• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

多效唑和乙烯利对西克刺桐花芽分化及成花基因表达的影响

Effects of Paclobutrazol and Ethephon on the Differentiation of Flower Buds and Expression of Flowering Genes in Erythrina sykesii

  • 摘要:
      目的  探讨多效唑(paclobutrazol, PAC)和乙烯利(ethephon, ETH)对西克刺桐(Erythrina sykesii)碳氮代谢、内源激素及成花相关基因表达的影响,为刺桐属植物花期调控提供理论依据。
      方法  以8 年生的西克刺桐为材料,在花芽生理分化期进行多效唑(PAC)600 mg·L−1、乙烯利(ETH)50 mg·L−1以及二者共同喷施处理,以清水为对照(CK),每个处理均喷施3次。检测顶芽不同花芽生理分化期的碳氮代谢物质含量、内源激素水平和成花相关基因表达量,并调查统计盛花期西克刺桐花序大小、数量和枝条成花率。
      结果  西克刺桐叶面喷施多效唑和乙烯利后,随着花芽生理分化进程推进,顶芽的可溶性糖和全碳含量逐渐上升,而可溶性蛋白和全氮含量逐渐下降,导致碳氮比(C/N)升高;其中,PAC+ETH处理与PAC和ETH处理均存在显著差异,在生理分化末期PAC+ETH处理的C/N比值达到最大值。顶芽的内源激素含量也随着生理分化进程而变化,玉米素核苷(zeatin riboside, ZR)和脱落酸(abscisic acid, ABA)含量逐渐上升,而赤霉素(gibberellic acid, GA3)和吲哚乙酸(indole-3-acetic acid, IAA)含量逐渐下降;引起ABA/IAA、ABA/GA3、ZR/IAA、ZR/GA3比值逐渐升高;PAC+ETH处理的激素比值与PAC和ETH处理间均存在显著差异,在生理分化末期PAC+ETH处理的ABA/IAA、ABA/GA3、ZR/IAA、ZR/GA3比值均达到最大值,分别比对照提高317.49%、185.34%、310.58%、180.62%。成花促进基因FT在生理分化中期开始表达且表达量逐渐上调,SOC1AP1SVPLFY基因在生理分化末期才明显表达;成花抑制基因TFL1在生理分化前期就开始表达且表达量逐渐下调。多效唑和乙烯利处理均能促进西克刺桐花芽分化进程和成花诱导,其中600 mg·L−1 PAC+50 mg·L−1 ETH处理的植株开花期提前12 d,枝条成花率达36.46%,植株总花期达55 d。
      结论  西克刺桐花芽生理分化期喷施多效唑和乙烯利有利于提高碳氮代谢物质含量,调节内源激素水平和成花相关基因表达,有效促进西克刺桐花芽分化。

     

    Abstract:
      Objective  To explore the effects of paclobutrazol (PAC) and ethephon (ETH) on carbon and nitrogen metabolism, endogenous hormone levels, and flower-related gene expression in the flowering plant of Erythrina sykesii, and provide theoretical basis for regulating the flowering period of E. sykesii.
      Methods  Eight-year-old E. sykesii. were treated with three sprays of PAC (600 mg·L−1) and ETH (50 mg·L−1) during the bud physiological differentiation stage, with distilled water as the control (CK). The contents of carbon and nitrogen metabolites, endogenous hormone levels, and flower-related gene expression in the top buds were detected during different bud physiological differentiation periods, and the inflorescence size and number, and branch flowering rate were investigated and statistically analyzed during the peak flowering period.
      Results  After spraying PAC and ETH on the leaves of E. sykesii., the soluble sugar and total carbon (C) content in the top buds gradually increased with the progress of physiological differentiation, while the soluble protein and total nitrogen (N) content gradually decreased, resulting in an increase in the C/N ratio. Among them, there were significant differences between the PAC+ETH treatment and the PAC and ETH treatments, with the PAC+ETH treatment reaching the maximum C/N ratio at the end of physiological differentiation. The endogenous hormone content in the top buds also changed with the physiological differentiation process, with zeatin riboside (ZR) and abscisic acid (ABA) content gradually increasing, while gibberellic acid (GA3) and indole-3-acetic acid (IAA) content gradually decreasing; resulting in a gradual increase in the ratios of ABA/IAA, ABA/GA3, ZR/IAA, and ZR/GA3. There were significant differences between the PAC+ETH treatment and the PAC and ETH treatments, with the PAC+ETH treatment reaching the maximum ABA/IAA, ABA/GA3, ZR/IAA, and ZR/GA3 ratios at the end of physiological differentiation, which were 317.49%, 185.34%, 310.58%, and 180.62% higher than the control, respectively. The flowering-promoting gene Flowering Locus T (FT) began to express and the gene amount gradually increased during the middle stage of physiological differentiation, while SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), APETALA 1 (AP1), SHORT VEGETATIVE PHASE (SVP), and LEAFY (LFY) genes were significantly expressed at the end of physiological differentiation. The flowering-inhibiting gene TERMINAL FLOWER 1 (TFL1) began to express and the gene amount gradually decreased during the early stage of physiological differentiation. Both paclobutrazol and ethephon treatments promoted the flowering bud differentiation process and flowering induction of E. sykesii. The plant treated with PAC+ETH had an advanced flowering period of 12 days, a flowering rate of 36.46%, and a total flowering period of 55 days.
      Conclusion  During the physiological differentiation stage of the flower buds of E. sykesii., spraying paclobutrazol and ethenol is conducive to enhancing the content of carbon and nitrogen metabolites, modulating endogenous hormone levels, stimulating the expression of flowering-related genes, and effectively facilitating floral bud differentiation in E. sykesii.

     

/

返回文章
返回