• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

马尾松和米槠林下外生菌根真菌对宿主的选择性

Host Selection of Ectomycorrhizal Fungi at Pinus massoniana and Castanopsis carlesii Forests

  • 摘要:
      目的  探究森林土壤中外生菌根真菌(Ectomycorrhizal fungi, ECMF)对宿主的选择性。
      方法  采用不同的土壤菌源(马尾松土壤Pinus massoniana soil, PmS和米槠土壤Castanopsis carlesii soil, CcS),分别对马尾松(Pinus massoniana, Pm)和鳞苞锥(Castanopsis uraiana, Cu)进行接种试验(Pm-PmS、Pm-CcS、Cu-PmS、Cu-CcS)。培育6个月后,采用ITS进行菌根鉴定,检测并计算不同土壤菌源下马尾松和鳞苞锥根中ECM出现的频率、侵染率、相对丰度、相对频率、丰富度和多样性,并测定苗木生长指标以及土壤理化性质。
      结果  米槠土壤pH值、全磷含量、全碳含量、有效磷含量显著高于马尾松土壤,且接种苗木后幼苗的地上干重和根长均显著高于马尾松土壤。两种土壤中共检测到19个OTUs的ECMF,分别属于7科和10属,Cenococum geophilumRhizopogon boninensisTomentella sp.2为两种土壤共有。马尾松林下土壤鉴定到的13种ECMF中,能侵染马尾松的有8种,能侵染鳞苞锥的有6种。米槠林下土壤鉴定到的9种ECMF中,能侵染马尾松的有4种,能侵染鳞苞锥的有7种。C. geophilumSebacina sp.2均能与马尾松和鳞苞锥建立共生关系;而Hyaloscyphaceae sp.、Lactarius inconspicuousRh. boninensisRh. flavidusTomentella sp.1、Tomentella sp.3和Tomentellopsis submollis只侵染马尾松;Athelia sp.、Amanita sp.、L. atrofuscusRussula minorRussula sp.、Sebacina sp.1、Thelephora sp.1、Thelephora sp.2和Tomentella sp.4只侵染鳞苞锥。马尾松土壤的ECMF丰富度指数(IV)、Shannon多样性指数()、Simpson优势度指数(D)高于米槠土壤;但马尾松土壤接种不同宿主植物后的Sorensen相似性指数(0.14)低于米槠土壤(0.36)。部分ECMF的侵染率与寄主的生理生态指标密切相关。
      结论  ECM是经过长期与树种共同进化而建立的共生关系,因此马尾松土壤中的ECMF更倾向于侵染马尾松,而米槠土壤的ECMF更倾向于侵染同为壳斗科的鳞苞锥;马尾松林下土壤的ECMF相对于米槠土壤,对寄主植物选择性的更强。虽然土壤理化性质在一定程度上影响了侵染率,但是ECMF的定殖主要受宿主植物的影响。

     

    Abstract:
      Objective   Host selection of ectomycorrhizal fungi (ECMF) in forest soil was studied.
      Method  In the soils at forests of Pinus massoniana (Pm) and Castanopsis carlesii (Cc), various fungi were inoculated into Pm or Castanopsis uraiana (Cu) and designated as treatments of Pm-PmS, Pm-CcS, Cu-PmS, and Cu-CcS. After cultivating the inoculated seedlings for 6 months, mycorrhizal identification on the fungi was performed by ITS. The frequency, infection rate, relative abundance, relative frequency, richness, and diversity of ECMF in the roots of Pm and Cu plants were monitored or calculated. Seedling growth indexes and soil physiochemical properties were determined.
      Result   The Cc forest soil (CcS) showed significantly higher pH and contents of total phosphorus, total carbon, and available phosphorus as well as the seedling shoot dry weight and root length than the Pm counterpart (PmS). The 19 OTUs of ECMF detected in these soil samples belonged to 7 families and 10 genera. Of which, Cenococum geophilum, Rhizopogon boninensis, and Tomentella sp. 2 were commonly found on the two soils. Out of the 13 ECMF identified in PmS, 8 infected Pm and 6, Cu; while among the 9 ECMF identified in CcS, 4 infected Pm and 7, Cu. Both C. geophilum and Sebacina sp. 2 were symbiotic with Pm and Cu. Hyaloscyphaceae sp., Lactarius inconspicuous, Rh. boninensis, Rh. flavidus, Tomentella sp. 1, Tomentella sp. 3 and Tomentellopsis submollis infected Pm, whereas Athelia sp., Amanita sp., L. atrofuscus, Russula minor, Russula sp., Sebacina sp.1, Thelephora sp. 1, Thelephora sp. 2 and Tomentella sp. 4 infected only Cu. The ECMF richness index (IV), Shannon index (H') and Simpson index (D) of PmS were higher than those of CcS. However, the Sorensen index on the PmS planted with host plants other than Pm was 0.14, which was lower than 0.36 on the CcS planted not with Cc. The infection rates of some ECMF were closely related to the physiological and ecological properties of the host.
      Conclusion   The symbiosis between ECMF and trees has evolved in a long process. The ECMF in the soil at a Pm forest tended to infect Pm specifically, and so did those at a Cc forest to Cc, Cu or Fagaceae plants. However, the ECMF in PmS were more selective on their host plants than those in CcS. Even though soil physiochemical properties also affected the ECMF infection, the species of host plant largely determined the fungal colonization on the land.

     

/

返回文章
返回