• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

低温弱光处理对茄子不同时期花青素含量及果实品质的影响

Effects of Low Temperature and Poor Lighting on Anthocyanin Content and Fruit Quality of Eggplant

  • 摘要:
      目的  探究低温、弱光、低温弱光处理对茄子幼苗期、花期、果期花青素含量的影响,以及对茄子品质的影响,为茄子的优质培育以及高产栽培奠定理论基础。
      方法  以紫黑茄秀娘为试验材料,分别在幼苗期、花期、果期进行低温(18 ℃/13 ℃,250 μmol·m−2·s−1)、弱光(25 ℃/20 ℃,120 μmol·m−2·s−1)、低温弱光(18 ℃/13 ℃,120 μmol·m−2·s−1)、CK(25 ℃/20 ℃,250 μmol·m−2·s−1)等4个处理,测定幼苗期形态及生理特性,不同时期、不同部位的花青素,以及果期果实的品质。
      结果  低温弱光胁迫对幼苗生长存在显著影响,在幼苗期低温对幼苗生长及生理影响显著大于弱光及低温弱光,花青素含量均表现为根<叶片<叶脉<茎;在花期,花青素含量依次为花萼<花瓣;在果期,花青素含量依次为果肉<果柄<果皮。茄子不同时期受到胁迫后,不同部位的花青素含量均呈现弱光<CK<低温弱光<低温,各胁迫下果实色泽指数依次为弱光<CK<低温弱光<低温,可溶性糖含量、可溶性蛋白含量、类黄酮含量、总酚含量均呈现低温<低温弱光<弱光<CK。
      结论  低温促进花青素合成;弱光抑制花青素合成;在低温弱光双因素互作下,低温因素对花青素含量的影响起主导作用,花青素的合成大于降解,花青素含量增加。低温、弱光、低温弱光胁迫下茄子品质均下降,其中,低温胁迫对茄子的品质影响最大。

     

    Abstract:
      Objective   Anthocyanin content at various growth stages and fruit quality of eggplants exposed to low temperature and/or deficient light were studied.
      Methods  Purple black eggplant Xiu Niang was grown in a greenhouse under (A) daytime/night temperatures of 18 ℃/13 ℃ with normal lighting at 250 μmol·m−2·s−1, (B) normal temperatures of 25 ℃/20 ℃ with poor lighting at 120 μmol·m−2·s−1, (C) low temperatures of 18 ℃/13 ℃ with poor lighting at 120 μmol·m−2·s−1, or (CK) normal temperatures and lighting. Growth, physiology, anthocyanin contents in different plant parts, and quality of fruit of the eggplants at seedling, flowering, and fruiting stages were monitored.
      Results  The stresses of low temperature and/or poor lighting affected the growth of eggplant seedlings. Low temperature alone (i.e., A) exerted significantly greater effects on the growth and physiology of the seedlings than B or C. The anthocyanin contents in the organs of a seedling ranked stems>leaf veins>leaves>roots. At the flowering stage, the content was higher in the petals than the calyx; and at the fruiting stage, it ranked peels>stalks>fruits>pulp. The anthocyanin content in the plant at all stages under various treatments were B<CK<C<A. The coloration of eggplant was intensified by the treatments in a trend of B<CK<C<A. And the treatments appeared to cause reductions in the order of A<C<B<CK on the soluble sugars, soluble proteins, flavonoids, and total phenols contents in the plants.
      Conclusion  Exposure to low temperature (e.g., 18 ℃ in daytime and 13 ℃ at night) promoted, but poor lighting inhibited, anthocyanin synthesis in eggplant. When both conditions were imposed simultaneously on the plants, the effect of low temperature on anthocyanin overshadowed that of poor lighting. In contrast, the fruit quality suffered by either low temperature, poor lighting, or both, especially low temperature.

     

/

返回文章
返回