Abstract:
Objective To explore the effects of paclobutrazol (PAC) and ethephon (ETH) on carbon and nitrogen metabolism, endogenous hormone levels, and flower-related gene expression in the flowering plant of Erythrina sykesii, and provide theoretical basis for regulating the flowering period of E. sykesii.
Methods Eight-year-old E. sykesii. were treated with three sprays of PAC (600 mg·L−1) and ETH (50 mg·L−1) during the bud physiological differentiation stage, with distilled water as the control (CK). The contents of carbon and nitrogen metabolites, endogenous hormone levels, and flower-related gene expression in the top buds were detected during different bud physiological differentiation periods, and the inflorescence size and number, and branch flowering rate were investigated and statistically analyzed during the peak flowering period.
Results After spraying PAC and ETH on the leaves of E. sykesii., the soluble sugar and total carbon (C) content in the top buds gradually increased with the progress of physiological differentiation, while the soluble protein and total nitrogen (N) content gradually decreased, resulting in an increase in the C/N ratio. Among them, there were significant differences between the PAC+ETH treatment and the PAC and ETH treatments, with the PAC+ETH treatment reaching the maximum C/N ratio at the end of physiological differentiation. The endogenous hormone content in the top buds also changed with the physiological differentiation process, with zeatin riboside (ZR) and abscisic acid (ABA) content gradually increasing, while gibberellic acid (GA3) and indole-3-acetic acid (IAA) content gradually decreasing; resulting in a gradual increase in the ratios of ABA/IAA, ABA/GA3, ZR/IAA, and ZR/GA3. There were significant differences between the PAC+ETH treatment and the PAC and ETH treatments, with the PAC+ETH treatment reaching the maximum ABA/IAA, ABA/GA3, ZR/IAA, and ZR/GA3 ratios at the end of physiological differentiation, which were 317.49%, 185.34%, 310.58%, and 180.62% higher than the control, respectively. The flowering-promoting gene Flowering Locus T (FT) began to express and the gene amount gradually increased during the middle stage of physiological differentiation, while SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), APETALA 1 (AP1), SHORT VEGETATIVE PHASE (SVP), and LEAFY (LFY) genes were significantly expressed at the end of physiological differentiation. The flowering-inhibiting gene TERMINAL FLOWER 1 (TFL1) began to express and the gene amount gradually decreased during the early stage of physiological differentiation. Both paclobutrazol and ethephon treatments promoted the flowering bud differentiation process and flowering induction of E. sykesii. The plant treated with PAC+ETH had an advanced flowering period of 12 days, a flowering rate of 36.46%, and a total flowering period of 55 days.
Conclusion During the physiological differentiation stage of the flower buds of E. sykesii., spraying paclobutrazol and ethenol is conducive to enhancing the content of carbon and nitrogen metabolites, modulating endogenous hormone levels, stimulating the expression of flowering-related genes, and effectively facilitating floral bud differentiation in E. sykesii.