Crop Yield, Kernel Sugar, and Three Ear-leaves of Waxy Maize
-
摘要:目的 研究糯玉米棒三叶产量和糖度的遗传规律,分析棒三叶性状与产量、糖度的相关性,评价棒三叶性状对鲜籽粒糖度的贡献,为探究棒三叶性状对品质性状的影响机制和高糖度鲜食玉米选育与提供参考。方法 以6个自交系为测验种,以15份糯玉米骨干自交系为被测种进行不完全双列杂交(NCII设计),测定杂交组合在采收期(授粉后21 d)果穗产量、籽粒可溶性糖含量(糖度),棒三叶的叶长、叶宽、叶面积,以及其他10个穗部和植株相关性状。其中穗重和糖度是主要关注的产量和品质性状,用以评价棒三叶对产量和品质的贡献;其他性状作为参考性状,用以衡量棒三叶对产量和品质的重要性。分析果穗产量、糖度的一般配合力(GCA)和特殊配合力(SCA),研究棒三叶性状与产量品质性状的关系。结果 棒三叶性状中叶片长度与果穗产量呈极显著正相关;而叶宽与糖度呈显著正相关;叶长和果穗产量狭义遗传力占比较低,以特殊配合力为主,其中穗下叶长与穗重SCA相关性强;叶宽和糖度性状狭义遗传力占比高,以一般配合力为主,而穗上叶宽的与糖度GCA相关性强。结论 棒三叶,尤其穗上叶宽可以作为选择糯玉米自交系和组配优质杂交种的依据;而叶长性状不宜作为选择高产杂交种的依据。Abstract:Objective Genetic inheritance of crop yield and kernel sugar content relating to measurements of three leaves nearby an ear on a waxy maize plant was examined for correlation to facilitate breeding and quality prediction.Methods Six inbred waxy maize lines were cross-bred with 15 key inbred lines based on an incomplete diallel hybridization of NCII design. At harvest, yield of ears, soluble sugar content of kernels, dimensions of the three leaves closest to an ear, and 10 additional traits of the hybrids were measured 21 d after pollination. Ear yield by weight and kernel sweetness by Brix were obtained. Dimensions of the leaves located above, at, and below an ear on a plant were measured to correlate with the general combining ability (GCA) and special combining ability (SCA) on kernel yield and sweetness of the hybrids passed on from their parents.Results Correlations were found between the leaf length and the ear yield and between the leaf width and the kernel sugar content. However, the narrow heritability of leaf length and ear yield was relatively low, mostly shown by the SCA on length of lower ear-leaf and weight of corn-on-the-cob. On the other hand, that of leaf width and sugar content was significant and mainly the GCA on width of upper ear-leaf and kernel sugar.Conclusion The width of upper ear-leaf grown next to an ear significantly reflected the sweetness of the kernels born on a waxy maize plant. Thus, the measurement could potentially be used as a visual, easily assessable indicator for cultivars selection in breeding and/or quality estimation in forecasting a harvest.
-
Keywords:
- waxy maize /
- yield /
- brix /
- combining ability /
- correlation analysis
-
0. 引言
【研究意义】鲜食糯玉米是指在乳熟期采摘新鲜果穗的糯玉米品种,因其味道香甜,口感软糯深受广大消费者欢迎。鲜食糯玉米是我国人民消费升级,出口创汇的重要来源[1]。随着人们生活水平不断提高,消费者对糯玉米口味的要求不断提高[2,3]。糯玉米的品质很大程度受籽粒可溶性糖含量的影响,可溶性糖含量也是采收时和采后储藏中评价糯玉米好坏的重要指标[4−6]。而检测产量性状可溶性糖含量费时费力,若通过与产量与品质性状相关性强,遗传规律类似的性状来间接选择产量和品质配合力高的玉米材料可以有效提升育种效率。【前人研究进展】棒三叶是玉米最重要的光合叶片,面积占总光合面积的44%[7]。棒三叶对玉米的产量形成发挥至关重要的作用。人为剪短叶片使穗粒数和千粒重显著减小,而剪短果穗使千粒重增加,反映出棒三叶对产量性状的直接影响[8]。糯玉米的食味品质主要受柔嫩度和糖度的影响,糖度来源于鲜籽粒中可溶性糖含量,主要是蔗糖、葡萄糖和果糖[9]。蔗糖是在源器官合成并通过维管束运输到籽粒中,棒三叶作为最重要的源器官,与籽粒可溶性糖含量有着直接联系。于凤仪等用同位素半叶饲喂试验说明同化物会优先运往特定维管束相对应的穗行当中[10]。维管束数目与叶片宽度密切相关,叶片宽度的差异直接影响同化物运输速率进而影响糖分积累速度差异[11]。【本研究切入点】然而棒三叶性状,如叶长、叶宽的变异对糯玉米的产量和品质,尤其可溶性糖的影响如何,是否可以作为育种选择的依据有待深入研究。【拟解决的关键问题】以6个自交系为测验种,15个糯玉米骨干自交系为被测系进行不完全双列杂交。分别测定去除苞叶的果穗产量(简称穗重)、糖度性状,以及22个农艺性状和穗部性状。主要考察棒三叶与鲜食糯玉米产量和品质性状的遗传规律和相关性,以此探究棒三叶在鲜食糯玉米品质形成中的作用和改良途径,为糯玉米育种材料选择提供参考。
1. 材料与方法
1.1 试验材料
6个测验种与15个骨干自交系(表1)于2021年春进行双列杂交,获得90个杂交组合。2022年4月中旬,杂交种按随机区组设计播种于四川省德阳试验基地(31°11′N,104°26′E),小区4行,每行10株,每个组合3次重复,种植密度
49500 株·hm−2,田间管理与一般生产田相同。表 1 双列杂交的自交系Table 1. Inbred lines for diallel crossing株系类型
Type of lines株系编号
ID of lines测验种 Test lines TL1,TL2,TL3,TL4,TL5,TL6 被测种 Lines tested BF2003,BF2010,BF2001,BF2002,BF2006,BF2008,BF2009,BF2012,BF2017,BF2020,BF2022,BF2029,BF2032,BF2041,BF2042 1.2 性状测量
共测定22个性状(表2)。由于多数材料散粉和吐丝的日期不一致,因此以散粉和吐丝都发生的日期作为开花期,开花后21 d采收,并以该日期为生育期终点。在散粉结束时,使用塔尺(最小刻度0.5 cm)测量株高(地面至雄穗顶端)、穗位高(地面至果穗着生的茎节);用直尺(最小刻度1.0 mm)测量棒三叶的叶长(叶片基部到顶端)和叶宽(叶片最宽处);使用量角器测穗上叶夹角(中间叶脉基部起至叶片1/3处连线与茎之间的角度);根据株高穗位高的比值计算穗位系数;根据叶长和叶宽计算叶面积(长×宽×系数0.75)。在授粉后21 d在小区中间两行避开行的两头连续采收10个果穗,称量去除苞叶果穗重量(穗重)作为产量性状,计算每个果穗平均产量;同时用直尺测量穗长,用游标卡尺(测量精度0.1 mm)测量穗粗、秃尖,并对穗行数、行粒数计数作为5个穗部性状;用ATAGO(艾拓)PAL-1糖度计测量籽粒糖度性状。其中主要关注果穗产量(穗重)、糖度与棒三叶长、宽和叶面积的遗传规律与相关性。
表 2 调查的性状Table 2. Properties for research性状类型
Type of traits性状
Traits产量性状
Yield trait穗重 Ear weight 品质性状
Quality trait糖度 Brix 穗部性状
Ear traits穗长 Ear length,穗粗 Ear diameter,穗行数 Rows per ear,行粒数 Kernel numbers per row,秃尖长 Barren tip length 农艺性状
Agronomic trait株高 Plant height, 穗位高 Ear height, 穗位系数 Ear height coefficient, 生育期 Growth period, 穗下叶宽 Lower ear leaf width, 穗下叶长 Lower ear leaf length,穗位叶宽 Ear leaf width, 穗位叶长 Ear leaf length, 穗上叶宽 Upper ear leaf width, 穗上叶长 Upper ear leaf length, 棒三叶宽 Ears three leaf width, 棒三叶长 Ears three leaf length, 穗下叶面积 Lower ear leaf area, 穗位叶面积 Ear leaf area, 穗上叶面积 Upper ear leaf area,棒三叶面积 Ear three leaf area, 穗上叶夹角 Upper ear angle 1.3 数据分析
采用DPS数据处理系统[12]进行数据分析。将原始数据整理成输入格式,分别使用软件中相关分析,NCII交叉(不完全双列杂交)试验配合力分析工具对数据进行分析。
2. 结果与分析
2.1 穗重、 糖度与其他性状的相关性
为了评价棒三叶性状对糯玉米糖度的贡献,分别计算杂交种果穗重量和糖度与其他性状的相关系数,并按高到低排列(表3)。结果显示棒三叶性状中穗下叶长和棒三叶长与穗重呈极显著正相关, 穗位叶和穗上叶叶长也与穗重呈显著相关;穗重与叶宽无显著相关。棒三叶性状中穗下叶宽、棒三叶宽、穗位叶宽与糖度呈极显著正相关,穗上叶宽与糖度呈显著正相关,而叶面积和叶长性状与糖度无显著相关。
表 3 穗重和糖度与其他性状的相关系数Table 3. Correlation coefficients between yield, quality characters and other characters性状
Properties穗重
Ear weight性状
Properties糖度
Brix穗长
Ear length0.478** 生育期
Growth period0.349** 行粒数
Kernel numbers per row0.451** 穗下叶宽
Lower ear leaf width0.314** 穗粗
Ear diameter0.410** 棒三叶宽
Ears three leaf width0.288** 穗下叶长
Lower ear leaf length0.271** 穗位叶宽
Ear leaf width0.283** 棒三叶长
Ears three leaf length0.223** 穗位
Ear height0.271** 株高
Plant height0.219* 穗位系数
Ear height coefficient0.260** 穗位叶长
Ear leaf length0.212* 株高
plant height0.217* 穗上叶长
Upper ear leaf length0.181* 穗上叶宽
Upper ear leaf width0.213* 穗位叶面积
Ear leaf area0.180* 穗下叶面积
Lower ear leaf area0.180 棒三叶面积
Ear three leaf area0.180* 穗行数
Rows per ear0.156 穗下叶面积
Lower ear leaf area0.176* 棒三叶面积
Ear three leaf area0.140 穗位
Ear height0.121 穗位叶面积
Ear leaf area0.135 穗位叶宽
Ear Leaf width0.120 穗上叶面积
Upper ear leaf area0.079 穗上叶面积
Upper ear leaf area0.159 秃尖长
Barren tip length0.072 棒三叶宽
Ears three leaf width0.116 穗下叶长
Lower ear leaf length0.048 穗上叶宽
Upper ear leaf width0.113 穗位叶长
Ear leaf length0.041 穗下叶宽
Lower ear leaf width0.097 棒三叶长
Ears three leaf length0.041 穗位系数
Ear height coefficient0.075 穗上叶夹角
Upper ear angle0.041 秃尖长
Barren tip length0.062 穗上叶长
Upper ear leaf length0.033 穗上叶夹角
Upper ear angle0.042 穗粗
Ear diameter−0.025 生育期
Growth period0.021 穗长
Ear length−0.187* 穗行数
Rows per ear−0.089 行粒数
Kernel numbers per row−0.229* 糖度
Brix−0.394** 穗重
Ear weight−0.394** *表示显著相关(P<0.05), **表示极显著相关(P<0.01)。表4~6同。
* means significant difference at 0.05 level, ** means very significant difference at 0.01 level. Same for Table 4–6.上述结果说明叶片长度尤其是穗下叶长与果穗重量关系密切。糖度与叶片宽度关系密切。这种相关性是在杂交种当中表现出来的,棒三叶性状与穗重和糖度的遗传规律还需要进一步分析。
2.2 目标性状方差分析
各个性状数据方差分析结果(表4)表明,所有性状在组合间均达极显著水平;生育期和穗下叶长在测验种、被测种组内差异均不显著,穗下叶面积、穗位叶面积和棒三叶面积在被测种(P2)组内差异不显著;穗上叶夹角、穗长、穗粗、行粒数和秃尖长这些性状在测验种(P1)组内差异不显著,其他性状P1、P2、P1×P2方差均达到显著或极显著。说明被测种株系的性状差别明显,满足遗传力和配合力分析等后续分析的条件。
表 4 方差分析表Table 4. Analysis of variance变异来源
Source of
variation穗重
Ear
weight糖度
Brix生育期
Growth
period株高
Plant
height穗位
Ear
height穗位系数
Ear height
coefficient穗下叶长
Lower ear
leaf length穗下叶宽
Lower ear
Leaf width穗位叶长
Ear leaf
length穗位叶宽
Ear leaf
width穗上叶长
Upper ear
leaf length穗上叶宽
Upper ear
leaf width组合
Combination2.64** 5.86** 10.16** 4.06** 12.34** 7.90** 6.45** 6.03** 8.56** 3.94** 9.41** 5.05** P1 1.19 4.84** 1.52 2.92** 2.68** 2.08* 1.60 3.23** 2.18* 2.77** 2.87** 1.99* P2 3.80** 8.68** 2.34 5.53** 7.84** 10.63** 1.51 10.47** 2.87* 6.16** 4.28** 8.28** P1×P2 2.23** 2.88** 8.78** 2.61** 7.49** 4.62** 5.74** 3.20** 6.63** 2.51** 6.36** 3.23** 变异来源
Source of
variation棒三叶长
Ears three
leaf length棒三叶宽
Ears three
leaf width穗下叶面积
Lower ear
leaf area穗位叶面积
Ear
leaf area穗上叶面积
Upper ear
leaf area棒三叶面积
Ear three
leaf area穗上叶夹角
Upper ear
angle穗长
Ear
length穗粗
Ear
diameter穗行数
Rows
per ear行粒数
Kernel numbers
per row秃尖长
Barren tip
length组合
Combination8.78** 5.50** 3.50** 2.81** 2.89** 2.99** 14.78** 26.99** 7.16** 10.47** 4.58** 3.27** P1 2.21* 2.82** 1.99* 2.08* 2.05* 2.00* 1.67 1.08 1.76 3.63** 1.19 1.63 P2 2.80* 8.31** 2.20 1.56 3.91* 1.91 10.85** 20.36** 8.27** 29.92 ** 7.63** 9.63** P1×P2 6.79** 3.24** 2.85** 2.34** 2.17** 2.47* 8.91** 12.85** 4.69** 3.44** 3.27** 2.07** P1:测验种;P2:被测种。
P1: test lines; P2: lines tested.2.3 目标性状配合力分析
计算每个亲本各性状的一般配合力和特殊配合力,并对各个性状的配合力进行相关性分析,结果显示对一般配合力来说,所有棒三叶相关性状与穗重均无显著相关,说明亲本棒三叶性状可能不影响穗重一般配合力;棒三叶性状与糖度虽然无显著相关,但相关系数较大,均大于0.2,从相关系数来看,穗上叶宽的一般配合力与糖度一般配合力相关性最大,大于穗下叶宽(表5)。
表 5 穗重和糖度一般配合力与其他性状的相关系数Table 5. Correlation coefficients between GCAs of yield,quality characters and other性状
Properties穗重
Ear weight性状
Properties糖度
Brix行粒数
Kernel numbers per row0.5299 *株高
Plant height0.3825 穗长
Ear length0.4893 *生育期
Growth period0.3774 穗粗
Ear diameter0.3384 穗上叶宽
Upper ear leaf width0.3573 穗上叶夹角
Upper ear angle0.0578 穗位叶宽
Ear leaf width0.3562 穗位系数
Ear height coefficient0.0416 穗位
Ear height0.3531 穗位
Ear height0.0266 棒三叶宽
Ears three leaf width0.3471 株高
Plant height− 0.0072 棒三叶面积
Ear three leaf area0.3290 秃尖长
Barren tip length− 0.0133 穗位叶面积
Ear leaf area0.3289 穗下叶宽
Lower ear leaf width− 0.0304 穗上叶面积
Upper ear leaf area0.3160 生育期
Growth period− 0.0313 穗位系数
Ear height coefficient0.3115 棒三叶宽
Ears three leaf width− 0.0549 穗下叶宽
Lower ear leaf width0.2959 穗位叶宽
Ear leaf width− 0.0623 穗下叶面积
Lower ear
leaf area0.2919 穗上叶宽
Upper ear leaf width− 0.0712 穗下叶长
Lower ear leaf length0.2202 穗下叶长
Lower ear leaf length− 0.1616 棒三叶长
Ears three leaf length0.2158 棒三叶长
Ears three leaf length− 0.1734 穗位叶长
Ear leaf length0.2130 穗位叶长
Ear leaf length− 0.1736 穗上叶长
Upper ear leaf length0.2081 穗上叶长
Upper ear leaf length− 0.1764 穗行数
Rows per ear0.1957 穗下叶面积
Lower ear leaf area− 0.1986 秃尖长
Barren tip length0.1593 棒三叶面积
Ear three leaf area− 0.2629 穗上叶夹角
Upper ear angle0.0831 穗位叶面积
Ear leaf area− 0.2671 穗粗
Ear diameter− 0.1397 穗行数
Rows per ear− 0.2818 穗长
Ear length− 0.2144 穗上叶面积
Upper ear leaf area− 0.2879 行粒数
Kernel numbers per row− 0.4604 *糖度
Brix− 0.6080 **穗重
Ear weight− 0.6080 **对特殊配合力来说,叶长和面积与穗重呈极显著正相关,叶宽与穗重无显著相关,其中穗下叶长性状和穗重间相关系数最高,说明穗下叶长和穗重的特殊配合力关系密切;相比而言,棒三叶性状与糖度无显著相关(表6),说明杂交种棒三叶宽与糖度表型的相关性不是来源于特殊配合力。
表 6 穗重和糖度特殊配合力与其他性状的相关系数Table 6. Correlation coefficients between SCAs of yield,quality characters and other characters性状
Properties穗重
Ear weight性状
Properties糖度
Brix穗粗
Ear diameter0.6156 **生育期
Growth period0.4913 **穗下叶长
Lower ear leaf
length0.4994 **秃尖长
Barren tip length0.1690 棒三叶长
Ears three leaf length0.4612 **穗下叶宽
Lower ear leaf
width0.1551 穗位叶长
Ear leaf length0.4443 **棒三叶宽
Ears three leaf width0.1437 行粒数
Kernel numbers
per row0.4339 **穗位叶宽
Ear leaf width0.1405 穗上叶长
Upper ear leaf
length0.4145 **株高
Plant height0.1125 穗长
Ear length0.4035 **穗上叶宽
Upper ear leaf
width0.1085 穗位叶面积
Ear leaf area0.3990 **穗上叶长
Upper ear leaf
length0.0751 棒三叶面积
Ear three leaf area0.3946 **穗位叶长
Ear leaf length0.0579 穗下叶面积
Lower ear leaf area0.3849 **穗长
Ear length0.0548 穗上叶面积
Upper ear leaf area0.3644 **棒三叶长
Ears three leaf
length0.0531 株高
Plant height0.2940 **穗上叶夹角
Upper ear angle0.0319 穗行数
Rows per ear0.2560 *穗位
Ear height0.0277 穗位
Ear height0.2484 *穗下叶长
Lower ear leaf
length0.0235 穗位系数
Ear height coefficient0.2167 *穗位叶面积
Ear leaf area0.0209 穗位叶宽
Ear leaf width0.1896 棒三叶面积
Ear three leaf area0.0156 穗下叶宽
Lower ear leaf
width0.1876 穗下叶面积
Lower ear leaf area0.0130 棒三叶宽
Ears three leaf
width0.1824 穗上叶面积
Upper ear leaf area0.0114 穗上叶宽
Upper ear leaf
width0.1365 穗粗
Ear diameter0.0038 秃尖长
Barren tip length0.0861 穗行数
Rows per ear− 0.0148 生育期
Growth period0.0002 穗位系数
Ear height coefficient− 0.0400 穗上叶夹角
Upper ear angle− 0.0478 行粒数
Kernel numbers
per row− 0.0573 糖度
Brix− 0.2503 *穗重
Ear weight− 0.2503 *为了考察棒三叶性状一般配合力和特殊配合力对筛选自交系的参考价值,进一步比较穗重、糖度、穗下叶长、穗下叶宽和穗上叶宽一般配合力前10位的自交系(表7)。穗重和穗下叶长的一般配合力均排名前10的自交系只有3个(BF2003、BF2022和BF2017),而且BF2017的穗重一般配合力是负值。而穗下叶宽与糖度有6个自交系均在前10(TL5、BF2020、TL3、BF2017、BF2009、BF2012),穗上叶宽与糖度有7个自交系均在前10(BF2022、TL5、BF2020、TL3、BF2017、BF2009、BF2012)。
表 7 部分自交系一般配合力Table 7. GCAs of selected lines序号
No.穗重
Ear weight序号
No.糖度
Brix序号
No.穗下叶长
Lower ear leaf length序号
No.穗下叶宽
Lower ear leaf width序号
No.穗上叶宽
Upper ear leafwidth自交系
Inbred lineGCA 自交系
Inbred lineGCA 自交系
Inbred lineGCA 自交系
Inbred lineGCA 自交系
Inbred lineGCA 1 BF2002 8.5578 1 BF2022 19.8197 1 BF2029 4.3609 1 BF2017 8.5541 1 BF2017 5.7608 2 TL4 6.7162 2 TL5 13.5624 2 BF2003 4.2357 2 BF2003 6.5657 2 TL4 4.5754 3 TL6 3.9301 3 BF2008 13.2500 3 BF2022 3.3910 3 TL5 5.9072 3 BF2003 3.2518 4 BF2006 3.0874 4 BF2020 9.6581 4 BF2032 2.2961 4 TL3 2.3816 4 BF2020 3.1181 5 BF2012 2.8835 5 TL3 8.6495 5 TL2 2.0835 5 BF2012 2.0052 5 TL3 2.1195 6 BF2041 2.2720 6 BF2032 7.0346 6 BF2017 1.6393 6 BF2042 1.7301 6 BF2012 1.4628 7 BF2003 1.6604 7 BF2029 6.3003 7 TL1 1.4453 7 BF2020 1.6190 7 BF2022 1.3019 8 BF2001 1.3206 8 BF2017 5.0624 8 TL3 0.8071 8 TL6 1.2984 8 TL5 0.9561 9 BF2022 0.2333 9 BF2009 3.3535 9 BF2042 0.6070 9 BF2009 0.4304 9 BF2009 0.7941 10 BF2017 − 0.1065 10 BF2012 2.7058 10 BF2008 0.6069 10 TL4 0.2703 10 BF2042 0.2344 糖度GCA排名前10的组合可以覆盖糖度表型前10中的7个,穗上叶宽GCA前10组配的杂交种可以覆盖糖度表型前10中的5个(TL5×BF2017,TL5×BF2022,TL3×BF2017,TL3×BF2022,TL3×BF2020),而穗下叶宽仅能覆盖3个(TL5×BF2017,TL3×BF2017,TL3×BF2020)(表8)说明穗上叶宽可以作为选择高糖度配合力的参考性状。糖度SCA前10的杂交种仅能覆盖糖度前10中的3个,说明亲本间特殊配合力对糖度的贡献较小。
表 8 糖度排名前十位组合GCA和SCA排名Table 8. Top ten combinations of GCA and SCA in sugar content ranking亲本1
P1GCA排名
GCA ranking亲本2
P2GCA排名
GCA ranking糖度
BrixSCA SCA排名
SCA rankingTL5 2 BF2017 8 13.6665 26.2870 1 TL5 2 BF2008 3 12.45 5.2003 27 TL3 5 BF2017 8 12.417 17.9510 5 TL6 11 BF2022 1 12.35 11.9733 12 TL3 5 BF2022 1 12.25 1.4229 41 TL3 5 BF2020 4 12.0835 9.8190 16 TL3 5 BF2029 7 12.083 13.1715 11 TL5 2 BF2006 16 11.8165 19.4399 3 TL5 2 BF2022 1 11.7835 - 8.4366 74 TL5 2 BF2032 6 11.6165 2.5778 35 穗重GCA前10可组配的杂交种可以覆盖穗重前10中的4个,穗下叶长GCA前10组配的杂交组合与穗重前10的组合仅TL2×BF2017这1个(表9),说明穗下叶长难以作为选择高产量配合力自交系的参考性状。穗重SCA前10的杂交种可以覆盖穗重前10种的6个,说明亲本间特殊配合力对产量的贡献较大。
表 9 穗重前十位组合GCA和SCA排名Table 9. Top 10 combinations of GCA and SCA on ear weight亲本1
P1GCA排名
GCA ranking亲本2
P2GCA排名
GCA ranking穗重
Ear weightSCA SCA排名
SCA rankingTL4 2 BF2009 14 0.311 21.1453 2 TL2 16 BF2017 10 0.295 22.0423 1 TL6 3 BF2001 8 0.295 15.0293 3 TL6 3 BF2002 1 0.2825 2.6955 33 TL4 2 BF2017 10 0.282 8.3698 14 TL6 3 BF2010 11 0.279 10.0010 10 TL6 3 BF2029 12 0.279 10.6802 6 TL4 2 BF2042 13 0.278 7.5543 15 TL2 16 BF2006 4 0.274 10.2861 8 TL6 3 BF2012 5 0.273 4.4963 26 2.4 穗重与糖度遗传力分析
对产量性状穗重、品质性状糖度的遗传力分析结果显示,穗重特殊配合力方差高于一般配合力方差,说明杂交种产量的差异主要受特殊配合力影响,与前文穗重特殊配合力分析结果一致。穗重狭义遗传力占比较低,说明育种过程中该性状难以稳定遗传给后代,需要在较高世代才能选出产量高的自交系(表10)。穗下叶长的特殊配合力方差高于一般配合力方差,且狭义遗传力占比低,与穗重遗传方式相似。糖度的一般配合力方差较大,狭义遗传力占比高,说明糖度性状主要受一般配合力影响,并且在育种过程中相比于产量,糖度性状可以更稳定地遗传给后代,在育种时可早代选择糖度高的材料,并用糖度高的自交系互相杂交可大概率获得高糖度自交系。穗下叶宽一般配合力方差高于特殊配合力方差,穗上叶宽 的一般配合力方差与特殊配合力方差相当,穗下叶宽和穗上叶宽的狭义遗传力比例均较高,与糖度的遗传方式相似。
表 10 部分性状遗传力分析表Table 10. Heritability analysis table of Part of traits(单位:%) 配合力方差估计
Variance estimation of combining ability穗重
Ear weight穗下叶长
Lower ear leaf length糖度
Brix穗下叶宽
Lower ear leaf width穗上叶宽
Upper ear leaf width一般配合力方差 Variance of GCA 28.30 13.96 63.84 59.30 48.50 特殊配合力方差 Variance of SCA 71.70 86.04 36.16 40.70 51.50 广义遗传力 h2B 46.06 73.38 72.22 73.03 68.41 狭义遗传力 hN 13.04 10.25 46.10 43.31 33.18 3. 讨论与结论
甜味是鲜食糯玉米品质的重要因素,解析甜味形成的机理能有效促进鲜食玉米的品质提升。叶片是植物的主要光合器官,玉米叶片,尤其棒三叶为籽粒提供了绝大部分光合产物。玉米籽粒的主要储藏物质淀粉,是叶片合成的蔗糖运输到胚乳中经淀粉合成途径合成的,而尚未参与淀粉合成的蔗糖与其分解成的单糖是鲜食玉米甜味的主要来源[ 3,9 ]。棒三叶性状变异对产量的影响已有大量报道,而棒三叶性状与甜味的相关性还未见报道,因此设计试验研究甜味的遗传规律和棒三叶对糯玉米甜味的贡献。
本研究分析棒三叶长、宽和面积与穗重和糖度性状相关性,结果显示棒三叶长尤其是穗下叶长与产量密切相关,而叶宽与糖度密切相关。比较棒三叶性状的配合力方差也可以发现棒三叶的长度均表现为特殊配合力起主要作用,与产量的遗传方式类似;而叶宽以一般配合力起主要作用,和糖度一致。叶长对产量的影响与先前的报道一致,剪短叶片会使穗粒数和千粒重降低[8]。但目前关于叶宽对产量和籽粒糖度的影响未见报道。叶片宽度往往与维管束的数量成正比,维管束数量影响可溶性糖从源器官向库器官果穗的运输速率[13]。采收后的果穗可溶性糖会迅速转化为淀粉导致糖度下降[14,15],可溶性糖含量是可溶性糖积累过程和淀粉合成过程动态平衡的表现,叶片宽度增加通常伴随维管束的数目增加[16,17],有利于光合产物尤其是蔗糖更多地向库器官——果穗运输[18]。
本研究分析部分糯玉米杂交种产量和甜味性状的配合力和遗传规律。根据试验结果可知糖度与产量遵循不同的遗传规律,糖度性状的狭义遗传力占比更高,说明糖度性状遗传以加性效应为主,受亲本的性状表现影响较强,而杂种优势的作用相对较弱。因此对亲本糖度选择能较大程度影响杂交组合的甜味表现,这与甜玉米糖度性状的遗传方式类似[19,20]。
本研究结果说明叶片性状尤其是穗下叶宽度与糖度具有较高的相关性,并且遗传力分析显示糖度性状狭义遗传力高,可以较稳定地遗传给后代,因此在育种群体中优先选择宽叶片的材料可以有效提高高糖度材料的比例。然而杂交种表型值相关性还不能说明叶片宽度对糖度高低具有直接贡献。一般配合力和特殊配合力的相关性分析显示糖度与穗上叶片一般配合力相关系数最高,而且穗上叶宽一般配合力高的亲本组配的杂交组合相比穗下叶宽能够覆盖更多的高糖度杂交组合,说明穗上叶宽可能是选择高糖度配合力自交系的有效参考。先前有很多关于玉米源库关系和同化物分配的研究,通过剪去整个叶片或横剪半个叶片人为控制叶片的长度和宽度来分析叶片单一性状的变化对产量的直接影响[19]。所以可以采用该方法研究叶片性状与食味品质的直接贡献。除了传统的方法,分子生物学和生物信息学手段也能够帮助我们更好地理解棒三叶性状变异的分子机理,进而阐明其与鲜食玉米品质性状的深层联系[21]。
综上,本研究通过分析棒三叶与玉米食味品质性状的关系,说明叶片宽度尤其是穗上叶宽度与糖度关系密切,叶片性状可以作为糯玉米品质育种的间接指标,并且为糯玉米的品质育种提供新的思路。
-
表 1 双列杂交的自交系
Table 1 Inbred lines for diallel crossing
株系类型
Type of lines株系编号
ID of lines测验种 Test lines TL1,TL2,TL3,TL4,TL5,TL6 被测种 Lines tested BF2003,BF2010,BF2001,BF2002,BF2006,BF2008,BF2009,BF2012,BF2017,BF2020,BF2022,BF2029,BF2032,BF2041,BF2042 表 2 调查的性状
Table 2 Properties for research
性状类型
Type of traits性状
Traits产量性状
Yield trait穗重 Ear weight 品质性状
Quality trait糖度 Brix 穗部性状
Ear traits穗长 Ear length,穗粗 Ear diameter,穗行数 Rows per ear,行粒数 Kernel numbers per row,秃尖长 Barren tip length 农艺性状
Agronomic trait株高 Plant height, 穗位高 Ear height, 穗位系数 Ear height coefficient, 生育期 Growth period, 穗下叶宽 Lower ear leaf width, 穗下叶长 Lower ear leaf length,穗位叶宽 Ear leaf width, 穗位叶长 Ear leaf length, 穗上叶宽 Upper ear leaf width, 穗上叶长 Upper ear leaf length, 棒三叶宽 Ears three leaf width, 棒三叶长 Ears three leaf length, 穗下叶面积 Lower ear leaf area, 穗位叶面积 Ear leaf area, 穗上叶面积 Upper ear leaf area,棒三叶面积 Ear three leaf area, 穗上叶夹角 Upper ear angle 表 3 穗重和糖度与其他性状的相关系数
Table 3 Correlation coefficients between yield, quality characters and other characters
性状
Properties穗重
Ear weight性状
Properties糖度
Brix穗长
Ear length0.478** 生育期
Growth period0.349** 行粒数
Kernel numbers per row0.451** 穗下叶宽
Lower ear leaf width0.314** 穗粗
Ear diameter0.410** 棒三叶宽
Ears three leaf width0.288** 穗下叶长
Lower ear leaf length0.271** 穗位叶宽
Ear leaf width0.283** 棒三叶长
Ears three leaf length0.223** 穗位
Ear height0.271** 株高
Plant height0.219* 穗位系数
Ear height coefficient0.260** 穗位叶长
Ear leaf length0.212* 株高
plant height0.217* 穗上叶长
Upper ear leaf length0.181* 穗上叶宽
Upper ear leaf width0.213* 穗位叶面积
Ear leaf area0.180* 穗下叶面积
Lower ear leaf area0.180 棒三叶面积
Ear three leaf area0.180* 穗行数
Rows per ear0.156 穗下叶面积
Lower ear leaf area0.176* 棒三叶面积
Ear three leaf area0.140 穗位
Ear height0.121 穗位叶面积
Ear leaf area0.135 穗位叶宽
Ear Leaf width0.120 穗上叶面积
Upper ear leaf area0.079 穗上叶面积
Upper ear leaf area0.159 秃尖长
Barren tip length0.072 棒三叶宽
Ears three leaf width0.116 穗下叶长
Lower ear leaf length0.048 穗上叶宽
Upper ear leaf width0.113 穗位叶长
Ear leaf length0.041 穗下叶宽
Lower ear leaf width0.097 棒三叶长
Ears three leaf length0.041 穗位系数
Ear height coefficient0.075 穗上叶夹角
Upper ear angle0.041 秃尖长
Barren tip length0.062 穗上叶长
Upper ear leaf length0.033 穗上叶夹角
Upper ear angle0.042 穗粗
Ear diameter−0.025 生育期
Growth period0.021 穗长
Ear length−0.187* 穗行数
Rows per ear−0.089 行粒数
Kernel numbers per row−0.229* 糖度
Brix−0.394** 穗重
Ear weight−0.394** *表示显著相关(P<0.05), **表示极显著相关(P<0.01)。表4~6同。
* means significant difference at 0.05 level, ** means very significant difference at 0.01 level. Same for Table 4–6.表 4 方差分析表
Table 4 Analysis of variance
变异来源
Source of
variation穗重
Ear
weight糖度
Brix生育期
Growth
period株高
Plant
height穗位
Ear
height穗位系数
Ear height
coefficient穗下叶长
Lower ear
leaf length穗下叶宽
Lower ear
Leaf width穗位叶长
Ear leaf
length穗位叶宽
Ear leaf
width穗上叶长
Upper ear
leaf length穗上叶宽
Upper ear
leaf width组合
Combination2.64** 5.86** 10.16** 4.06** 12.34** 7.90** 6.45** 6.03** 8.56** 3.94** 9.41** 5.05** P1 1.19 4.84** 1.52 2.92** 2.68** 2.08* 1.60 3.23** 2.18* 2.77** 2.87** 1.99* P2 3.80** 8.68** 2.34 5.53** 7.84** 10.63** 1.51 10.47** 2.87* 6.16** 4.28** 8.28** P1×P2 2.23** 2.88** 8.78** 2.61** 7.49** 4.62** 5.74** 3.20** 6.63** 2.51** 6.36** 3.23** 变异来源
Source of
variation棒三叶长
Ears three
leaf length棒三叶宽
Ears three
leaf width穗下叶面积
Lower ear
leaf area穗位叶面积
Ear
leaf area穗上叶面积
Upper ear
leaf area棒三叶面积
Ear three
leaf area穗上叶夹角
Upper ear
angle穗长
Ear
length穗粗
Ear
diameter穗行数
Rows
per ear行粒数
Kernel numbers
per row秃尖长
Barren tip
length组合
Combination8.78** 5.50** 3.50** 2.81** 2.89** 2.99** 14.78** 26.99** 7.16** 10.47** 4.58** 3.27** P1 2.21* 2.82** 1.99* 2.08* 2.05* 2.00* 1.67 1.08 1.76 3.63** 1.19 1.63 P2 2.80* 8.31** 2.20 1.56 3.91* 1.91 10.85** 20.36** 8.27** 29.92 ** 7.63** 9.63** P1×P2 6.79** 3.24** 2.85** 2.34** 2.17** 2.47* 8.91** 12.85** 4.69** 3.44** 3.27** 2.07** P1:测验种;P2:被测种。
P1: test lines; P2: lines tested.表 5 穗重和糖度一般配合力与其他性状的相关系数
Table 5 Correlation coefficients between GCAs of yield,quality characters and other
性状
Properties穗重
Ear weight性状
Properties糖度
Brix行粒数
Kernel numbers per row0.5299 *株高
Plant height0.3825 穗长
Ear length0.4893 *生育期
Growth period0.3774 穗粗
Ear diameter0.3384 穗上叶宽
Upper ear leaf width0.3573 穗上叶夹角
Upper ear angle0.0578 穗位叶宽
Ear leaf width0.3562 穗位系数
Ear height coefficient0.0416 穗位
Ear height0.3531 穗位
Ear height0.0266 棒三叶宽
Ears three leaf width0.3471 株高
Plant height− 0.0072 棒三叶面积
Ear three leaf area0.3290 秃尖长
Barren tip length− 0.0133 穗位叶面积
Ear leaf area0.3289 穗下叶宽
Lower ear leaf width− 0.0304 穗上叶面积
Upper ear leaf area0.3160 生育期
Growth period− 0.0313 穗位系数
Ear height coefficient0.3115 棒三叶宽
Ears three leaf width− 0.0549 穗下叶宽
Lower ear leaf width0.2959 穗位叶宽
Ear leaf width− 0.0623 穗下叶面积
Lower ear
leaf area0.2919 穗上叶宽
Upper ear leaf width− 0.0712 穗下叶长
Lower ear leaf length0.2202 穗下叶长
Lower ear leaf length− 0.1616 棒三叶长
Ears three leaf length0.2158 棒三叶长
Ears three leaf length− 0.1734 穗位叶长
Ear leaf length0.2130 穗位叶长
Ear leaf length− 0.1736 穗上叶长
Upper ear leaf length0.2081 穗上叶长
Upper ear leaf length− 0.1764 穗行数
Rows per ear0.1957 穗下叶面积
Lower ear leaf area− 0.1986 秃尖长
Barren tip length0.1593 棒三叶面积
Ear three leaf area− 0.2629 穗上叶夹角
Upper ear angle0.0831 穗位叶面积
Ear leaf area− 0.2671 穗粗
Ear diameter− 0.1397 穗行数
Rows per ear− 0.2818 穗长
Ear length− 0.2144 穗上叶面积
Upper ear leaf area− 0.2879 行粒数
Kernel numbers per row− 0.4604 *糖度
Brix− 0.6080 **穗重
Ear weight− 0.6080 **表 6 穗重和糖度特殊配合力与其他性状的相关系数
Table 6 Correlation coefficients between SCAs of yield,quality characters and other characters
性状
Properties穗重
Ear weight性状
Properties糖度
Brix穗粗
Ear diameter0.6156 **生育期
Growth period0.4913 **穗下叶长
Lower ear leaf
length0.4994 **秃尖长
Barren tip length0.1690 棒三叶长
Ears three leaf length0.4612 **穗下叶宽
Lower ear leaf
width0.1551 穗位叶长
Ear leaf length0.4443 **棒三叶宽
Ears three leaf width0.1437 行粒数
Kernel numbers
per row0.4339 **穗位叶宽
Ear leaf width0.1405 穗上叶长
Upper ear leaf
length0.4145 **株高
Plant height0.1125 穗长
Ear length0.4035 **穗上叶宽
Upper ear leaf
width0.1085 穗位叶面积
Ear leaf area0.3990 **穗上叶长
Upper ear leaf
length0.0751 棒三叶面积
Ear three leaf area0.3946 **穗位叶长
Ear leaf length0.0579 穗下叶面积
Lower ear leaf area0.3849 **穗长
Ear length0.0548 穗上叶面积
Upper ear leaf area0.3644 **棒三叶长
Ears three leaf
length0.0531 株高
Plant height0.2940 **穗上叶夹角
Upper ear angle0.0319 穗行数
Rows per ear0.2560 *穗位
Ear height0.0277 穗位
Ear height0.2484 *穗下叶长
Lower ear leaf
length0.0235 穗位系数
Ear height coefficient0.2167 *穗位叶面积
Ear leaf area0.0209 穗位叶宽
Ear leaf width0.1896 棒三叶面积
Ear three leaf area0.0156 穗下叶宽
Lower ear leaf
width0.1876 穗下叶面积
Lower ear leaf area0.0130 棒三叶宽
Ears three leaf
width0.1824 穗上叶面积
Upper ear leaf area0.0114 穗上叶宽
Upper ear leaf
width0.1365 穗粗
Ear diameter0.0038 秃尖长
Barren tip length0.0861 穗行数
Rows per ear− 0.0148 生育期
Growth period0.0002 穗位系数
Ear height coefficient− 0.0400 穗上叶夹角
Upper ear angle− 0.0478 行粒数
Kernel numbers
per row− 0.0573 糖度
Brix− 0.2503 *穗重
Ear weight− 0.2503 *表 7 部分自交系一般配合力
Table 7 GCAs of selected lines
序号
No.穗重
Ear weight序号
No.糖度
Brix序号
No.穗下叶长
Lower ear leaf length序号
No.穗下叶宽
Lower ear leaf width序号
No.穗上叶宽
Upper ear leafwidth自交系
Inbred lineGCA 自交系
Inbred lineGCA 自交系
Inbred lineGCA 自交系
Inbred lineGCA 自交系
Inbred lineGCA 1 BF2002 8.5578 1 BF2022 19.8197 1 BF2029 4.3609 1 BF2017 8.5541 1 BF2017 5.7608 2 TL4 6.7162 2 TL5 13.5624 2 BF2003 4.2357 2 BF2003 6.5657 2 TL4 4.5754 3 TL6 3.9301 3 BF2008 13.2500 3 BF2022 3.3910 3 TL5 5.9072 3 BF2003 3.2518 4 BF2006 3.0874 4 BF2020 9.6581 4 BF2032 2.2961 4 TL3 2.3816 4 BF2020 3.1181 5 BF2012 2.8835 5 TL3 8.6495 5 TL2 2.0835 5 BF2012 2.0052 5 TL3 2.1195 6 BF2041 2.2720 6 BF2032 7.0346 6 BF2017 1.6393 6 BF2042 1.7301 6 BF2012 1.4628 7 BF2003 1.6604 7 BF2029 6.3003 7 TL1 1.4453 7 BF2020 1.6190 7 BF2022 1.3019 8 BF2001 1.3206 8 BF2017 5.0624 8 TL3 0.8071 8 TL6 1.2984 8 TL5 0.9561 9 BF2022 0.2333 9 BF2009 3.3535 9 BF2042 0.6070 9 BF2009 0.4304 9 BF2009 0.7941 10 BF2017 − 0.1065 10 BF2012 2.7058 10 BF2008 0.6069 10 TL4 0.2703 10 BF2042 0.2344 表 8 糖度排名前十位组合GCA和SCA排名
Table 8 Top ten combinations of GCA and SCA in sugar content ranking
亲本1
P1GCA排名
GCA ranking亲本2
P2GCA排名
GCA ranking糖度
BrixSCA SCA排名
SCA rankingTL5 2 BF2017 8 13.6665 26.2870 1 TL5 2 BF2008 3 12.45 5.2003 27 TL3 5 BF2017 8 12.417 17.9510 5 TL6 11 BF2022 1 12.35 11.9733 12 TL3 5 BF2022 1 12.25 1.4229 41 TL3 5 BF2020 4 12.0835 9.8190 16 TL3 5 BF2029 7 12.083 13.1715 11 TL5 2 BF2006 16 11.8165 19.4399 3 TL5 2 BF2022 1 11.7835 - 8.4366 74 TL5 2 BF2032 6 11.6165 2.5778 35 表 9 穗重前十位组合GCA和SCA排名
Table 9 Top 10 combinations of GCA and SCA on ear weight
亲本1
P1GCA排名
GCA ranking亲本2
P2GCA排名
GCA ranking穗重
Ear weightSCA SCA排名
SCA rankingTL4 2 BF2009 14 0.311 21.1453 2 TL2 16 BF2017 10 0.295 22.0423 1 TL6 3 BF2001 8 0.295 15.0293 3 TL6 3 BF2002 1 0.2825 2.6955 33 TL4 2 BF2017 10 0.282 8.3698 14 TL6 3 BF2010 11 0.279 10.0010 10 TL6 3 BF2029 12 0.279 10.6802 6 TL4 2 BF2042 13 0.278 7.5543 15 TL2 16 BF2006 4 0.274 10.2861 8 TL6 3 BF2012 5 0.273 4.4963 26 表 10 部分性状遗传力分析表
Table 10 Heritability analysis table of Part of traits
(单位:%) 配合力方差估计
Variance estimation of combining ability穗重
Ear weight穗下叶长
Lower ear leaf length糖度
Brix穗下叶宽
Lower ear leaf width穗上叶宽
Upper ear leaf width一般配合力方差 Variance of GCA 28.30 13.96 63.84 59.30 48.50 特殊配合力方差 Variance of SCA 71.70 86.04 36.16 40.70 51.50 广义遗传力 h2B 46.06 73.38 72.22 73.03 68.41 狭义遗传力 hN 13.04 10.25 46.10 43.31 33.18 -
[1] 赵久然, 卢柏山, 史亚兴, 等. 我国糯玉米育种及产业发展动态 [J]. 玉米科学, 2016, 24(4):67−71. ZHAO J R, LU B S, SHI Y X, et al. Development trends of waxy corn breeding and industry in China [J]. Journal of Maize Sciences, 2016, 24(4): 67−71. (in Chinese)
[2] 史振声. 鲜食玉米品种品质评价及标准的探讨 [J]. 玉米科学, 2006, 14(6):69−70. DOI: 10.3969/j.issn.1005-0906.2006.06.018 SHI Z S. Evaluation of fresh food corn varieties and quality standards [J]. Journal of Maize Sciences, 2006, 14(6): 69−70. (in Chinese) DOI: 10.3969/j.issn.1005-0906.2006.06.018
[3] GONG K J, CHEN L R. Characterization of carbohydrates and their metabolizing enzymes related to the eating quality of postharvest fresh waxy corn [J]. Journal of Food Biochemistry, 2013, 37(5): 619−627. DOI: 10.1111/jfbc.12015
[4] 王綦. 鲜食糯玉米食用品质评价及影响机制研究[D]. 无锡: 江南大学, 2022 WANG Q. Study on the evaluation and influence mechanism of edible quality of fresh waxy corn[D]. Wuxi: Jiangnan University, 2022. (in Chinese)
[5] 史振声, 李昆, 朱敏. 鲜食糯玉米的果皮性状研究 [J]. 玉米科学, 2014, 22(5):47−51. DOI: 10.3969/j.issn.1005-0906.2014.05.009 SHI Z S, LI K, ZHU M. Pericarp characteristics of fresh waxy corn [J]. Journal of Maize Sciences, 2014, 22(5): 47−51. (in Chinese) DOI: 10.3969/j.issn.1005-0906.2014.05.009
[6] 李昊, 刘景圣, 王浩, 等. 鲜食糯玉米贮藏过程中可溶性糖含量变化的研究[J]. 中国食物与营养, 2014, 20(3): 23-27. LI H, LIU J S, WANG H, et al. Changes of soluble sugar content in fresh corn in the process of storage[J]. Food and Nutrition in China, 2014, 20(3): 23-27. (in Chinese) 2014, 20(3): 23−27. (in Chinese)
[7] 许海涛, 许波, 王友华, 等. 棒三叶对夏玉米光合生理特性、 籽粒发育和产量性状的影响 [J]. 陕西农业科学, 2018, 64(7):6−10. DOI: 10.3969/j.issn.0488-5368.2018.07.002 XU H T, XU B, WANG Y H, et al. Effects of three ear-leaves on photosynthetic physiological characteristic, grain development and yield characters in summer maize [J]. Shaanxi Journal of Agricultural Sciences, 2018, 64(7): 6−10. (in Chinese) DOI: 10.3969/j.issn.0488-5368.2018.07.002
[8] 陆卫平, 陈国平, 郭景伦, 等. 不同生态条件下玉米产量源库关系的研究[J]. 作物学报, 1997, 23(6): 727−733. LU W P, CHEN G P, GUO J L, et al. Study on the source and sink in relation to grain yield under different ecological areas in maize (Zea mays L. ) [J]. Acta Agronomica Sinica, 1997, 23(6): 727−733. (in Chinese)
[9] 任梦云, 杜龙岗, 王美兴, 等. 糯玉米可溶性糖组分特征与采后品质特性 [J]. 浙江农业学报, 2022, 34(6):1133−1140. DOI: 10.3969/j.issn.1004-1524.2022.06.04 REN M Y, DU L G, WANG M X, et al. Characteristics of soluble sugar components in waxy corn and its postharvest quality [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1133−1140. (in Chinese) DOI: 10.3969/j.issn.1004-1524.2022.06.04
[10] 于凤义, 张萍, 周洪杰, 等. 玉米功能叶片碳同化物在果穗不同部位籽粒中的分配 [J]. 核农学报, 1996, 10(1):35−38. YU F Y, ZHANG P, ZHOU H J, et al. Distribution of carbon assimilates in functional leaves of maize in different parts of ear [J]. Journal of Nuclear Agricultural Sciences, 1996, 10(1): 35−38. (in Chinese)
[11] WANG B B, ZHU Y B, ZHU J J, et al. Identification and fine-mapping of a major maize leaf width QTL in a re-sequenced large recombinant inbred lines population [J]. Frontiers in Plant Science, 2018, 9: 101. DOI: 10.3389/fpls.2018.00101
[12] 徐伟, 季索菲. DPS数据处理系统在生物统计分析中的应用 [J]. 榆林学院学报, 2014, 24(4):24−27. DOI: 10.3969/j.issn.1008-3871.2014.04.006 XU W, JI S F. Applications of DPS (data processing system) in biostatistical analysis [J]. Journal of Yulin University, 2014, 24(4): 24−27. (in Chinese) DOI: 10.3969/j.issn.1008-3871.2014.04.006
[13] 周驰燕, 李国辉, 许轲, 等. 不同类型水稻品种茎叶维管束与同化物运转特征 [J]. 作物学报, 2022, 48(8):2053−2065. ZHOU C Y, LI G H, XU K, et al. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053−2065. (in Chinese)
[14] KETTHAISONG D, SURIHARN B, TANGWONGCHAI R, et al. Changes in physicochemical properties of waxy corn starches at different stages of harvesting [J]. Carbohydrate Polymers, 2013, 98(1): 241−248. DOI: 10.1016/j.carbpol.2013.06.016
[15] HUANG H B, DANAO M G C, RAUSCH K D, et al. Diffusion and production of carbon dioxide in bulk corn at various temperatures and moisture contents [J]. Journal of Stored Products Research, 2013, 55: 21−26. DOI: 10.1016/j.jspr.2013.07.002
[16] CHO S H, YOO S C, ZHANG H T, et al. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development [J]. The New Phytologist, 2013, 198(4): 1071−1084. DOI: 10.1111/nph.12231
[17] 吕游, 农彩燕. 甜玉米自交系可溶性糖含量配合力及遗传参数分析[J]. 农业研究与应用, 2015(5): 8-12. LYU Y, NONG C Y. Study on combining ability and genetic parameters of soluble sugar concentration in sweet corn inbred lines[J]. Agricultural Research and Application, 2015(5): 8-12. (in Chinese)
[18] 姚文华, 张帮洪, 尹兴福, 等. 超甜玉米可溶性糖含量配合力分析 [J]. 西南农业学报, 2018, 31(6):1116−1121. YAO W H, ZHANG B H, YIN X F, et al. Genetic combining ability analysis of soluble sugar content in super-sweet corn [J]. Southwest China Journal of Agricultural Sciences, 2018, 31(6): 1116−1121. (in Chinese)
[19] YOU J, XIAO W W, ZHOU Y, et al. The apc/ctad1-wide leaf 1-narrow leaf 1 pathway controls leaf width in rice [J]. The Plant Cell, 2022, 34(11): 4313−4328. DOI: 10.1093/plcell/koac232
[20] 王婷, 饶春富, 王友德, 等. 减源缩库与玉米产量关系的研究 [J]. 玉米科学, 2000, 8(2):67−69. DOI: 10.3969/j.issn.1005-0906.2000.02.021 WANG T, RAO C F, WANG Y D, et al. Study on relationships between grain yield and reduced source and pool in maize [J]. Journal of Maize Sciences, 2000, 8(2): 67−69. (in Chinese) DOI: 10.3969/j.issn.1005-0906.2000.02.021
[21] 白明兴, 陆晏天, 庄泽龙, 等. 玉米棒三叶叶型性状的全基因组关联分析 [J]. 分子植物育种, 2022, 20(8):2463−2477. BAI M X, LU Y T, ZHUANG Z L, et al. Genome-wide association analysis of three ear leaves leaf type traits in maize [J]. Molecular Plant Breeding, 2022, 20(8): 2463−2477. (in Chinese)
计量
- 文章访问数: 142
- HTML全文浏览量: 40
- PDF下载量: 100