• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

莲草直胸跳甲取食密度对空心莲子草克隆整合能力的影响

李月华, 周钰航, 吴浩海, 郑伟, 李晓琼

李月华,周钰航,吴浩海,等. 莲草直胸跳甲取食密度对空心莲子草克隆整合能力的影响 [J]. 福建农业学报,2024,39(10):1189−1197. DOI: 10.19303/j.issn.1008-0384.2024.10.010
引用本文: 李月华,周钰航,吴浩海,等. 莲草直胸跳甲取食密度对空心莲子草克隆整合能力的影响 [J]. 福建农业学报,2024,39(10):1189−1197. DOI: 10.19303/j.issn.1008-0384.2024.10.010
LI Y H, ZHOU Y H, WU H H, et al. Clonal Integration of Alternanthera philoxeroides Affected by Agasicles hygrophila Population [J]. Fujian Journal of Agricultural Sciences,2024,39(10):1189−1197. DOI: 10.19303/j.issn.1008-0384.2024.10.010
Citation: LI Y H, ZHOU Y H, WU H H, et al. Clonal Integration of Alternanthera philoxeroides Affected by Agasicles hygrophila Population [J]. Fujian Journal of Agricultural Sciences,2024,39(10):1189−1197. DOI: 10.19303/j.issn.1008-0384.2024.10.010

莲草直胸跳甲取食密度对空心莲子草克隆整合能力的影响

基金项目: 大学生创新创业训练计划项目(202310593105);广西自然科学基金项目(2024GXNSFAA010457);广西研究生教育创新计划项目 (YCSW2023017)
详细信息
    作者简介:

    李月华(2004 —),女,研究方向为植物与昆虫的相互作用及协同进化,E-mail:3053757645@qq.com

    通讯作者:

    李晓琼(1986− ),女,副教授,博士,主要从事植物与昆虫的互作及外来入侵生物的入侵机理研究,E-mail: lixiaoqiong100@163.com

  • 中图分类号: S435

Clonal Integration of Alternanthera philoxeroides Affected by Agasicles hygrophila Population

  • 摘要:
    目的 

    探明莲草直胸跳甲取食密度对空心莲子草克隆整合能力的影响,为空心莲子草的防治提供依据。

    方法 

    以入侵植物空心莲子草为研究对象,通过同质园试验,比较在不同莲草直胸跳甲取食密度下(无取食、1头·株−1或2头·株−1)、有无克隆整合对空心莲子草先端分株、基端分株及整个克隆片段地上部分生长特性、根系生长及生物量分配的影响差异。

    结果 

    与无跳甲取食相比,有跳甲取食的空心莲子草先端分株的叶片数、地上生物量、地下生物量、总生物量、粗根数以及整个克隆片段的地下生物量均显著降低。有克隆整合的空心莲子草先端分株的叶片数、粗根数、总根数、地上生物量、地下生物量、总生物量和基端分株的地径,以及整个克隆片段的地径、地上生物量、地下生物量、总生物量与无克隆整合的相比均显著增加。在较低密度(1头·株−1)莲草直胸跳甲取食下,有克隆整合的空心莲子草先端分株的粗根数和基端分株的地径及整个克隆片段的地径、粗根数、地上生物量与无克隆整合相比均显著增加;然而,在高密度(2头·株−1)莲草直胸跳甲取食下,有克隆整合的空心莲子草先端分株和基端分株的地径、粗根数、地上生物量与无克隆整合的相比无显著差异,整个克隆整合片段的叶片数、茎长、地径与无克隆整合的相比显著增加。

    结论 

    莲草直胸跳甲取食密度对空心莲子草的克隆整合能力产生显著影响:在无天敌取食或较低密度(1头·株−1)的天敌取食下,空心莲子草能通过克隆整合显著获益;但高密度(2头·株−1)莲草直胸跳甲能极大减弱空心莲子草的克隆整合能力,从而实现莲草直胸跳甲对空心莲子草的有效生物防治。

    Abstract:
    Objective 

    Clonal integration of alligator weed (Alternanthera philoxeroid) affected by the density of flea beetles (Agasicles hygrophila) population on site was studied to understand how the plants alleviate feeding pressure of the natural enemy.

    Methods 

    In a field study on gardens of similar properties, A. philoxeroides was exposed to A. hygrophila in varying population densities (no beetles, one beetle per weed plant or two beeltes per weed plant) to examine the clonal integration of the weed in response. Plant and root growth, apical and basal ramets biomasses, and clonal fragment of the weed were monitored.

    Results 

    The aboveground, belowground, and total biomasses, the counts of leaves and thick roots of apical ramets, and the belowground biomass of entire clonal fragment of the alligator weed on the field under herbivory of A. hygrophila were significantly lower than that free of the beetles. The numbers of leaves, thick roots, and total roots and the above-, belowground, and total biomasses of apical ramets, the diameters of basal ramets and belowground stem, the above-, belowground, and total biomasses of entire clonal fragment of the alligator weed were significantly higher with the existence of the clonal integration than without. In the presence of one beetle per weed plant, the number of thick apical ramet roots, belowground stem girth of basal ramets, and belowground stem girth, thick root count, and aboveground biomass of entire clonal fragment of the weed were significantly higher with clonal integration than without. However, when the density of the beetles increased to two on a plant with clonal integration, even though no significant differences in the belowground stem diameter, thick root count, and aboveground biomass of apical and basal ramets, the leaf count, stem length, and belowground stem girth of the entire clonal fragment were significantly greater than the weed with no clonal integration.

    Conclusion 

    The density of A. hygrophila presented in an alligator weed growing area significantly affected the capacity of the weed clonal integration to curtail the feeding by the beetles. The weed could significantly mitigate the herbivorous act with the clone integration when the A. hygrophila population remained relatively low, e.g., one beetle per plant. But as the beetle density increased to two per plant, the effectiveness of the clonal integration of the weed diminished significantly, thereby effective biological control of the alligator weed proliferation could be achieved.

  • 【研究意义】克隆植物是指能通过无性生殖形成后代的一类植物个体,后代间具有一致的遗传、相对独立的性状和生理[1]。很大一部分的外来入侵植物都是具有强大克隆繁殖能力的克隆植物[2],我国的克隆入侵植物占入侵植物总数的44%[3],例如水葫芦[Eichhornia crassipes (Mart.) Solms] 、五爪金龙[Ipomoea cairica (L.) Sweet]等均是克隆入侵植物[4]。克隆整合(克隆植物通过互连分株实现资源的共享与转移)是克隆植物的一种重要属性[5],研究克隆整合对入侵克隆植物的影响有助于阐明其与入侵性间的关系。【前人研究进展】研究表明,克隆整合与外来克隆植物入侵性紧密相关[6]。克隆整合可促进高浓度重金属镉胁迫条件下克隆植物的生长,缓解镉胁迫对植株光合特性造成的伤害,并通过克隆植物子节生长实现对镉的富集[7]。克隆整合还可显著提高不同水分条件下克隆植物的生长和光合性能[8]。此外,克隆整合在入侵植物适应不同养分条件及对分株能量损失作出应答中发挥着重要作用[9]。目前,关于克隆整合的研究多集中在同质或异质环境(如光照、水、养分等)下克隆整合对克隆植物生长、光合性能的影响[1013],比较植食性天敌取食下有无克隆整合对入侵植物生长影响的研究相对较少[14,15]。空心莲子草[Alternanthera philoxeroides (Mart.)]是一种起源于南美洲的水陆两栖克隆入侵植物[16]。因其具有极强的环境适应能力,已被我国列入首批16种恶性入侵物种之一[17]。空心莲子草可通过克隆整合在分株间实现物质运输和资源共享,从而增强分株及整个克隆植物在自然环境中的适应性[18],挤占本土植物的区域生态位[11]。与本地种相比,克隆整合更有利于空心莲子草在异质性环境中的生长[10,1820]。虽有一些研究比较了克隆整合对空心莲子草耐受天敌取食的生态意义[19],然而目前对空心莲子草克隆整合能力与缓解天敌取食压力间关系的认识尚不统一[10,21]。空心莲子草在受到天敌取食胁迫时,为缓解受到的取食压力所发挥的克隆整合作用大小可能受其他食草动物(如土壤中的线虫)的潜在影响[22],也与天敌的释放量和发育的不同形态(成虫或者幼虫)及所取食部位有关[23]。【本研究切入点】为了防治空心莲子草,我国从美国佛罗里达引入空心莲子草的专食性天敌莲草直胸跳甲(Agasicles hygrophila Selman & Vogt),该跳甲对水生型空心莲子草的生物防治取得初步成效,但对我国陆生型空心莲子草的防治效果并不理想[24]。研究表明,空心莲子草先端分株虽能通过克隆整合缓解莲草直胸跳甲的取食压力,但在整个克隆片段水平上并未能通过克隆整合显著获益[14]。随着天敌释放密度的增加,莲草直胸跳甲对空心莲子草的防治效果也随之增加[23]。然而,空心莲子草的克隆整合能力与莲草直胸跳甲取食密度间的关系尚不明确。【拟解决的关键问题】本研究通过设置不同莲草直胸跳甲取食密度处理及有无克隆整合处理,探究天敌取食密度对空心莲子草克隆整合能力的影响研究,以期揭示外来克隆入侵植物的生理生态机制,并为入侵植物的生物防治提供理论依据。

    空心莲子草的扦插育苗参照陈燕丽等[25] 的方法。选取数株长势良好的空心莲子草,剪成若干长约4 cm、带有1个茎节的茎段。将剪好的茎段插入装有混合灭菌土壤[V(壤土)∶V(草炭土)=1∶1]的苗盘中。在茎段插入苗盘30 d后,选取长约25 cm、含有4个茎节和1个茎尖的空心莲子草匍匐茎,将带有茎尖的2个茎节(先端分株)和带有2个较老茎节的基端(基端分株)分别种植在相邻两个花盆(直径25 cm、高16 cm)中,用100目的防虫网单独罩住所有花盆,以隔绝其他昆虫。

    莲草直胸跳甲成虫从野外采集,放入装有新鲜空心莲子草植株的塑料盒中(直径10 cm,高度18 cm, 覆盖纱布),于25~27 ℃饲养。待成虫产卵后,用新鲜的空心莲子草叶子饲养新孵幼虫至化蛹。将新羽化的雄性成虫单独饲养,选取健康的3日龄雄虫用于后续试验。

    同质园试验在广西大学林学院苗圃开展。试验期间,苗圃白天温度28~33 ℃,夜间温度24~28 ℃,相对湿度50%~75%。试验包括2种克隆整合处理(连接、剪断)、3种莲草直胸跳甲取食密度处理(无取食、1头·株−1莲草直胸跳甲取食、2头·株−1莲草直胸跳甲取食),共计6个处理,每处理6次重复。加上先端分株和基端分株,共72盆植株。移栽30 d后,克隆整合处理是将先端分株和基端分株保持连接,无克隆整合处理组则将先端分株和基端分株剪断。然后将1头和2头莲草直胸跳甲成虫分别释放到对应处理的空心莲子草先端分株上,对照组植株不放虫。15 d后移走成虫,收获植物。

    收获植物前,统计植物先端和基端的叶片数和分株数,用卷尺和游标卡尺分别测定先端和基端的茎长和地径。分别统计粗根(直径≥2 mm)、细根(直径<2 mm)的数量,计算总根数。收获先端和基端的地上和地下部分,置于60 ℃的烘箱中烘干至恒重。分别称量先端和基端分株的地上生物量和地下生物量,计算总生物量。整个克隆片段的生长指标及生物量指标为先端分株与基端分株相应指标之和。

    采用双因素方差分析(Two-way ANOVA)方法分析克隆整合处理、莲草直胸跳甲取食密度及两者的交互作用对空心莲子草先端分株、基端分株和整个克隆片段的生长特性(叶片数、茎长、地径、分株数)、根数(粗根数、细根数、总根数)和生物量(地上生物量、地下生物量、总生物量)的影响。显著性水平设为P < 0.05,对差异显著的效应因子用Tukey法进行多重比较。所有数据统计采用SPSS 27. 0完成,并采用SigmaPlot 14. 0软件作图。

    莲草直胸跳甲取食密度、克隆整合处理及两者的交互作用显著影响空心莲子草先端分株的叶片数和粗根数(表1)。交互效应表明无跳甲取食的空心莲子草先端分株叶片数和粗根数显著高于1头·株−1或2头·株−1跳甲处理(图1A图2A);有克隆整合处理的先端分株叶片数和粗根数显著多于无克隆整合处理(剪断处理)。克隆整合处理对叶片数量的增加作用仅在无跳甲取食下才能体现(图1A),而对粗根数的增加作用在无跳甲取食和1头跳甲取食下皆有体现(图2A)。跳甲取食密度和克隆整合处理对空心莲子草先端分株的地上、地下生物量和总生物量产生显著影响(表1):无跳甲取食处理下的空心莲子草先端分株地上、地下生物量和总生物量显著高于1头·株−1或2头·株−1跳甲取食处理(图3A、B);有克隆整合的先端分株地上生物量、地下生物量及总生物量与无克隆整合的相比分别增加51.62%、46.49%、50.34%。然而,空心莲子草先端分株的分株数、地径、细根数和总根数仅受克隆整合处理显著影响(表1)。其中,匍匐茎连接(有克隆整合)的空心莲子草先端分株的分株数、地径、细根数、总根数与无克隆整合相比分别增加27.89%、25.38%、52.46%、52.26%。空心莲子草的茎长不受跳甲取食密度、克隆整合处理及二者交互作用的影响(表1)。

    表  1  莲草直胸跳甲取食密度与克隆整合对空心莲子草先端分株生长特性的影响
    Table  1.  Effect of density of A. hygrophila and clonal integration of alligator weed on growth of apical ramets of alligator weed
    生长特性
    Growth traits
    跳甲取食密度
    Flea beetle density(F2,30
    克隆整合
    Clonal integration(F1,30
    跳甲取食密度×克隆整合
    Flea beetle density × clonal integration(F2,30
    叶片数 Leaf number 5.26* 4.28* 4.43*
    分株数 Ramet number 1.10 5.64* 0.02
    茎长 Stolon length 1.93 1.51 0.73
    地径 Ground diameter 1.07 10.50** 0.74
    粗根数 Coarse root number 7.57** 18.77** 4.99*
    细根数 Fine root number 0.23 7.13* 0.85
    总根数 Total root number 0.16 7.75** 0.75
    地上生物量 Aboveground biomass 3.84* 8.86** 0.57
    地下生物量 Belowground biomass 7.42** 6.80* 0.93
    总生物量 Total biomass 5.28* 9.36** 0.75
    “*”和“**”分别表示在P<0.05和P<0.01水平下差异显著,下同。
    * and * * indicate significant differences at P<0.05 and P<0.01, respectively. Same for below.
    下载: 导出CSV 
    | 显示表格
    图  1  莲草直胸跳甲取食密度及克隆整合对空心莲子草先端分株和基端分株地上部分生长特性的影响
    不同小写字母表示不同处理下的先端分株或基端分株生长指标差异显著(P < 0.05),下同。
    Figure  1.  Effects of density of A. hygrophila and clonal integration of alligator weed on aboveground growth of apical and basal ramets of alligator weed
    Data with different lowercase letters indicate significant differences on growth traits of apical or basal ramets under different treatments at P<0.05. Same for below.
    图  2  莲草直胸跳甲取食密度及克隆整合对空心莲子草先端分株和基端分株根数的影响
    Figure  2.  Effects of density of A. hygrophila and clonal integration on root numbers of apical and basal ramets of alligator weed
    图  3  莲草直胸跳甲取食密度及克隆整合对空心莲子草先端分株和基端分株生物量的影响
    Figure  3.  Effects of density of A. hygrophila and clonal integration of alligator weed on biomass of apical and basal ramets of alligator weed

    莲草直胸跳甲取食密度、跳甲取食密度和克隆整合处理的交互作用对空心莲子草基端分株的地下生物量和总生物量产生显著影响(表2)。其中,有克隆整合处理的基端分株地下生物量及总生物量显著高于无克隆整合处理(图3A、B)。交互效应表明1头·株−1跳甲取食下空心莲子草基端分株的地上生物量显著高于无跳甲取食或2头·株−1跳甲取食处理(图3B)。然而,基端分株的茎长、地上生物量仅受跳甲取食密度和克隆整合处理的交互作用影响(表2)。其中,1头·株−1跳甲取食下,有克隆整合的空心莲子草基端分株的茎长显著低于无克隆整合(图1C)。交互效应表明1头·株−1跳甲取食下空心莲子草基端分株的地上生物量显著高于无跳甲取食或2头·株−1跳甲取食处理(图3A)。空心莲子草基端分株的叶片数、分株数和地径仅受克隆整合处理的显著影响(表2)。有克隆整合的空心莲子草基端分株叶片数、分株数与无克隆整合相比分别降低87.61%、51.38%,而有克隆整合处理的基端分株的地径与无克隆整合相比增加25.38%。空心莲子草基端分株的粗根数不受莲草直胸跳甲取食密度、克隆整合处理及其二者交互作用的影响(表2)。

    表  2  莲草直胸跳甲取食密度与克隆整合对空心莲子草基端分株生长特性的影响
    Table  2.  Effects of density of A. hygrophila and clonal integration of alligator weed on growth of basal ramets of alligator weed
    生长特性
    Growth traits
    跳甲取食密度
    Flea beetle density(F2,30
    克隆整合
    Clonal integration(F1,30
    跳甲取食密度×克隆整合
    Flea beetle density × clonal integration(F2,30
    叶片数 Leaf number 1.17 8.38** 0.70
    分株数 Ramet number 2.57 9.04** 1.02
    茎长 Stolon length 1.26 0.93 4.34*
    地径 Ground diameter 0.97 11.69** 0.42
    粗根数 Coarse root number 0.01 0.09 1.67
    细根数 Fine root number 1.50 0.16 3.37*
    总根数 Total root number 1.40 0.16 3.37*
    地上生物量 Aboveground biomass 2.54 0.00 4.18*
    地下生物量 Belowground biomass 4.03* 0.88 6.31**
    总生物量 Total biomass 3.55* 0.07 5.71**
    下载: 导出CSV 
    | 显示表格

    莲草直胸跳甲取食密度和克隆整合处理分别显著影响空心莲子草整个克隆片段的叶片数和地径(表3)。其中,无跳甲取食或2头·株−1跳甲取食处理下空心莲子草整个克隆片段的叶片数显著高于1头·株−1跳甲取食处理(图4A)。有克隆整合处理的空心莲子草整个克隆片段的地径与无克隆整合处理相比增加了23.43%。莲草直胸跳甲取食密度和克隆整合处理交互作用显著影响空心莲子草整个克隆整合片段的茎长和粗根数(表3)。交互效应表明克隆整合对于茎长的促进作用仅在2头·株−1跳甲取食下体现(图4C),而对于粗根数的促进作用仅在1头·株−1跳甲取食下体现(图5A)。莲草直胸跳甲取食密度和克隆整合处理显著影响空心莲子草整个克隆片段的地上、地下生物量和总生物量(表3)。其中,无跳甲取食处理下的空心莲子草整个克隆片段的地下生物量显著高于2头·株−1跳甲取食处理,而1头·株−1跳甲取食处理下的整个克隆片段的地上生物量显著高于2头·株−1跳甲取食处理(图6)。有克隆整合处理的整个克隆片段地上生物量、地下生物量、总生物量与无克隆整合处理的相比分别增加33.27%、35.58%、34.02%。空心莲子草整个克隆整合片段的分株数、细根数、总根数不受跳甲取食密度和克隆整合的影响(表3)。

    表  3  莲草直胸跳甲取食密度与克隆整合对空心莲子草整个克隆片段生长特性的影响
    Table  3.  Effects of density of A. hygrophila and clonal integration of alligator weed on growth of entire clonal fragment of alligator weed
    生长特性
    Growth traits
    跳甲取食密度
    Flea beetle density(F2,30
    克隆整合
    Clonal integration(F1,30
    跳甲取食密度×克隆整合
    Flea beetle density × clonal integration(F2,30
    叶片数 Leaf number 3.69* 0.32 2.73
    分株数 Ramet number 2.73 0.07 0.28
    茎长 Stolon length 3.35* 0.07 4.67*
    地径 Ground diameter 0.67 20.27** 0.94
    粗根数 Coarse root number 1.76 3.87 4.43*
    细根数 Fine root number 0.45 2.89 0.60
    总根数 Total root number 0.48 3.09 0.64
    地上生物量 Aboveground biomass 6.05** 6.79* 1.04
    地下生物量 Belowground biomass 4.28* 5.78* 1.04
    总生物量 Total biomass 5.53** 7.36* 1.23
    下载: 导出CSV 
    | 显示表格
    图  6  莲草直胸跳甲取食密度及克隆整合对空心莲子草整个克隆片段生物量的影响
    Figure  6.  Effects of density of A. hygrophila and clonal integration of alligator weed on biomass of entire clonal fragment of alligator weed
    图  4  莲草直胸跳甲取食密度及克隆整合对空心莲子草整个克隆片段的生长特性的影响
    Figure  4.  Effects of density of A. hygrophila and clonal integration of alligator weed on growth of entire clonal fragment of alligator weed
    图  5  莲草直胸跳甲取食密度及克隆整合对空心莲子草整个克隆片段根数的影响
    Figure  5.  Effects of density of A. hygrophila and clonal integration of alligator weed on root count of entire clonal fragment of alligator weed

    传统生物防治往往需要大面积、较高密度地释放天敌,否则易造成天敌密度过低、对目标入侵植物防治效果差的现象[23,26]。莲草直胸跳甲是目前控制空心莲子草最有效的天敌昆虫[14,16]。本研究发现随着取食密度的增加,莲草直胸跳甲对空心莲子草的抑制作用逐渐增强。宋振等[27]也发现莲草直胸跳甲的释放密度与空心莲子草的生物量显著正相关,说明通过适当提高莲草直胸跳甲的释放密度,可对空心莲子草取得有效的生物防治效果。因此,在利用莲草直胸跳甲对空心莲子草进行生物防治时,必须优化天敌的释放密度,并根据空心莲子草的生长环境释放适宜密度的莲草直胸跳甲,以实现对空心莲子草的有效防治[27,28]

    本研究表明空心莲子草的先端分株、基端分株及整个克隆片段水平均能在一定程度上通过克隆整合作用获益。覃海蓉等[14]也发现空心莲子草先端分株可通过克隆整合缓解莲草直胸跳甲的取食压力。此外,有研究发现人工模拟胁迫下,空心莲子草基端分株倾向于提高对光能的利用,以提高地上生物量[29]。本研究中,受莲草直胸跳甲取食后的空心莲子草先端分株的细根数和总根数增加,可能是空心莲子草对地上部分遭到取食危害后的补偿生长反应,以确保空心莲子草能从土壤中持续获取水分和养分[30,31]。然而,有克隆整合的空心莲子草基端分株的分株数显著低于无克隆整合,表明先端分株并未对基端分株进行有效的生理克隆整合[14,32],这可能是由于克隆整合过程存在着许多未知的成本和损耗, 如维持形体连接与资源传递过程中所需要的成本,以及分株受胁迫时吸收能量所产生的损耗[33]

    本研究发现随着莲草直胸跳甲取食密度的增加,空心莲子草的克隆整合能力显著下降。空心莲子草可通过地上和地下生物量的分配来促进资源的吸收和传输,以提高整个植株的耐天敌胁迫能力[14]。然而,本研究中,在2头·株−1莲草直胸跳甲取食下的空心莲子草地上、地下生物量与1头·株−1莲草直胸跳甲取食相比显著降低。为应对莲草直胸跳甲的取食胁迫,空心莲子草可能会提高资源向防御分配,从而导致其总生物量下降[34]。因此,较高密度的莲草直胸跳甲取食胁迫可有效降低空心莲子草的克隆整合作用,从而提高莲草直胸跳甲对其的防治效率。此外,有研究表明在人工、机械铲除或打捞时,对空心莲子草进行深挖或连根打捞,将连接的克隆分株碎片化,以打破分株间的克隆整合,是防治小范围空心莲子草较为有效的方法[28]。本研究结果表明,将物理防治与生物防治相结合,有望提高对空心莲子草这类入侵克隆植物的综合防治效果。

  • 图  1   莲草直胸跳甲取食密度及克隆整合对空心莲子草先端分株和基端分株地上部分生长特性的影响

    不同小写字母表示不同处理下的先端分株或基端分株生长指标差异显著(P < 0.05),下同。

    Figure  1.   Effects of density of A. hygrophila and clonal integration of alligator weed on aboveground growth of apical and basal ramets of alligator weed

    Data with different lowercase letters indicate significant differences on growth traits of apical or basal ramets under different treatments at P<0.05. Same for below.

    图  2   莲草直胸跳甲取食密度及克隆整合对空心莲子草先端分株和基端分株根数的影响

    Figure  2.   Effects of density of A. hygrophila and clonal integration on root numbers of apical and basal ramets of alligator weed

    图  3   莲草直胸跳甲取食密度及克隆整合对空心莲子草先端分株和基端分株生物量的影响

    Figure  3.   Effects of density of A. hygrophila and clonal integration of alligator weed on biomass of apical and basal ramets of alligator weed

    图  6   莲草直胸跳甲取食密度及克隆整合对空心莲子草整个克隆片段生物量的影响

    Figure  6.   Effects of density of A. hygrophila and clonal integration of alligator weed on biomass of entire clonal fragment of alligator weed

    图  4   莲草直胸跳甲取食密度及克隆整合对空心莲子草整个克隆片段的生长特性的影响

    Figure  4.   Effects of density of A. hygrophila and clonal integration of alligator weed on growth of entire clonal fragment of alligator weed

    图  5   莲草直胸跳甲取食密度及克隆整合对空心莲子草整个克隆片段根数的影响

    Figure  5.   Effects of density of A. hygrophila and clonal integration of alligator weed on root count of entire clonal fragment of alligator weed

    表  1   莲草直胸跳甲取食密度与克隆整合对空心莲子草先端分株生长特性的影响

    Table  1   Effect of density of A. hygrophila and clonal integration of alligator weed on growth of apical ramets of alligator weed

    生长特性
    Growth traits
    跳甲取食密度
    Flea beetle density(F2,30
    克隆整合
    Clonal integration(F1,30
    跳甲取食密度×克隆整合
    Flea beetle density × clonal integration(F2,30
    叶片数 Leaf number 5.26* 4.28* 4.43*
    分株数 Ramet number 1.10 5.64* 0.02
    茎长 Stolon length 1.93 1.51 0.73
    地径 Ground diameter 1.07 10.50** 0.74
    粗根数 Coarse root number 7.57** 18.77** 4.99*
    细根数 Fine root number 0.23 7.13* 0.85
    总根数 Total root number 0.16 7.75** 0.75
    地上生物量 Aboveground biomass 3.84* 8.86** 0.57
    地下生物量 Belowground biomass 7.42** 6.80* 0.93
    总生物量 Total biomass 5.28* 9.36** 0.75
    “*”和“**”分别表示在P<0.05和P<0.01水平下差异显著,下同。
    * and * * indicate significant differences at P<0.05 and P<0.01, respectively. Same for below.
    下载: 导出CSV

    表  2   莲草直胸跳甲取食密度与克隆整合对空心莲子草基端分株生长特性的影响

    Table  2   Effects of density of A. hygrophila and clonal integration of alligator weed on growth of basal ramets of alligator weed

    生长特性
    Growth traits
    跳甲取食密度
    Flea beetle density(F2,30
    克隆整合
    Clonal integration(F1,30
    跳甲取食密度×克隆整合
    Flea beetle density × clonal integration(F2,30
    叶片数 Leaf number 1.17 8.38** 0.70
    分株数 Ramet number 2.57 9.04** 1.02
    茎长 Stolon length 1.26 0.93 4.34*
    地径 Ground diameter 0.97 11.69** 0.42
    粗根数 Coarse root number 0.01 0.09 1.67
    细根数 Fine root number 1.50 0.16 3.37*
    总根数 Total root number 1.40 0.16 3.37*
    地上生物量 Aboveground biomass 2.54 0.00 4.18*
    地下生物量 Belowground biomass 4.03* 0.88 6.31**
    总生物量 Total biomass 3.55* 0.07 5.71**
    下载: 导出CSV

    表  3   莲草直胸跳甲取食密度与克隆整合对空心莲子草整个克隆片段生长特性的影响

    Table  3   Effects of density of A. hygrophila and clonal integration of alligator weed on growth of entire clonal fragment of alligator weed

    生长特性
    Growth traits
    跳甲取食密度
    Flea beetle density(F2,30
    克隆整合
    Clonal integration(F1,30
    跳甲取食密度×克隆整合
    Flea beetle density × clonal integration(F2,30
    叶片数 Leaf number 3.69* 0.32 2.73
    分株数 Ramet number 2.73 0.07 0.28
    茎长 Stolon length 3.35* 0.07 4.67*
    地径 Ground diameter 0.67 20.27** 0.94
    粗根数 Coarse root number 1.76 3.87 4.43*
    细根数 Fine root number 0.45 2.89 0.60
    总根数 Total root number 0.48 3.09 0.64
    地上生物量 Aboveground biomass 6.05** 6.79* 1.04
    地下生物量 Belowground biomass 4.28* 5.78* 1.04
    总生物量 Total biomass 5.53** 7.36* 1.23
    下载: 导出CSV
  • [1] 赵鲁青, 李德志, 李立科, 等. 基于复合节间组分关系的结缕草克隆植株形态可塑性特征分析 [J]. 生态环境学报, 2010, 19(11):2592−2599.

    ZHAO L Q, LI D Z, LI L K, et al. Analysis on the characteristics of morphological plasticity of a clonal plant Zoysia japonica based on the relationship among the components of multiple-nodes [J]. Ecology and Environmental Sciences, 2010, 19(11): 2592−2599. (in Chinese)

    [2]

    LIU J, DONG M, MIAO S L, et al. Invasive alien plants in China: Role of clonality and geographical origin [J]. Biological Invasions, 2006, 8(7): 1461−1470. DOI: 10.1007/s10530-005-5838-x

    [3]

    LIU J S, CHEN C, PAN Y, et al. The intensity of simulated grazing modifies costs and benefits of physiological integration in a rhizomatous clonal plant [J]. International Journal of Environmental Research and Public Health, 2020, 17(8): 2724. DOI: 10.3390/ijerph17082724

    [4]

    KOWARIK I, LIU J, CHEN H, et al. Plant invasions in China: An emerging hot topic ininvasion science [J]. NeoBiota, 2012, 15: 27−51. DOI: 10.3897/neobiota.15.3751

    [5]

    WANG P, ALPERT P, YU F H. Physiological integration can increase competitive ability in clonal plants if competition is patchy [J]. Oecologia, 2021, 195(1): 199−212. DOI: 10.1007/s00442-020-04823-5

    [6] 方龙香, 吕晓倩, 奚道国, 等. 克隆整合有利于喜旱莲子草(Alternanthera philoxeroides)入侵 [J]. 湖泊科学, 2017, 29(5):1202−1208. DOI: 10.18307/2017.0518

    FANG L X, LV X Q, XI D G, et al. Clonal integration facilitating for the invasion of Alternanthera philoxeroides [J]. Journal of Lake Sciences, 2017, 29(5): 1202−1208. (in Chinese) DOI: 10.18307/2017.0518

    [7] 肖梦婷, 江梦含, 陈明茹, 等. 克隆整合特性和磷素对喜旱莲子草富集土壤中镉的影响 [J]. 武汉大学学报(理学版), 2022, 68(6):603−611.

    XIAO M T, JIANG M H, CHEN M R, et al. Effects of clonal integration characteristics and phosphorus on cadmium accumulation in soil by Alternanthera philoxeroides [J]. Journal of Wuhan University (Natural Science Edition), 2022, 68(6): 603−611. (in Chinese)

    [8]

    YOU W H, YU D, LIU C H, et al. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability [J]. Hydrobiologia, 2013, 718(1): 27−39. DOI: 10.1007/s10750-013-1596-4

    [9] 孙凯, 杨丽娟, 蔡竟芳, 等. 施氮形态与分株损伤对入侵植物香菇草生长及克隆整合的影响 [J]. 植物保护, 2022, 48:169−178.

    SUN K, YANG L J, CAI J F, et al. Effects of nitrogen supply forms and ramets damage on the growth and clonal integration of invasive plant Hydrocotyle vulgaris [J]. Plant Protection, 2022, 48: 169−178. (in Chinese).

    [10]

    DONG B C, ZHANG L M, LI K Y, et al. Effects of clonal integration and nitrogen supply on responses of a clonal plant to short-term herbivory [J]. Journal of Plant Ecology, 2019, 12(4): 624−635. DOI: 10.1093/jpe/rty057

    [11] 宋誉, 郭文锋, 李晓琼. 克隆整合对入侵杂草空心莲子草和本土莲子草生长及光合性能的影响 [J]. 华南农业大学学报, 2023, 44(4):531−538.

    SONG Y, GUO W F, LI X Q. Effects of clonal integration on growth and photosynthesis of invasive weed Alternanthera philoxeroides and native A. sessilis [J]. Journal of South China Agricultural University, 2023, 44(4): 531−538. (in Chinese)

    [12]

    WEI Q, LI Q, JIN Y, et al. Effects of clonal integration on photochemical activity and growth performance of stoloniferous herb Centella asiatica suffering from heterogeneous water availability [J]. Flora, 2019, 256: 36−42. DOI: 10.1016/j.flora.2019.05.001

    [13] 辜睿, 蒲磊, 李军亚, 等. 番茄对不同养分水平下南美蟛蜞菊和蟛蜞菊化感作用的响应 [J]. 广西植物, 2021, 41:1354−1362.

    GU R, PU L, LI J Y , et al. Allelopathic effects of Sphagneticola trilobata and S. calendulacea on Lycopersicon esculentum under different nutrient availabilities [J]. Guihaia, 2021, 41: 1354−1362. (in Chinese).

    [14] 覃海蓉, 郭文锋, 王伟, 等. 莲草直胸跳甲取食对空心莲子草和莲子草克隆整合的影响[J]. 应用生态学报, 2022, 33: 1661-1668.

    QIN H R, GUO W F, WANG W, et al. Effects of Agasicles hygrophila herbivory on the clonal integration of Alternanthera philoxeroides and A. sessilis [J]. Chinese Journal of Applied Ecology, 2022, 33: 1661-1660. (in Chinese).

    [15] 郭伟, 李钧敏, 胡正华. 酸雨和采食模拟胁迫下克隆整合对空心莲子草生长的影响 [J]. 生态学报, 2012, 32(1):151−158. DOI: 10.5846/stxb201011031575

    GUO W, LI J M, HU Z H. Effects of clonal integration on growth of Alternanthera philoxeroides under simulated acid rain and herbivory [J]. Acta Ecologica Sinica, 2012, 32(1): 151−158. (in Chinese) DOI: 10.5846/stxb201011031575

    [16] 马瑞燕, 王韧. 喜旱莲子草在中国的入侵机理及其生物防治 [J]. 应用与环境生物学报, 2005, 11(2):246−250.

    MA R Y, WANG R. Invasive mechanism and biological control of alligatorweed, Alternanthera philoxeroides (Amaranthaceae), in China [J]. Chinese Journal of Applied and Environmental Biology, 2005, 11(2): 246−250. (in Chinese)

    [17] 韩翠敏, 胡安安, 郭文兵, 等. 南方菟丝子寄生对入侵植物喜旱莲子草及其近缘种的影响 [J]. 植物研究学, 2020, 9:374. DOI: 10.12677/BR.2020.94046

    HAN C M, HU A A, GUO W B, et al. Effects of parasitism of Cuscuta australis on the growth performance of Alternanthera philoxeroides and its related specie [J]. Botanical Research, 2020, 9: 374. (in Chinese). DOI: 10.12677/BR.2020.94046

    [18] 苏田, 吴姝瑾, 胡姝珍, 等. 外来种空心莲子草的入侵及其克隆特性综述 [J]. 南方林业科学, 2021, 49(1):44−47,54.

    SU T, WU S J, HU S Z, et al. Advance in invasion and clonal characteristics of the alien species Alternanthera philoxeroides [J]. South China Forestry Science, 2021, 49(1): 44−47,54. (in Chinese)

    [19]

    PORTELA R, DONG B C, YU F H, et al. Effects of physiological integration on defense strategies against herbivory by the clonal plant Alternanthera philoxeroides [J]. Journal of Plant Ecology, 2019, 12(4): 662−672. DOI: 10.1093/jpe/rtz004

    [20]

    WANG Y J, MÜLLER-SCHÄRER H, VAN KLEUNEN M, et al. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives [J]. The New Phytologist, 2017, 216(4): 1072−1078. DOI: 10.1111/nph.14820

    [21]

    DONG B C, WANG M Z, LIU R H, et al. Direct and legacy effects of herbivory on growth and physiology of a clonal plant [J]. Biological Invasions, 2018, 20(12): 3631−3645. DOI: 10.1007/s10530-018-1801-5

    [22]

    QIN H R, GUO W F, LI X Q. Density-dependent interactions between the nematode Meloidogyne incognita and the biological control agent Agasicles hygrophila on invasive Alternanthera philoxeroides and its native congener Alternantera sessilis [J]. BioControl, 2021, 66(6): 837−848. DOI: 10.1007/s10526-021-10113-7

    [23] 黄思娣. 莲草直胸跳甲对空心莲子草的控制研究[D]. 长沙: 湖南农业大学, 2010.

    HUANG S D. Controlling effects of Agasicles hygrophila on Alternanthera philoxeroides [D]. Changsha: Hunan Agricultural University, 2010. (in Chinese)

    [24] 马瑞燕, 丁建清, 李佰铜, 等. 莲草直胸跳甲在不同生态型空心莲子草上的化蛹适应性 [J]. 中国生物防治, 2003, 19(2):54−58.

    MA R Y, DING J Q, LI B T, et al. The pupation adaptability of Agasicles hygrophila on different ecotypes alligatorweed [J]. Chinese Journal of Biological Control, 2003, 19(2): 54−58. (in Chinese)

    [25] 陈燕丽, 陈中义. 陆生型空心莲子草根的生长动态研究 [J]. 江西农业学报, 2011, 23(2):111−114.

    CHEN Y L, CHEN Z Y. Study on growth dynamics of roots of terrestrial-type Alternanthera philoxeroides [J]. Acta Agriculturae Jiangxi, 2011, 23(2): 111−114. (in Chinese)

    [26] 李彦宁, 傅建炜, 郭建英, 等. 莲草直胸跳甲释放量对其种群构建的影响 [J]. 生物安全学报, 2011, 20(4):275−280.

    LI Y N, FU J W, GUO J Y, et al. Effects of release density on the population dynamics of the biocontrol agent, Agasicles hygrophila (Coleoptera: Chrysomelidae) [J]. Journal of Biosafety, 2011, 20(4): 275−280. (in Chinese)

    [27] 宋振, 张瑞海, 张国良, 等. 空心莲子草叶甲释放量对空心莲子草防控效果的研究 [J]. 生态环境学报, 2018, 27(11):2033−2038.

    SONG Z, ZHANG R H, ZHANG G L, et al. The effect of Agasicles hygrophila release on the control of Alternanthera philoxeroides [J]. Ecology and Environmental Sciences, 2018, 27(11): 2033−2038. (in Chinese)

    [28] 赵浩宇, 刘俊豆, 郑仕军, 等. 空心莲子草综合防治技术 [J]. 四川农业与农机, 2021(2):56−57.

    ZHAO H Y, LIU J D, ZHENG S J, et al. Integrated control techniques of Alternanthera philoxeroides [J]. Sichuan Agriculture and Agricultural Machinery, 2021(2): 56−57. (in Chinese)

    [29]

    YOU W H, FAN S F, YU D, et al. An invasive clonal plant benefits from clonal integration more than a co-occurring native plant in nutrient-patchy and competitive environments [J]. PLoS One, 2014, 9(5): e97246. DOI: 10.1371/journal.pone.0097246

    [30] 陶冶, 张元明. 准噶尔荒漠6种类短命植物生物量分配与异速生长关系 [J]. 草业学报, 2014, 23(2):38−48.

    TAO Y, ZHANG Y M. Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China [J]. Acta Prataculturae Sinica, 2014, 23(2): 38−48. (in Chinese)

    [31]

    SCHOOLER S S, YEATES A G, WILSON J R U, et al. Herbivory, mowing, and herbicides differently affect production and nutrient allocation of Alternanthera philoxeroides [J]. Aquatic Botany, 2007, 86(1): 62−68. DOI: 10.1016/j.aquabot.2006.09.004

    [32] 徐苏男, 刘艳虹, 李虹仪, 等. 养分异质条件下结缕草克隆分株生长、碳水化合物及可溶性蛋白的生理整合 [J]. 应用生态学报, 2018, 29(11):3569−3576.

    XU S N, LIU Y H, LI H Y, et al. Physiological integration of growth, carbohydrates, and soluble protein of Zoysia japonica clonal ramets under nutrient heterogeneity [J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3569−3576. (in Chinese)

    [33] 姜星星, 董必成, 罗芳丽, 等. 光强对比度对大米草克隆整合作用的影响 [J]. 应用生态学报, 2014, 25(10):2826−2832.

    JIANG X X, DONG B C, LUO F L, et al. Effects of light intensity contrast on clonal integration of Spartina anglica [J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2826−2832. (in Chinese)

    [34] 覃海蓉, 郭文锋, 阳莎, 等. 莲草直胸跳甲和根结线虫共同危害对空心莲子草及莲子草生长的影响 [J]. 河南农业大学学报, 2021, 55:890−895.

    QIN H R, GUO W F, YANG S, et al. Joint herbivory of Agasicles hygrophila and Meloidogyne incognita on the growth of Alternanthera philoxeroides and Alternanthera sessilis [J]. Journal of Henan Agricultural University, 2021, 55: 890−895. (in Chinese).

图(6)  /  表(3)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  41
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-21
  • 修回日期:  2024-06-06
  • 网络出版日期:  2024-10-30
  • 刊出日期:  2024-10-27

目录

/

返回文章
返回