Loading [MathJax]/jax/output/SVG/jax.js
  • 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

多效唑和乙烯利对西克刺桐花芽分化及成花基因表达的影响

刘贝宁, 陈发兴

刘贝宁,陈发兴. 多效唑和乙烯利对西克刺桐花芽分化及成花基因表达的影响 [J]. 福建农业学报,2024,39(4):427−437. DOI: 10.19303/j.issn.1008-0384.2024.04.007
引用本文: 刘贝宁,陈发兴. 多效唑和乙烯利对西克刺桐花芽分化及成花基因表达的影响 [J]. 福建农业学报,2024,39(4):427−437. DOI: 10.19303/j.issn.1008-0384.2024.04.007
LIU B N, CHEN F X. Effects of Paclobutrazol and Ethephon on the Differentiation of Flower Buds and Expression of Flowering Genes in Erythrina sykesii [J]. Fujian Journal of Agricultural Sciences,2024,39(4):427−437. DOI: 10.19303/j.issn.1008-0384.2024.04.007
Citation: LIU B N, CHEN F X. Effects of Paclobutrazol and Ethephon on the Differentiation of Flower Buds and Expression of Flowering Genes in Erythrina sykesii [J]. Fujian Journal of Agricultural Sciences,2024,39(4):427−437. DOI: 10.19303/j.issn.1008-0384.2024.04.007

多效唑和乙烯利对西克刺桐花芽分化及成花基因表达的影响

基金项目: 福建省科技计划项目(2022N5016)
详细信息
    作者简介:

    刘贝宁(2003 —),女,主要从事园林植物研究,E-mail:2075431492@qq.com

    通讯作者:

    陈发兴(1967 —),男,博士,教授,主要从事园艺植物领域研究,E-mail:fxchen@fafu.edu.cn

  • 中图分类号: S685

Effects of Paclobutrazol and Ethephon on the Differentiation of Flower Buds and Expression of Flowering Genes in Erythrina sykesii

  • 摘要:
      目的  探讨多效唑(paclobutrazol, PAC)和乙烯利(ethephon, ETH)对西克刺桐(Erythrina sykesii)碳氮代谢、内源激素及成花相关基因表达的影响,为刺桐属植物花期调控提供理论依据。
      方法  以8 年生的西克刺桐为材料,在花芽生理分化期进行多效唑(PAC)600 mg·L−1、乙烯利(ETH)50 mg·L−1以及二者共同喷施处理,以清水为对照(CK),每个处理均喷施3次。检测顶芽不同花芽生理分化期的碳氮代谢物质含量、内源激素水平和成花相关基因表达量,并调查统计盛花期西克刺桐花序大小、数量和枝条成花率。
      结果  西克刺桐叶面喷施多效唑和乙烯利后,随着花芽生理分化进程推进,顶芽的可溶性糖和全碳含量逐渐上升,而可溶性蛋白和全氮含量逐渐下降,导致碳氮比(C/N)升高;其中,PAC+ETH处理与PAC和ETH处理均存在显著差异,在生理分化末期PAC+ETH处理的C/N比值达到最大值。顶芽的内源激素含量也随着生理分化进程而变化,玉米素核苷(zeatin riboside, ZR)和脱落酸(abscisic acid, ABA)含量逐渐上升,而赤霉素(gibberellic acid, GA3)和吲哚乙酸(indole-3-acetic acid, IAA)含量逐渐下降;引起ABA/IAA、ABA/GA3、ZR/IAA、ZR/GA3比值逐渐升高;PAC+ETH处理的激素比值与PAC和ETH处理间均存在显著差异,在生理分化末期PAC+ETH处理的ABA/IAA、ABA/GA3、ZR/IAA、ZR/GA3比值均达到最大值,分别比对照提高317.49%、185.34%、310.58%、180.62%。成花促进基因FT在生理分化中期开始表达且表达量逐渐上调,SOC1AP1SVPLFY基因在生理分化末期才明显表达;成花抑制基因TFL1在生理分化前期就开始表达且表达量逐渐下调。多效唑和乙烯利处理均能促进西克刺桐花芽分化进程和成花诱导,其中600 mg·L−1 PAC+50 mg·L−1 ETH处理的植株开花期提前12 d,枝条成花率达36.46%,植株总花期达55 d。
      结论  西克刺桐花芽生理分化期喷施多效唑和乙烯利有利于提高碳氮代谢物质含量,调节内源激素水平和成花相关基因表达,有效促进西克刺桐花芽分化。
    Abstract:
      Objective  To explore the effects of paclobutrazol (PAC) and ethephon (ETH) on carbon and nitrogen metabolism, endogenous hormone levels, and flower-related gene expression in the flowering plant of Erythrina sykesii, and provide theoretical basis for regulating the flowering period of E. sykesii.
      Methods  Eight-year-old E. sykesii. were treated with three sprays of PAC (600 mg·L−1) and ETH (50 mg·L−1) during the bud physiological differentiation stage, with distilled water as the control (CK). The contents of carbon and nitrogen metabolites, endogenous hormone levels, and flower-related gene expression in the top buds were detected during different bud physiological differentiation periods, and the inflorescence size and number, and branch flowering rate were investigated and statistically analyzed during the peak flowering period.
      Results  After spraying PAC and ETH on the leaves of E. sykesii., the soluble sugar and total carbon (C) content in the top buds gradually increased with the progress of physiological differentiation, while the soluble protein and total nitrogen (N) content gradually decreased, resulting in an increase in the C/N ratio. Among them, there were significant differences between the PAC+ETH treatment and the PAC and ETH treatments, with the PAC+ETH treatment reaching the maximum C/N ratio at the end of physiological differentiation. The endogenous hormone content in the top buds also changed with the physiological differentiation process, with zeatin riboside (ZR) and abscisic acid (ABA) content gradually increasing, while gibberellic acid (GA3) and indole-3-acetic acid (IAA) content gradually decreasing; resulting in a gradual increase in the ratios of ABA/IAA, ABA/GA3, ZR/IAA, and ZR/GA3. There were significant differences between the PAC+ETH treatment and the PAC and ETH treatments, with the PAC+ETH treatment reaching the maximum ABA/IAA, ABA/GA3, ZR/IAA, and ZR/GA3 ratios at the end of physiological differentiation, which were 317.49%, 185.34%, 310.58%, and 180.62% higher than the control, respectively. The flowering-promoting gene Flowering Locus T (FT) began to express and the gene amount gradually increased during the middle stage of physiological differentiation, while SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), APETALA 1 (AP1), SHORT VEGETATIVE PHASE (SVP), and LEAFY (LFY) genes were significantly expressed at the end of physiological differentiation. The flowering-inhibiting gene TERMINAL FLOWER 1 (TFL1) began to express and the gene amount gradually decreased during the early stage of physiological differentiation. Both paclobutrazol and ethephon treatments promoted the flowering bud differentiation process and flowering induction of E. sykesii. The plant treated with PAC+ETH had an advanced flowering period of 12 days, a flowering rate of 36.46%, and a total flowering period of 55 days.
      Conclusion  During the physiological differentiation stage of the flower buds of E. sykesii., spraying paclobutrazol and ethenol is conducive to enhancing the content of carbon and nitrogen metabolites, modulating endogenous hormone levels, stimulating the expression of flowering-related genes, and effectively facilitating floral bud differentiation in E. sykesii.
  • 【研究意义】银耳(Tremella fuciformis Berk)是主产于我国的特色食药兼用真菌,富含多糖、矿物质元素等,具有抗氧化和提高人体免疫力等多种保健功效,备受消费者青睐[1-2]。银耳的产量和品质主要受栽培过程中菇蚊、螨虫、链孢霉、绿色木霉等霉菌及病虫害影响[3-4]。合理使用农药既不影响消费者健康,又能确保农作物产量[5]。但与莲雾等小宗作物类似,银耳栽培缺乏登记农药和农药最大残留限量标准以供参考[6-7]。其中,农药残留限量值(MRL)是法律允许的施用农药后农产品中农药最高残留水平,是农产品质量安全监测重要的参考依据[5]。因此,在病虫害防控时,菇农常因无法科学地使用农药而导致银耳农药残留。不仅严重影响银耳产业的发展,且对消费者的健康存有潜在威胁[5, 8]。【前人研究进展】近年来,关于银耳农药使用及质量安全的研究主要包括:农药残留检测方法[9]、农药及代谢物消解规律[10-11]、膳食暴露风险评估[12-13]、烘干工艺[2, 14]等。然而尚未见有关银耳农药残留全膳食暴露风险评估和最大残留限量值建议的研究报道。【本研究切入点】为了避免银耳产品中的农药残留引起的消费者膳食暴露健康风险,应科学开展银耳中农药残留水平监测和潜在膳食暴露风险评估。【拟解决的关键问题】银耳Tr21是我国银耳主栽品种之一,具有朵形美、耳片白、产量高、品质好等优点[3]。本文以其为试验对象,根据银耳栽培实际选择8组10种常用农药,研究其对银耳子实体生长的影响,分析农药和其代谢物残留规律并开展长期膳食和全膳食暴露风险评估,建议银耳中农药合理使用模式和农药MRL值,为完善银耳良好农业规范(GAP)栽培和消除消费者银耳膳食疑虑提供参考依据。

    银耳菌株Tr21,由古田县建宏农业开发有限公司提供。供试农药信息详见表1。正己烷、乙腈等农药检测分析用有机试剂,色谱纯,购自美国赛默飞世尔科技有限公司;其他试剂为分析纯,购自国药集团化学试剂有限公司;固相萃取填料,购自Agilent公司和Welch Material公司;农药标准品购自农业农村部环境保护科研监测所;气相色谱柱:SH-Rxi-5Sil MS(30.0 m×0.250 mm×0.25 µm),购自日本岛津公司;液相色谱柱:Phenomenex Luna C8(150 mm×2.0 mm×3.0 µm),购自美国菲罗门公司。

    表  1  供试农药、剂型及其生产企业
    Table  1.  Formulation and manufacturers of pesticides tested
    处理
    Group
    农药
    Pesticide
    生产企业
    Manufacturing enterprise
    A 6%(3%+3%)联苯菊酯、啶虫脒微乳剂
    Bifenthrin, acetamiprid micro-emulsion
    青岛正道药业有限公司
    Qingdao Zhengdao Pharma Co., Ltd.
    B 5%阿维菌素乳油
    Abamectinemulsifiable concentrate
    山东金锐特生物科技有限公司
    Shandong Jinruite Bio-technology Co., Ltd.
    C 30%乙酰甲胺磷乳油
    Acephateemulsifiable concentrate
    重庆农药化工(集团)有限公司
    Chongqing Pesticide Chemical Co., Ltd.
    D 45%咪鲜胺乳油
    Prochlorazemulsifiable concentrate
    德国奥利恩作物保护有限公司
    Germany Aolien Crop Protection Co., Ltd.
    E 10%吡虫啉粉剂
    Imidaclopriddustpowder
    济南一农化工有限公司
    Jinan Yinong Chemical Industry Co., Ltd.
    F 20%异丙威乳油
    Isoprocarbemulsifiable concentrate
    江苏辉胜农药有限公司
    Jiangsu Huisheng Pesticide Co., Ltd.
    G 10%(5%+5%)哒螨灵、啶虫脒微乳剂
    Pyridaben, acetamiprid micro-emulsion
    深圳诺普信农化股份有限公司
    Shenzhen Noposion International Investment Co., Ltd.
    H 5%(1%+4%)丁硫克百威、毒死蜱颗粒剂
    Carbosulfan, chlorpyrifos granules
    西安瑞邦化工有限公司
    Xi’an Ruibang Chemical Industry Co., Ltd.
    下载: 导出CSV 
    | 显示表格

    气相色谱仪(GC-2010 plus)-三重四极杆质谱(TSQ8040),岛津公司;高效液相色谱仪(Agilent 1200)-三重四极杆质谱(Agilent 6460),安捷伦科技有限公司;吹氮浓缩仪(Reati-ThermⅢ HRATING/STIRRING MODMLE), PIERCE公司;超声仪(KD-500DE),昆山市超声仪器有限公司;涡旋混合器,德国IKA公司;离心机(Anke TDL-5-A),上海安亭科学仪器厂。

    银耳栽培试验在古田县建宏农业开发有限公司实施,工厂化模式栽培,环境参数可控。试验共有4种农药喷施模式:原基形成时,20 d后采摘(M1);原基形成10 d,10 d后采摘(M2);原基形成时喷药1次,间隔5 d后第2次喷药,15 d后采摘(M3);原基形成后10 d时喷药1次,间隔5 d后第2次喷药,5 d后采摘(M4)。农药喷施浓度为1 000、2 000、4 000 mg·L−1,喷施量为1 800 mL。试验共12个处理。每个处理含3个重复,每个重复10个菌棒,共360个菌棒。以喷施同样体积的纯净水作为空白对照。

    喷施试验后,随机选取5个菌棒,采用游标卡尺随机测定银耳子实体直径(n=5)。数据以“Mean±SD”表示。

    每组随机选取银耳5朵,匀浆,待测。农药及其代谢物提取、分析参照GB 23200.113[15]和文献[9]。方法线性良好(R2>0.995)、低中高3个添加水平回收率70%~110%、定量限为0.01 mg·kg−1,满足试验的要求。

    按公式(1)计算普通人群长期摄食银耳的农药慢性暴露风险(%ADI)。

    %ADI=C×Fbw×ADI×100 (1)

    式中:C为银耳中农药残留水平(mg·kg−1),F为每日膳食量(30 g)[16, 17]bw为平均体重(53.23 kg)[18]ADI为每日容许摄入量(Acceptable daily intake, mg·kg−1 bw day−1[15]%ADI越小风险越小,当%ADI<100%时,健康风险可接受;当%ADI≥100%时,表示健康风险不可接受。

    本研究采用农药残留试验值(C)或最大残留限量(Maximum residual limit, MRL),按公式(2)~(5),分别估算国家每日摄入量(National estimated daily intake, NEDI)、理论每日最大摄入量(Theory maximum daily intake, TMDI)、慢性风险商(Chronic Risk Quotient, RQc)、消费者保护水平(Protection levels against the chronic dietary risk for consumers, CPLc)。其中RQc<100%时,农药残留对一般人群的膳食健康风险可接受;CPLc值越高,保护水平越高,大于1表明建议的MRL值达到可接受的保护水平。

    式(2):NEDI=[Ci(MRLi)×Fi]

    式(3):TMDI=(MRLi×Fi)

    式(4):RQc=NEDI/(ADI×bw)×100%

    式(5):CPLc=(ADI×bw)/TMDI

    式中:Ci为银耳农药残留水平,其他类食物用MRLi代替。

    通过SPSS22.0比较试验组与对照组间的差异性(差异水平a=0.05)。

    农药对银耳Tr21生长的影响见图1。喷施模式为M1,喷施浓度为1 000~4 000 mg·L−1时,吡虫啉粉剂,哒螨灵、啶虫脒微乳剂,丁硫克百威、毒死蜱颗粒剂处理组和1 000、2 000 mg·L−1异丙威乳油处理组的银耳子实体直径显著高于CK(P<0.05);喷施模式为M2,喷施浓度为1 000~4 000 mg·L−1时,吡虫啉粉剂,丁硫克百威、毒死蜱颗粒剂处理组和2 000 mg·L−1联苯菊酯、啶虫脒微乳剂,4 000 mg·L−1阿维菌素乳油,阿维菌素乳油,1 000 mg·L−1异丙威乳油处理组银耳子实体直径显著高于CK(P<0.05),而高于2 000 mg·L−1哒螨灵、啶虫脒微乳剂的处理会导致银耳子实体生长停滞、溃烂;喷施模式为M3,喷施浓度为1 000~4 000 mg·L−1的联苯菊酯、啶虫脒微乳剂和4 000 mg·L−1阿维菌素乳油,1 000、2 000 mg·L−1丁硫克百威、毒死蜱颗粒剂处理组银耳子实体直径显著高于CK(P<0.05),而施用咪鲜胺乳油或高于2 000 mg·L−1的哒螨灵、啶虫脒微乳剂,4 000 mg·L−1的丁硫克百威、毒死蜱颗粒剂会导致银耳子实体生长停滞,造成绝收;喷施模式为M4,喷施浓度为1 000~4 000 mg·L−1的丁硫克百威、毒死蜱颗粒剂,1 000~2 000 mg·L−1的联苯菊酯、啶虫脒微乳剂或阿维菌素乳油,1 000 mg·L−1的吡虫啉粉剂或哒螨灵、啶虫脒微乳剂,2 000~4 000 mg·L−1的异丙威乳油会显著促进银耳子实体生长(P<0.05),而施用咪鲜胺乳油或高于2 000 mg·L−1的哒螨灵、啶虫脒微乳剂会导致银耳子实体生长停滞,造成绝收。

    图  1  农药对银耳生长的影响
    注:*表示与对照组有显著性差异(P<0.05)
    Figure  1.  Effects of pesticides on snow fungus growth
    Note: Asterisk indicates that significantly different was found between the experiment group and control group(P<0.05).

    10种农药及其代谢物在银耳中的最终残留水平如表2示。受采摘间隔期影响,银耳中农药残留量在4种喷施模式下,基本呈现M1、M3、M2、M4递增趋势,其中吡虫啉、异丙威在M4模式的残留水平远高于其他3种模式。在采摘间隔期较短的M4、M2、M3组,喷施农药的浓度是影响银耳中农药残留水平的关键因素。乙酰甲胺磷乳油处理组,农药及其代谢物(甲胺磷)的残留水平均低于检测方法定量限(0.01 mg·kg−1)。丁硫克百威、毒死蜱颗粒剂处理组,农药及其代谢物(克百威)的残留水平也较低。其中丁硫克百威残留水平低于检测方法定量限(0.01 mg·kg−1),克百威残留水平为ND~0.03 mg·kg−1,毒死蜱残留水平为ND~0.28 mg·kg−1。但鉴于国内已禁止在蔬菜等作物上使用乙酰甲胺磷、丁硫克百威、毒死蜱且其或代谢物具有中高毒性,故也不建议其在银耳栽培中使用。阿维菌素在M2、M3、M4喷施模式下,4 000 mg·L−1的喷施浓度会导致银耳中残留水平分别达到1.14、1.80、3.56 mg·kg−1。按我国农药毒性分级标准,阿维菌素属于高毒农药,在使用过程应注意控制施用量。连续2次喷施咪鲜胺会造成银耳中咪鲜胺残留水平明显上升(M2)。

    表  2  不同喷施模式下银耳农药及其代谢产物残留
    Table  2.  Pesticide and metabolite residues on Tr21 sprayed with pesticides by different methods
    农药
    Pesticide
    浓度
    Concentration/(mg·L−1
    残留水平 Residue level/(mg·kg−1
    M1M2M3M4
    联苯菊酯、啶虫脒 Bifenthrin, Acetamiprid 1 000 0.02 ND 0.12 0.06 0.10 0.06 0.82 0.29
    2 000 0.02 ND 0.27 0.17 0.10 0.06 0.84 0.43
    4 000 0.02 0.04 0.99 0.37 1.67 0.42 3.23 0.69
    阿维菌素 Abamectin 1 000 ND 0.21 0.20 2.44
    2 000 ND 0.25 0.88 3.04
    4 000 ND 1.14 1.80 3.56
    乙酰甲胺磷 Acephate 1 000 NDa NDa NDa NDa
    2 000 NDa NDa NDa NDa
    4 000 NDa NDa NDa NDa
    咪鲜胺 Prochloraz 1 000 0.01 3.99
    2 000 0.10 6.84
    4 000 1.22 7.39
    吡虫啉 Imidacloprid 1 000 0.03 1.32 0.22 6.23
    2 000 0.11 2.06 0.48 11.70
    4 000 0.17 3.71 1.91 14.91
    异丙威 Isoprocarb 1 000 0.05 0.14 0.07 1.23
    2 000 0.05 0.27 0.07 2.17
    4 000 0.10 0.83 13.30
    哒螨灵、啶虫脒 Pyridaben, Acetamiprid 1 000 ND ND 0.09 0.05 1.28 0.35
    2 000 ND ND
    4 000 ND ND
    丁硫克百威、毒死蜱 Carbosulfan, Chlorpyrifos 1 000 NDa ND NDa 0.04 NDa 0.02 NDa ND
    2 000 NDa ND NDa 0.05 NDa 0.03 NDa ND
    4 000 NDa ND NDa 0.11 0.02b 0.04 0.03b 0.28
    注:ND表示该农药未检出;NDa表示该农药及其主要代谢物均未检出;“−”表示该试验组银耳生长受到抑制,未采集到样品;b检出值为克百威。
    Note: ND, not detected. NDa, both pesticide and its metabolites were not detected. The symbol(−)means that the snow fungus fruit growth was inhibited by corresponding pesticide. b, the level of carbofuran residue in snow fungus samples.
    下载: 导出CSV 
    | 显示表格

    对除乙酰甲胺磷乳油,丁硫克百威、毒死蜱颗粒剂2组农药外的6组农药开展普通人群长期膳食暴露评估,结果见表3。银耳中联苯菊酯、啶虫脒、吡虫啉、哒螨灵残留最高水平的慢性膳食摄入风险(%ADI)分别为18%、0.56%、14%、7%,远小于100%,表明这4种农药的风险水平可接受。异丙威、阿维菌素残留最高水平的慢性膳食摄入风险(%ADI)分别为375%、200%,远超过100%,表明在部分施用模式下,这2种农药的风险水平不可接受。因银耳一种食物咪鲜胺残留的膳食风险已分别达到22%、38%、41%。故在M2模式下的咪鲜胺残留慢性膳食摄入风险(%ADI)也应予以注意。

    表  3  银耳膳食导致的农药及代谢物暴露风险
    Table  3.  Health risk of dietary exposure to pesticide and metabolite residues in fungi
    农药 Pesticide浓度 Concentration/(mg·L−1慢性膳食摄入风险 Chronic dietary exposure risk/(%ADI)
    M1M2M3M4
    联苯菊酯、啶虫脒 Bifenthrin, Acetamiprid 1 000 1 0.004 1 0.05 1 0.05 5 0.23
    2 000 1 0.004 2 0.14 1 0.05 5 0.35
    4 000 1 0.035 5 0.30 9 0.34 18 0.56
    阿维菌素 Abamectin 1 000 0.28 12 11 101
    2 000 0.28 14 50 171
    4 000 0.28 64 101 200
    咪鲜胺 Prochloraz 1 000 0.056 22
    2 000 0.56 38
    4 000 7 41
    吡虫啉 Imidacloprid 1 000 0.028 1 0.21 6
    2 000 0.10 2 0.45 11
    4 000 0.16 3 2 14
    异丙威 Isoprocarb 1 000 1 4 2 35
    2 000 1 8 2 61
    4 000 3 23 375
    哒螨灵、啶虫脒 Pyridaben, Acetamiprid 1 000 0.028 0.004 0.51 0.04 7 0.28
    2 000 0.028 0.004
    4 000 0.028 0.004
    下载: 导出CSV 
    | 显示表格

    为了建议银耳中农药残留限量值(MRL),根据日均膳食数据、农药在已登记的可食作物中的MRL值[15]及银耳农药残留水平(表4),计算得到普通人群对联苯菊酯、啶虫脒、阿维菌素、咪鲜胺、吡虫啉、异丙威、哒螨灵等7种农药的全膳食摄入RQc,分别为29.7%~134.3%、18.4%~21.6%、47.0%~417.1%、78.7%~319.2%、5.2%~86.0%、41.3%~387.0%、82.5%~124.0%。可知,在部分喷施模式下,银耳中这7种农药的残留水平导致农药全膳食摄入RQc低于85%。该结果表明,银耳栽培中合理使用联苯菊酯等7种农药通常不会造成不可接受的长期膳食暴露慢性风险。

    表  4  不同食物日均膳食量及农药膳食风险评估
    Table  4.  Average daily dietary intake and risk assessment of pesticide residues
    食物
    种类a
    膳食
    量/kg
    联苯菊酯
    (ADI:0.01 mg·kg−1 )
    啶虫脒
    (ADI:0.07 mg·kg−1 )
    阿维菌素
    (ADI:0.001 mg·kg−1 )
    咪鲜胺
    (ADI:0.01 mg·kg−1 )
    登记作物MRL or
    STMR/
    (mg·kg−1
    NEDI/mg登记作物MRL or
    STMR/
    (mg·kg−1
    NEDI/mg登记作物MRL or
    STMR/
    (mg·kg−1
    NEDI/mg登记作物MRL or
    STMR/
    (mg·kg−1
    NEDI/mg
    米及
    制品
    0.1766 水稻 0.5 0.088 水稻 0.02 0.004 水稻 0.5 0.088
    面及
    制品
    0.1422 小麦 0.5 0.071 小麦 0.5 0.071 小麦 0.01 0.001 小麦 0.5 0.071
    薯类 0.0357
    深色
    蔬菜
    0.0884 番茄等 0.5 0.044 菠菜等 5 0.442 茄子等 0.2 0.018 蒜苔等 2 0.177
    浅色
    蔬菜
    0.1735 银耳等 0.02~3.23 0.003~0.560 银耳等 ND~0.69 0.001~0.120 银耳等 ND~1.14 0.001~0.198 银耳等 0.01~7.39 0.002~1.282
    水果 0.0406 苹果等 0.5 0.020 柑橘等 2 0.081 苹果等 0.02 0.001 苹果等 2 0.090
    植物油 0.0371 棉籽 0.5 0.018 棉籽 0.1 0.004 棉籽 0.01 0.001
    0.0021 甘蔗 0.05 0.001
    合计 0.158~0.715 0.687~0.806 0.025~0.222 0.419~1.699
    RQc (%) 29.7~134.3 18.4~21.6 47.0~417.1 78.7~319.2
    下载: 导出CSV 
    | 显示表格
    食物种类a膳食量/kg吡虫啉
    (ADI:0.06 mg·kg−1 )
    异丙威
    (ADI:0.002 mg·kg−1 )
    哒螨灵
    (ADI:0.01 mg·kg−1 )
    登记作物MRL or
    STMR/
    (mg·kg−1
    NEDI/ mg登记作物MRL or
    STMR/
    (mg·kg−1
    NEDI/ mg登记作物MRL or
    STMR/
    (mg·kg−1
    NEDI/ mg
    米及制品 0.1766 水稻 0.05 0.009 水稻 0.2 0.035 水稻 1 0.177
    面及制品 0.1422 小麦 0.05 0.007 小麦 NA
    薯类 0.0357 马铃薯 0.5 0.018
    深色蔬菜 0.0884 茄子等 1 0.088 甘蓝等 2 0.177
    浅色蔬菜 0.1735 银耳等 0.03~14.91 0.005~2.587 银耳等 0.05~2.17 0.009~0.376 银耳等 ND~1.28 0.001~0.222
    水果 0.0406 苹果等 0.5 0.020 苹果等 2 0.081
    植物油 0.0371 棉籽等 0.5 0.018 棉籽等 0.1 0.004
    0.0021 甘蔗 0.2 0.001
    合计 0.167~2.748 0.044~0.412 0.439~0.660
    RQc (%) 5.2~86.0 41.3~387.0 82.5~124.0
    注:(1)表中除银耳农药残留数据外,其余农产品信息参考GB2763-2019[15];(2)a因研究的农药种类未在动物性食物、豆制品、坚果、乳及乳制品、饮料中登记,故未列出;(3)MRL,最大残留限量;(4)NA,GB2763-2019中未列出小麦的异丙威MRL值;(5)STMR,规范残留试验中值;(6)NEDI,国家估算每日摄入量。
    Note: Except the data of pesticide residues on snow fungus, others are available in GB2763-2019[15]. Because these pesticides had not been registered in animal foods, bean products, nuts, beverage, and milk products, consumption amount for them were not listed. MRL, maximum residual limit. NA, the MRL value of isoprocarb for wheat was not available in GB2763-2019. STMR, the supervised trial median residue. NEDI, national estimated daily intake.
    下载: 导出CSV 
    | 显示表格

    根据农药对银耳生长的影响、农药毒性和风险评估结果,银耳中农药使用方式建议详见表5。阿维菌素乳油,咪鲜胺乳油,哒螨灵、啶虫脒微乳剂只能在模式M1下使用,但咪鲜胺施用浓度应低于1 000 mg·L−1;异丙威乳油可在M1和M3模式下施用,浓度分别不得超过4 000 mg·L−1和2 000 mg·L−1;当浓度低于4 000 mg·L−1时,吡虫啉粉剂可在M1、M2、M3模式下施用。联苯菊酯、啶虫脒微乳剂可在4种模式下施用,浓度应分别低于4 000 mg·L−1(M1、M2)和2 000 mg·L−1(M3、M4)。

    表  5  银耳栽培过程农药使用建议
    Table  5.  Suggested pesticide applications for Tr21 cultivation
    农药 Pesticide剂型 Dosage form方式、浓度范围 Modes/(mg·L−1
    3%联苯菊酯、3%啶虫脒 Bifenthrin, acetamiprid微乳剂 Micro-emulsionM1、M2(≤4000)M3、M4(≤2000)
    5%阿维菌素 Abamectin乳油 Emulsifiable concentrateM1(≤4000)
    45%咪鲜胺 Prochloraz乳油 Emulsifiable concentrateM1(≤1000)
    10%吡虫啉 Imidacloprid粉剂 DustpowderM1、M2、M3(≤4000)
    20%异丙威 Isoprocarb乳油 Emulsifiable concentrateM1(≤4000)M3(≤2000)
    5%哒螨灵、5%啶虫脒 Pyridaben, acetamiprid微乳剂 Micro-emulsionM1(≤4000)
    下载: 导出CSV 
    | 显示表格

    在农药全膳食摄入RQc低于85%的条件下,根据农业农村部食品中农药最大残留限量制定指南[19],建议银耳中7中农药MRL值为:哒螨灵0.01 mg·kg−1、咪鲜胺0.02 mg·kg−1、阿维菌素和异丙威0.1 mg·kg−1、啶虫脒0.7 mg·kg−1、联苯菊酯1 mg·kg−1、吡虫啉5 mg·kg−1表6)。MRL建议值的CPLc为3.07~306.92,具有较高的保护水平。

    表  6  银耳农药残留限量建议值
    Table  6.  Recommended MRLs on 7 pesticides for Tr21 cultivation
    序号 No.农药 PesticideMRL/(mg kg−1RQc/%CPLc
    1联苯菊酯 Bifenthrin1.0061.573.07
    2啶虫脒 acetamiprid0.7021.6630.69
    3阿维菌素 Abamectin0.1077.343.07
    4咪鲜胺 Prochloraz0.0279.07153.46
    5吡虫啉 Imidacloprid5.0032.223.68
    6异丙威 Isoprocarb0.1049.476.14
    7哒螨灵 Pyridaben0.0182.64306.92
    下载: 导出CSV 
    | 显示表格

    与多数人工栽培的食用菌不同,银耳必须有香灰菌伴生才能完成整个生活史,且香灰菌活力会直接影响银耳产量[20]。本研究发现部分喷施模式下,咪鲜胺、哒螨灵、啶虫脒、异丙威会不同程度地抑制银耳子实体或导致子实体畸形、腐烂。其中咪鲜胺可能是因为其为广谱性杀菌剂,不当使用可能会对银耳菌丝或香灰菌菌丝造成影响,进而导致子实体生长停滞。温志强等[21]也发现,甲基托布津和多菌灵等杀菌剂会导致银耳菌丝生长受到影响,子实体无法形成。但哒螨灵、啶虫脒、异丙威对抑制银耳子实体生长的机理尚待进一步研究。此外,在评估银耳膳食引起的农药暴露风险时,本研究直接采用银耳子实体中的农药残留水平,未考虑到银耳烹饪过程等不确定性因素对农药残留水平的影响,可能造成风险水平的高估。在我国多数可食作物均要通过清洗、烹饪等程序后方才食用,这可大幅度降低农药全膳食摄入的慢性风险商(RQc)。有研究表明,清洗可以去除西红柿中的农药残留,如腐霉利的去除率可以达到68%[22]。烹饪能有效降低豇豆中的哒螨灵等农药残留[23]。烹饪后蔬菜中的三唑磷含量降低了72%[24]。但是高估的风险评估结果反而有利于提高建议的农药MRL值对消费者的保护水平。

  • 图  1   多效唑和乙烯利对西克刺桐碳氮代谢的影响

    图中不同小写字母表示处理间存在显著性差异 (P<0.05)。下同。

    Figure  1.   Effects of paclobutrazol and ethephon on carbon and nitrogen substances in E. sykesii

    Different lowercase letters indicate significant difference at 0.05 level among treatments. Same for below.

    图  2   多效唑和乙烯利对西克刺桐内源激素含量的影响

    Figure  2.   Effects of paclobutrazol and ethephon on endogenous hormone content in E. sykesii

    图  3   多效唑和乙烯利对西克刺桐内源激素平衡的影响

    Figure  3.   Effects of paclobutrazol and ethephon on the ratio of endogenous hormones in E. sykesii

    图  4   多效唑和乙烯利对西克刺桐成花相关基因表达的影响

    Figure  4.   Effects of paclobutrazol and ethephon on the expression of flowering genes in E. sykesii

    表  1   表1 西克刺桐成花相关基因定量PCR引物序列

    Table  1   Primers designed for flower related genes in E. sykesii

    基因
    Gene
    前引物/后引物
    Forward/
    Reverse primers
    序列(5'-3')
    Sequence(5'-3')
    TIP41TIP41-FGGGTTGGATGGAAGAAGAAGCAC
    TIP41-RCACTTGCTGTGACGGTTTACTTC
    TFL1TFL1-FGGCAGAGGAGAGGACAGGTA
    TFL1-RAAGAGAGTGTCAGTCAGCGG
    LFYLFY-FAGAGGGAGCATCCGTTTATCGT
    LFY-RCGTACCTGAATACTTGGTTCGTCAC
    AP1AP1-FTGAACATGGGTGGCAATTAC
    AP1-RTGTCAAATGCCATACCAAAG
    SVPSVP-FGATTGAGCAAGGAAGTTGCC
    SVP-RTCTTCTCTCCCTTCTTTTCTATTAT
    FTFT-FAGTCCTAGCAACCCTCACCTCC
    FT-RGTCTTCTTCCTCCGCAGCCACT
    SOC1SOC1-FTTGTGATGCTGAAGTTGCTCTCAT
    SOC1-RACTCCTGTTATGCCTGCGGTAG
    下载: 导出CSV

    表  2   多效唑和乙烯对西克刺桐成花的影响

    Table  2   Effects of paclobutrazol on the flowering of E. sykesii

    处理
    Treatment
    花序长
    Inflorescence
    length/cm
    花序宽
    Inflorescence
    width/cm
    花序小花数
    Small flowers
    number
    枝条成花率
    Flower formation
    rate/%
    始花日期
    Early flowering
    date

    较对照提前天数
    Earlier than
    the control/d
    总花期
    Total
    flowering time/d
    CK 18.3±1.6 a 12.4±1.2 a 66.7±3.9 a 13.02±1.31 c 2023-02-06 0 46
    PAC 15.1±4.5 b 12.5±2.4 a 65.1±5.2 a 21.82±1.74 b 2023-02-01 5 54
    ETH 18.6±1.4 a 12.7±1.6 a 68.8±6.1 a 26.75±2.91 b 2023-01-30 7 52
    PAC+ETH 16.2±0.8 b 12.9±5.8 a 67.3±4.1 a 36.46±4.85 a 2023-01-25 12 55
    同列数据后不同小写字母表示不同处理间差异达到显著水平(P<0.05)。
    Different lowercase letters in the same column indicate significant differences among different treatments at 0.05 level.
    下载: 导出CSV
  • [1]

    ESLER A, EDGAR E. Erythrina x sykesii [J]. Auckland Botanical Society Journal. 1997, 52: 39-42.

    [2]

    SI Y, WEN Y, YE H, et al. The sink-source relationship regulated Camellia oleifera flower bud differentiation by influencing endogenous hormones and photosynthetic characteristics [J]. Forests, 2023, 14(10): 1−13

    [3]

    KOUR R, SINGH A, SINGH P, et al. Effect of foliar spraying with the growth inhibitor paclobutrazol on the quality of chandler strawberry (Fragaria ananassa) under punjab subtropics [J]. Journal of Advances in Biology Biotechnology, 2024, 27(2): 179−185. DOI: 10.9734/jabb/2024/v27i2709

    [4]

    ZHANG Y Y, HE Z Z, XING P P, et al. Effects of paclobutrazol seed priming on seedling quality, photosynthesis, and physiological characteristics of fragrant rice [J]. BMC Plant Biology, 2024, 24(1): 53. DOI: 10.1186/s12870-023-04683-0

    [5] 董志君, 张建军, 范永明, 等. 3种植物生长延缓剂对盆栽芍药的矮化效应 [J]. 东北林业大学学报, 2020, 48(9):62−66. DOI: 10.3969/j.issn.1000-5382.2020.09.012

    DONG Z J, ZHANG J J, FAN Y M, et al. Dwarfing effects of paclobutrazol, unicnazleand chlormequat on potted Paeonia lactiflora [J]. Journal of Northeast Forestry University, 2020, 48(9): 62−66. (in Chinese) DOI: 10.3969/j.issn.1000-5382.2020.09.012

    [6] 赵明, 何海旺, 武鹏, 等. 外源多效唑(PP333)调控成花生理促进粉蕉早抽蕾 [J]. 分子植物育种, 2021, 19(15):5113−5119.

    ZHAO M, HE H W, WU P, et al. Exogenous polyazole(PP333) regulated flower physiology to promote early bud extraction of pisang awak(ABB) [J]. Molecular Plant Breeding, 2021, 19(15): 5113−5119. (in Chinese)

    [7] 刘伦, 王超, 姚改芳, 等. 外源生长调节剂处理对‘满天红’ב砀山酥梨’后代成花的影响 [J]. 南京农业大学学报, 2015, 38(3):381−388.

    LIU L, WANG C, YAO G F, et al. Effects of exogenous growth regulator treatment on floral initiation of pear progenies from hybrids‘Mantianhong' × ‘Dangshansuli' [J]. Journal of Nanjing Agricultural University, 2015, 38(3): 381−388. (in Chinese)

    [8]

    LI Q F, GUO W L, CHEN B H, et al. Transcriptional and hormonal responses in ethephon-induced promotion of femaleness in pumpkin [J]. Frontiers in Plant Science, 2021, 12: 715487. DOI: 10.3389/fpls.2021.715487

    [9] 陈华蕊, 陈业渊, 何书强, 等. 乙烯利诱导杧果花芽分化与内源激素含量的关系 [J]. 中国南方果树, 2016, 45(5):55−58.

    CHEN H R, CHEN Y Y, HE S Q, et al. Relationship between flower bud differentiation of mango induced by ethephon and endogenous hormone content [J]. South China Fruits, 2016, 45(5): 55−58. (in Chinese)

    [10] 陈炫, 陶忠良, 吴志祥, 等. 多效唑+乙烯利对妃子笑荔枝内源激素及碳氮营养的影响 [J]. 江西农业大学学报, 2012, 34(1):27−33. DOI: 10.3969/j.issn.1000-2286.2012.01.006

    CHEN X, TAO Z L, WU Z X, et al. Effect of PP333 and ethrel treatment on endogenous hormones and carbon and nitrogen nutrients in feizixiao Litchi [J]. Acta Agriculturae Universitatis Jiangxiensis, 2012, 34(1): 27−33. (in Chinese) DOI: 10.3969/j.issn.1000-2286.2012.01.006

    [11]

    MELLO L M D, LEMOS R, MARQUES A, et al. Ancient and current distributions of Erythrina crista-galli L. (Fabaceae) in South America [J]. Floresta e Ambiente, 2019, 26(2): e11442017.

    [12] 陈清海. 基质、插穗与生根剂对刺桐属植物扦插成活率的影响 [J]. 东南园艺, 2023, 11(3):201−204.

    CHEN Q H. Effects of substrates, cutting types, and rooting agents on survival rate of cutting of Erythrina plants [J]. Southeast Horticulture, 2023, 11(3): 201−204. (in Chinese)

    [13]

    FAHMY N M, AL‐SAYED E, EL‐SHAZLY M, et al. Comprehensive review on flavonoids biological activities of Erythrina plant species [J]. Industrial Crops & Products, 2018, 123: 500−538

    [14]

    AZMI A S, MEDIANI A, WAN ABDUL MUIZ WAN ZAINAL ABIDIN, et al. Phytochemical variation between hydrochloric and tartaric acid-derived alkaloidal extracts of Erythrina fusca Lour. leaves: A proton NMR-based approach [J]. South African Journal of Botany, 2024, 168: 430−451. DOI: 10.1016/j.sajb.2024.03.040

    [15] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
    [16] 杨伊玲, 刘根红, 薛垠鑫, 等. 不同施氮量对麦后复种蔬菜生长及碳氮比的影响 [J]. 甘肃农业大学学报, 2023, 58(6):56−65.

    YANG Y L, LIU G H, XUE Y X, et al. Effects of different nitrogen dosage on the growth and carbon-nitrogen ratio of the wheat compound vegetables [J]. Journal of Gansu Agricultural University, 2023, 58(6): 56−65. (in Chinese)

    [17] 金洲, 卢山, 江俊浩, 等. 园艺植物花芽分化影响因素及机理研究进展 [J]. 园艺学报, 2023, 50(5):1151−1164.

    JIN Z, LU S, JIANG J H, et al. Research progress on influencing factors and mechanisms of flower bud differentiation in horticultural plants [J]. Acta Horticulturae Sinica, 2023, 50(5): 1151−1164. (in Chinese)

    [18] 易仁知, 秦俊, 黄清俊. 穗花牡荆花芽分化过程中形态和生理指标变化 [J]. 西北植物学报, 2023, 43(10):1760−1769.

    YI R Z, QIN J, HUANG Q J. Study on the changes of morphological and physiological indexes during flower bud differentiation of Vitex agnus-castus [J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(10): 1760−1769. (in Chinese)

    [19] 温玥, 郝志超, 孙天雨, 等. 油茶花芽分化过程中营养物质和内源激素的变化规律 [J]. 经济林研究, 2023, 41(4):31−39.

    WEN Y, HAO Z C, SUN T Y, et al. Changes of nutrients and endogenous hormones during the flower bud differentiation of Camellia oleifera [J]. Non-wood Forest Research, 2023, 41(4): 31−39. (in Chinese)

    [20] 林榕燕, 陈艺荃, 林兵, 等. 杂交兰‘黄金小神童’花芽分化过程形态与生理变化 [J]. 福建农业学报, 2019, 34(2):170−175.

    LIN R Y, CHEN Y Q, LIN B, et al. Morphological and physiological changes during flower bud differentiation of Cymbidium gold elf ‘Sun-dust’ [J]. Fujian Journal of Agricultural Sciences, 2019, 34(2): 170−175. (in Chinese)

    [21]

    ZHANG W E, LI J J, ZHANG W L, et al. The changes in C/N, carbohydrate, and amino acid content in leaves during female flower bud differentiation of Juglans sigillata [J]. Acta Physiologiae Plantarum, 2022, 44(2): 19. DOI: 10.1007/s11738-021-03328-9

    [22] 张华, 聂艳, 王定跃, 等. 乙烯利和多效唑对簕杜鹃生长开花及生理特性的影响 [J]. 林业科学, 2018, 54(10):46−55.

    ZHANG H, NIE Y, WANG D Y, et al. Effects of ETH and PP333 on the growth, florescence and physiological properties of Bougainvillea spectabilis [J]. Scientia Silvae Sinicae, 2018, 54(10): 46−55. (in Chinese)

    [23] 刘柯宁, 张力允, 刘博文, 等. 多效唑对高羊茅弱光下生长及其碳氮代谢的调控作用 [J]. 草地学报, 2023, 31(1):105−111.

    LIU K N, ZHANG L Y, LIU B W, et al. Regulatory effect of paclobutrazol on growth and carbon/nitrogen metabolism of tall fescue under low light [J]. Acta Agrestia Sinica, 2023, 31(1): 105−111. (in Chinese)

    [24]

    YANG Y, CHEN Z, ZOU R, et al. Comparative study of endogenous hormone dynamics during the first and second growth cycles in Sophora japonica cv. jinhuai harvested twice a year [J]. Journal of Biotech Research, 2023, 14: 59−66.

    [25] 江海都, 孙菲菲, 秦惠珍, 等. 四季花金花茶花芽分化进程及叶片内源激素变化 [J]. 广西植物, 2024, 44(1):56−67.

    JIANG H D, SUN F F, QIN H Z, et al. Flower bud differentiation and leaf endogenous hormone changes of Camellia perpetua [J]. Guihaia, 2024, 44(1): 56−67. (in Chinese)

    [26] 许昕, 刘佳奇, 王宇含, 等. 小叶丁香花芽分化进程及内源激素的变化 [J]. 生态学杂志, 2024, 43(1):146−152.

    XU X, LIU J Q, WANG Y H, et al. The differentiation process of flower bud and the changes of endogenous hormones in Syringa microphylla [J]. Chinese Journal of Ecology, 2024, 43(1): 146−152. (in Chinese)

    [27] 张瑞, 唐红, 何丽霞. 同株紫斑牡丹中单瓣与重瓣花芽分化及内源激素含量比较 [J]. 西北植物学报, 2022, 42(7):1152−1160.

    ZHANG R, TANG H, HE L X. Comparison of flower bud differentiation and endogenous hormone contents between single and double petals of Paeonia rockii from same plant [J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(7): 1152−1160. (in Chinese)

    [28] 刘智媛, 曾丽, 杜习武, 等. 藤本月季“安吉拉” 花芽分化形态结构及内源激素变化研究 [J]. 植物研究, 2021, 41(1):37−43.

    LIU Z Y, ZENG L, DU X W, et al. Flower bud differentiation and endogenous hormone changes of RosaAngela’ [J]. Bulletin of Botanical Research, 2021, 41(1): 37−43. (in Chinese)

    [29]

    ZHANG Y J, SUN J X, PAN X J, et al. The effect of low temperature on growth and development of Phalaenopsis [J]. Pakistan Journal of Botany, 2020, 52(4): 1197−1203.

    [30] 宋耀峰, 张林森, 赵紫嫣, 等. 复硝酚钾和亚磷酸钾对‘富士’苹果激素含量及相关成花基因表达的影响 [J]. 西北农业学报, 2023, 32(7):1041−1049.

    SONG Y F, ZHANG L S, ZHAO Z Y, et al. Effects of compound potassium nitrophenolate and potassium phosphite on hormone content and expression of related flowering genes in ‘fuji’ apple (Malus domestica Borkh) [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(7): 1041−1049. (in Chinese)

    [31] 林瑞君, 罗炘武, 谢锐星, 等. 控水方式对2种簕杜鹃开花及生理特征的影响 [J]. 中南民族大学学报(自然科学版), 2024, 43(2):181−188.

    LIN R J, LUO X W, XIE R X, et al. Effects of water control methods on the florescence and physiological properties of two Bougainvillea glabra [J]. Journal of South-Central Minzu University (Natural Science Edition), 2024, 43(2): 181−188. (in Chinese)

    [32] 杜立言, 俞洁蕾, 周春玲. 内源激素对木本植物花芽分化影响研究进展 [J]. 青岛农业大学学报(自然科学版), 2021, 38(2):79−84.

    DU L Y, YU J L, ZHOU C L. Research progress in the effect of endogenous hormones on flower bud differentiation of woody plants [J]. Journal of Qingdao Agricultural University (Natural Science), 2021, 38(2): 79−84. (in Chinese)

    [33] 张衡锋, 韦庆翠, 汤庚国. 番红花花芽分化过程中内源激素和糖含量的变化 [J]. 云南农业大学学报(自然科学), 2018, 33(4):684−689.

    ZHANG H F, WEI Q C, TANG G G. Changes in the endogenous hormones and carbohydrate contents in Crocus sativus L. during floral bud differentiation [J]. Journal of Yunnan Agricultural University (Natural Science), 2018, 33(4): 684−689. (in Chinese)

    [34]

    GUO Y Y, AN L Z, YU H Y, et al. Endogenous hormones and biochemical changes during flower development and florescence in the buds and leaves of Lycium ruthenicum Murr [J]. Forests, 2022, 13(5): 763. DOI: 10.3390/f13050763

    [35] 王明月, 曹受金, 彭继庆. 赤霉素、水杨酸和乙烯利对圆锥绣球开花及生理特性的影响 [J]. 江西农业大学学报, 2023, 45(3):605−618.

    WANG M Y, CAO S J, PENG J Q. Effects of gibberellin, salicylic acid, ethephon on flowering and physiological characteristics of Hydrangea paniculata [J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(3): 605−618. (in Chinese)

    [36]

    TURCK F, FORNARA F, COUPLAND G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage [J]. Annual Review of Plant Biology, 2008, 59: 573−594. DOI: 10.1146/annurev.arplant.59.032607.092755

    [37] 杨天一, 马利萍, 李凯, 等. 外源24-表油菜素内酯对花后苹果短枝叶片糖代谢和成花基因表达的影响 [J]. 西北农业学报, 2023, 32(4):577−584.

    YANG T Y, MA L P, LI K, et al. Effect of exogenous 24- epicastasterone on glucose metabolism and floral gene expression in apple spur leaves after flowering [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(4): 577−584. (in Chinese)

    [38] 刘朝斌, 李荣, 陈诗婷, 等. 核桃开花相关基因JrSOC1的筛选及其在开花中的作用分析 [J]. 西北林学院学报, 2023, 38(4):97−103.

    LIU C B, LI R, CHEN S T, et al. Identification of Flowering Related JrSOC1 gene in Walnut and Its Role in Flowering [J]. Journal of Northwest Forestry University, 2023, 38(4): 97−103. (in Chinese)

    [39] 张丽之, 张昕, 左希亚, 等. 外源葡萄糖对‘长富2号’苹果花芽生理分化期可溶性糖和相关基因表达的影响 [J]. 园艺学报, 2019, 46(1):11−24.

    ZHANG L Z, ZHANG X, ZUO X Y, et al. Effects of exogenous glucose treatment on soluble sugar and expression of related genes during floral bud differentiation stage in terminal SpurBuds of ‘nagafu 2’ apple [J]. Acta Horticulturae Sinica, 2019, 46(1): 11−24. (in Chinese)

    [40]

    FRAGOSO-JIMENEZ J C, NAVARRO-LOPEZ D E, BARBA-GONZALEZ R, et al. The orthologous Flowering Locus T (FT) and LEAFY (LFY) genes in the floral transition of Polianthes tuberose [J]. Acta Horticulturae, 2020, 1288: 225−229.

    [41] 杜利莎, 齐思言, 马娟娟, 等. ‘长富2号’苹果短枝幼果摘除对芽叶可溶性糖积累和成花相关基因表达的影响 [J]. 园艺学报, 2017, 44(4):622−632.

    DU L S, QI S Y, MA J J, et al. Effects of de-fruit treatment on soluble sugar accumulation and expression of flowering-related genes in terminal spur buds and leaves of ‘fuji’ apple [J]. Acta Horticulturae Sinica, 2017, 44(4): 622−632. (in Chinese)

    [42]

    BENLLOCH R, KIM M C, SAYOU C, et al. Integrating long-day flowering signals: A LEAFY binding site is essential for proper photoperiodic activation of APETALA1 [J]. The Plant Journal: for Cell and Molecular Biology, 2011, 67(6): 1094−1102. DOI: 10.1111/j.1365-313X.2011.04660.x

    [43]

    SAMARTH, LEE R, KELLY D, et al. A novel TFL1 gene induces flowering in the mast seeding alpine snow tussock, Chionochloa pallens (Poaceae) [J]. Molecular Ecology, 2022, 31(3): 822−838. DOI: 10.1111/mec.16273

    [44]

    DRABEŠOVÁ J, ČERNÁ L, MAŠTEROVÁ H, et al. The evolution of the FT/TFL1 genes in Amaranthaceae and their expression patterns in the course of vegetative growth and flowering in Chenopodium rubrum [J]. G3 Genes| Genomes| Genetics, 2016, 6(10): 3065−3076.

    [45] 王云梦, 宋贺云, 刘娟, 等. FT和TFL1基因调控植物开花的分子机理 [J]. 植物生理学报, 2022, 58(1):77−90.

    WANG Y M, SONG H Y, LIU J, et al. Molecular mechanism of FT and TFL1 genes on regulation of plant flowering [J]. Plant Physiology Journal, 2022, 58(1): 77−90. (in Chinese)

  • 期刊类型引用(1)

    1. 武潇楠,杨茜,魏丽萍,何伟忠,王成. 甜瓜MRLs增补种类及其建议值分析. 食品工业科技. 2022(06): 250-257 . 百度学术

    其他类型引用(0)

图(4)  /  表(2)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  163
  • PDF下载量:  53
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-03-04
  • 修回日期:  2024-04-03
  • 网络出版日期:  2024-06-25
  • 刊出日期:  2024-04-27

目录

/

返回文章
返回