Abstract:
Objective Deep learning to accurately identify weeds for effective weeding in vegetable fields was investigated.
Method Image of a vegetable field was cropped into grid cells as sub-images of vegetables, weeds, and bare ground. Deep learning networks using the ShuffleNet, DenseNet, and ResNet models were applied to distinguish the target sub-images, particularly the areas required weeding. Precision, recall rate, F1 score, and overall and average accuracy in identifying weeds of the models were evaluated.
Result Although all applied models satisfactorily distinguished weeds from vegetables, ShuffleNet could simultaneously deliver a 95.5% precision with 97% recall and a highest detection speed of 68.37 fps suitable for real-time field operations.
Conclusion The newly developed method using the ShuffleNet model was feasible for precision weed control in vegetable fields.