• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

基于深度学习的蔬菜田精准除草作业区域检测方法

Deep Learning Detection of Weeds in Vegetable Fields

  • 摘要:
      目的  蔬菜生长随机,杂草种类众多。传统杂草识别算法复杂,且仅识别出杂草,未能精准确定除草作业区域。本研究以蔬菜及其伴生杂草为研究对象,拟探索一种基于深度学习的杂草识别与精准除草作业区域检测方法。
      方法  通过将原图切分网格图像,利用深度学习模型识别蔬菜、杂草及土壤,将包含杂草的网格图像标记为除草作业区域。选取ShuffleNet、DenseNet和ResNet模型开展识别试验,并采用精度、召回率、F1值和总体准确率、平均准确率分别对验证集和测试集进行评价分析。
      结果  所选的3种网络模型均能较好地识别杂草和蔬菜,其中ShuffleNet为杂草识别最优模型,其对杂草的识别具有较为均衡的精度和召回率,分别为95.5%、97%,且其识别速度也达最优,为68.37 fps,能够应用于实时杂草识别。
      结论  本研究提出的除草作业区域检测方法具有高度的可行性和极佳的识别效果,可用于蔬菜田间杂草的精准防除。

     

    Abstract:
      Objective  Deep learning to accurately identify weeds for effective weeding in vegetable fields was investigated.
      Method   Image of a vegetable field was cropped into grid cells as sub-images of vegetables, weeds, and bare ground. Deep learning networks using the ShuffleNet, DenseNet, and ResNet models were applied to distinguish the target sub-images, particularly the areas required weeding. Precision, recall rate, F1 score, and overall and average accuracy in identifying weeds of the models were evaluated.
      Result  Although all applied models satisfactorily distinguished weeds from vegetables, ShuffleNet could simultaneously deliver a 95.5% precision with 97% recall and a highest detection speed of 68.37 fps suitable for real-time field operations.
      Conclusion   The newly developed method using the ShuffleNet model was feasible for precision weed control in vegetable fields.

     

/

返回文章
返回