皮果脯制备工艺 [J]. 食品工业科技, 2022, 43(17):275−282. FENG Y, ZHANG P P, ZHAO C C, et al. Optimization of preparation technology of passion fruit peel and preserved fruit by response surface methodology [J]. Science and Technology of Food Industry, 2022, 43(17): 275−282.(in Chinese)
[3] 刘文静, 潘葳, 吴建鸿. 5种百香果品系间氨基酸组成比较及评价分析 [J]. 食品工业科技, 2019, 40(24):237−241. LIU W J, PAN W, WU J H. Comparative analysis and evaluation of amino acids composition among five passion fruit varieties [J]. Science and Technology of Food Industry, 2019, 40(24): 237−241.(in Chinese)
[4] 邝瑞彬, 孔凡利, 杨护, 等. 百香果果汁营养特性分析与评价 [J]. 食品工业科技, 2021, 42(9):347−357. KUANG R B, KONG F L, YANG H, et al. Analysis and assessment of nutritional components of passion fruits juice [J]. Science and Technology of Food Industry, 2021, 42(9): 347−357.(in Chinese)
[5] 董经崇, 胡文效, 邱磊, 等. ‘玫瑰香’葡萄皮游离态和结合态香气成分分析 [J]. 中外葡萄与葡萄酒, 2022(4):14−22. DONG J C, HU W X, QIU L, et al. Analysis of free and combined aroma components in’Muscat hamburg’ grape skin [J]. Sino-Overseas Grapevine & Wine, 2022(4): 14−22.(in Chinese)
[6] 李春秀, 李勋兰, 梁国鲁, 等. 不同成熟阶段柠檬果皮挥发物和酚类成分分析 [J]. 食品科学, 2022, 43(4):215−224. LI C X, LI X L, LIANG G L, et al. Analysis of volatile components and phenols from peels of two lemon cultivars during fruit ripening [J]. Food Science, 2022, 43(4): 215−224.(in Chinese)
[7] 张赫宇, 徐瑞, 李勇. 不同萃取头对橘子皮挥发性化合物的研究 [J]. 现代食品, 2022, 28(6):140−145. ZHANG H Y, XU R, LI Y. Research of volatile substances in orange peels by different extraction fibers [J]. Modern Food, 2022, 28(6): 140−145.(in Chinese)
[8] 赵明, 邹瑜, 何海旺, 等. 基于GC-MS的不同香蕉品种果实香气品质分析 [J]. 西南农业学报, 2021, 34(5):964−970. ZHAO M, ZOU Y, HE H W, et al. Analysis of aromatic components from six banana varieties by GC-MS [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(5): 964−970.(in Chinese)
[9] ZHANG X M, JIA H J. Changes in aroma volatile compounds and ethylene production during Hujingmilu peach (Prunus persica L. ) fruit development [J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(1): 41−46.
[10] 刘士健. 腊肉加工过程中主体风味物质变化研究[D]. 重庆: 西南农业大学, 2005. LIU S J. Study on change of main flavour composition in preserved ham during processing[D]. Chongqing: Agricultural University Of Southwest, 2005. (in Chinese)
[11] 朱奕凡, 王妍, 汪国云, 等. 不同杨梅品种果实游离氨基酸组成分析 [J]. 浙江大学学报(农业与生命科学版), 2021, 47(6):736−742. ZHU Y F, WANG Y, WANG G Y, et al. Analysis of free amino acid composition in fruits of different bayberry(Morella rubra) varieties [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 736−742.(in Chinese)
[12] KIEFFER D A, PICCOLO B D, VAZIRI N D, et al. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats [J]. American Journal of Physiology Renal Physiology, 2016, 310(9): F857−F871. DOI: 10.1152/ajprenal.00513.2015
[13] 郭艳峰, 吴惠婵, 夏雨, 等. 百香果不同发育阶段果汁挥发性成分研究 [J]. 福建农业学报, 2017, 32(3):299−304. GUO Y F, WU H C, XIA Y, et al. Volatiles in juice of passion fruitsat different developmental stages [J]. Fujian Journal of Agricultural Sciences, 2017, 32(3): 299−304.(in Chinese)
[14] 陈庆, 贾强, 董浩, 等. 紫红百香果果汁挥发性香气分析及仿香研究 [J]. 现代食品科技, 2018, 34(12):258−263. CHEN Q, JIA Q, DONG H, et al. Studies on volatile aroma compounds of the juice of purple Passiflora edulis and aroma simulation experiments [J]. Modern Food Science and Technology, 2018, 34(12): 258−263.(in Chinese)
[15] 潘葳, 刘文静, 韦航, 等. 不同品种百香果果汁营养与香气成分的比较 [J]. 食品科学, 2019, 40(22):277−286. DOI: 10.7506/spkx1002-6630-20181218-201 PAN W, LIU W J, WEI H, et al. Comparative analysis of nutritional and aroma components in passion fruit juices from five cultivars [J]. Food Science, 2019, 40(22): 277−286.(in Chinese) DOI: 10.7506/spkx1002-6630-20181218-201
[16] 何洁, 莫仁甫, 廖洁, 等. 紫果西番莲中游离氨基酸主成分分析 [J]. 轻工科技, 2018, 34(11):5−7. HE J, MO R F, LIAO J, et al. Principal component analysis of free amino acids in Passiflora edulis [J]. Light Industry Science and Technology, 2018, 34(11): 5−7.(in Chinese)
[17] 国家市场监督管理总局, 国家标准化管理委员会. 植物中游离氨基酸的测定: GB/T 30987—2020[S]. 北京: 中国标准出版社, 2020. [18] 谷镇, 杨焱. 食用菌呈香呈味物质研究进展 [J]. 食品工业科技, 2013, 34(5):363−367. GU Z, YANG Y. Research progress in flavor components of edible fungus [J]. Science and Technology of Food Industry, 2013, 34(5): 363−367.(in Chinese)
[19] PRIPIS-NICOLAU L, DE REVEL G, BERTRAND A, et al. Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions [J]. Journal of Agricultural and Food Chemistry, 2000, 48(9): 3761−3766. DOI: 10.1021/jf991024w
[20] 林媚, 张伟清, 王天玉, 等. 15个杂交柑橘品种的果实游离氨基酸组成及其对风味品质的影响 [J]. 果树学报, 2022, 39(3):352−365. LIN M, ZHANG W Q, WANG T Y, et al. Study on the composition of free amino acid and the effects on fruit flavor quality in 15 hybrid citrus varieties [J]. Journal of Fruit Science, 2022, 39(3): 352−365.(in Chinese)
[21] VAN GEMERT L J. Odour thresholds: Compilations of odour threshold values in air, water and other media [M]. Publisher: Oliemans Punter & Partners BV, Zeist, The Netherlands, 2011. [22] LIU X S, LIU J B, YANG Z M, et al. Aroma-active compounds in Jinhua ham produced with different fermentation periods [J]. Molecules, 2014, 19(11): 19097−19113. DOI: 10.3390/molecules191119097
[23] BURDOCK, GEORGE A. Fenaroli's handbook of flavor ingredients(6th ed. ) [M]. Boca Raton: CRC Press, 2010.
[24] 王超. 新疆引种红枣风味特征研究[D]. 杨凌: 西北农林科技大学, 2021. WANG C. Study on the flavor characteristics of introduced jujube from Xinjiang[D]. Yangling: Northwest A & F University, 2021. (in Chinese)
[25] 张文文. 鲜食葡萄香气特征与感官品评的研究[D]. 上海: 上海交通大学, 2018. ZHANG W W. Study on the characteristics of aroma and sensory evaluation of table grapes[D]. Shanghai: Shanghai Jiao Tong University, 2018. (in Chinese)
[26] GENOVESE A, LAMORTE S A, GAMBUTI A, et al. Aroma of Aglianico and Uva di Troia grapes by aromatic series [J]. Food Research International, 2013, 53(1): 15−23. DOI: 10.1016/j.foodres.2013.03.051
[27] 谢永恒. 甜瓜中关键香气物质鉴定及其相互作用研究[D]. 上海: 上海应用技术大学, 2021 XIE Y H. Identification and perceptual interaction of key aroma compounds in muskmelon[D]. Shanghai: Shanghai Institute of Technology, 2021. (in Chinese)
[28] 李维妮, 郭春锋, 张宇翔, 等. 气相色谱-质谱法分析乳酸菌发酵苹果汁香气成分 [J]. 食品科学, 2017, 38(4):146−154. LI W N, GUO C F, ZHANG Y X, et al. GC-MS analysis of aroma components of apple juice fermented with lactic acid bacteria [J]. Food Science, 2017, 38(4): 146−154.(in Chinese)
[29] PINO J A, MESA J. Contribution of volatile compounds to mango (Mangifera indica L. ) aroma [J]. Flavour and Fragrance Journal, 2006, 21(2): 207−213. DOI: 10.1002/ffj.1703
[30] WANG L B, BAI J H, YU Z F. Responses of volatile compounds in inner tissues on refrigeration in full ripe tomatoes [J]. Journal of Food Processing and Preservation, 2017, 41(6): e13272. DOI: 10.1111/jfpp.13272
[31] 李晓颍, 武军凯, 王海静, 等. 欧李果实发育期内挥发性成分变化特征 [J]. 中国农业科学, 2021, 54(9):1964−1980. LI X Y, WU J K, WANG H J, et al. Characterization of volatiles changes in Chinese dwarf cherry fruit during its development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964−1980.(in Chinese)
[32] NOGUEROL-PATO R, GONZÁLEZ-BARREIRO C, CANCHO-GRANDE B, et al. Quantitative determination and characterisation of the main odourants of Mencía monovarietal red wines [J]. Food Chemistry, 2009, 117(3): 473−484. DOI: 10.1016/j.foodchem.2009.04.014
[33] KIM Y, LEE K G, KIM M K. Volatile and non-volatile compounds in green tea affected in harvesting time and their correlation to consumer preference [J]. Journal of Food Science and Technology, 2016, 53(10): 3735−3743. DOI: 10.1007/s13197-016-2349-y
[34] 孙宝国, 陈海涛. 食用调香术[M]. 3版. 北京: 化学工业出版社, 2017. [35] DU X F, PLOTTO A, BALDWIN E, et al. Evaluation of volatiles from two subtropical strawberry cultivars using GC-olfactometry, GC-MS odor activity values, and sensory analysis [J]. Journal of Agricultural and Food Chemistry, 2011, 59(23): 12569−12577. DOI: 10.1021/jf2030924
[36] QIN G H, TAO S T, ZHANG H P, et al. Evolution of the aroma volatiles of pear fruits supplemented with fatty acid metabolic precursors [J]. Molecules, 2014, 19(12): 20183−20196. DOI: 10.3390/molecules191220183
[37] 王博, 李霁昕, 李经纬, 等. 采后苯并噻重氮处理对‘玉金香’甜瓜氨基酸代谢酯类香气物质及其代谢机理的影响 [J]. 食品科学, 2018, 39(17):212−220. WANG B, LI J X, LI J W, et al. Effect of postharvest benzothiadiazole treatment on aroma esters derived from amino acid metabolism and metabolic mechanism in ‘Yujinxiang’ melon [J]. Food Science, 2018, 39(17): 212−220.(in Chinese)
[38] 程远, 万红建, 姚祝平, 等. 不同品种樱桃番茄氨基酸组成及风味分析 [J]. 核农学报, 2019, 33(11):2177−2185. CHENG Y, WAN H J, YAO Z P, et al. Comparative analysis of the amino acid constitution and flavor quality in different cherry tomato varieties [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(11): 2177−2185.(in Chinese)
[39] 侯娜, 赵莉莉, 魏安智, 等. 不同种质花椒氨基酸组成及营养价值评价 [J]. 食品科学, 2017, 38(18):113−118. DOI: 10.7506/spkx1002-6630-201718018 HOU N, ZHAO L L, WEI A Z, et al. Amino acid composition and nutritional quality evaluation of different germplasms of Chinese prickly ash(Zanthoxylum bungeanum maxim) [J]. Food Science, 2017, 38(18): 113−118.(in Chinese) DOI: 10.7506/spkx1002-6630-201718018
[40] 方灵, 孔宝玉, 韦航, 等. 不同发育阶段黄金百香果挥发性成分差异性研究 [J]. 果树学报, 2022, 39(12):2376−2389. FANG L, KONG B Y, WEI H, et al. Study on variation of volatile components in Golden Passion Fruit at different development stages [J]. Journal of Fruit Science, 2022, 39(12): 2376−2389.(in Chinese)
[41] POLLIEN P, FAY L B, BAUMGARTNER M, et al. First attempt of odorant quantitation using gas chromatography-olfactometry [J]. Analytical Chemistry, 1999, 71(23): 5391−5397. DOI: 10.1021/ac990367q
[42] BUETTNER A, SCHIEBERLE P. Evaluation of aroma differences between hand-squeezed juices from Valencia late and Navel oranges by quantitation of key odorants and flavor reconstitution experiments [J]. Journal of Agricultural and Food Chemistry, 2001, 49(5): 2387−2394. DOI: 10.1021/jf001363l
[43] SEROT T, PROST C, VISAN L, et al. Identification of the main odor-active compounds in musts from French and Romanian hybrids by three olfactometric methods [J]. Journal of Agricultural and Food Chemistry, 2001, 49(4): 1909−1914. DOI: 10.1021/jf0012291
[44] XIONG C, LI Q, LI S H, et al. In vitro antimicrobial activities and mechanism of 1-octen-3-ol against food-related bacteria and pathogenic fungi [J]. Journal of Oleo Science, 2017, 66(9): 1041−1049. DOI: 10.5650/jos.ess16196
-
期刊类型引用(3)
1. 穆子涵,吴晓花,李艳伟,鲁忠富,王尖,吴新义,汪宝根,王华森,李国景,汪颖. 基于BSA方法的瓠瓜果形相关性状主效QTL分析. 分子植物育种. 2024(13): 4291-4296 . 百度学术
2. 唐亮,蒋满贵,唐名艳,黄深惠,陈小青,董桂清,王平阳,潘志新. 基于BSA-Seq的家蚕NC99R抗BmNPV分子标记鉴定. 南方农业学报. 2023(08): 2406-2414 . 百度学术
3. 田大刚. 水稻稻瘟病抗性基因座Piz和Pik的探秘之旅. 福建农业科技. 2022(05): 1-11 . 百度学术
其他类型引用(5)