Research Progress on Early Diagnosis of Pregnancy in Cattle and Sheep
-
摘要:
规模化养殖中,母畜空怀将使养殖场遭受严重的经济损失,应用早期妊娠诊断技术,可有效降低空怀母畜数量,缩短产犊(羔)间隔,提高养殖效益。本文从诊断方法、诊断时间、诊断准确率等方面对牛羊早期妊娠临床诊断法和妊娠相关标志物诊断法进行综述。在临床诊断中,B超妊娠诊断较普遍,妊娠28~35 d超声检查可以获得比较可靠的结果,但其可靠性很大程度上取决于所用设备频率、操作者技能。在妊娠相关标志物诊断中,孕酮(Progesterone, P4)浓度检测法操作繁琐,对检测环境要求高,难以在生产中大面积推广。早期妊娠因子是受精后最早出现的特异性指标,但目前其检测完全依赖于使用玫瑰花环抑制试验,后续需开发简便的检测方法。干扰素刺激基因和外泌体miRNAs可能有助于牛羊早期妊娠诊断,但这些技术尚处于研究开发阶段。商业化的妊娠相关糖蛋白(pregnancy-associated glycoproteins, PAGs)检测试剂盒可作为B超妊娠诊断的替代方法,用于确定牛羊的早期妊娠或晚期胚胎损失。未来需要研发国产的商业化PAG检测试剂盒,以降低检测成本。本文通过总结不同检测方法的优缺点及实际应用效果,为生产者选择早期妊娠诊断方法提供参考,为牛羊早期妊娠诊断方法后期研究方向提供参考。
Abstract:In a commercial livestock or dairy farm, the so-called “empty sows” of those female animals failed to conceive in impregnation means economic loss for the business. Being able to accurately detect a pregnancy early, therefore, is indispensable for a timely determination allowing a short calving interval to enhance operational efficiency and profitability. This article reviewed the availability and advancements in the techniques and markers for the diagnosis on cattle and sheep. Published reports on the methodologies, examination time, and test result accuracy on the diagnosis are summarized with comments. For instance, B-ultrasound is commonly applied in clinical practices for 28–35 d pregnancy in the animals. Although relatively reliable results can be expected from the tests, they depend on the frequency and equipment selected as well as the skill of the operator. As a marker, progesterone (P4) is an indicator whose concentration in the animal is measured for the diagnosis. The method required specific testing environment, and consequently, is not popularly employed in the field. The initial fertilization indicator or physiochemical pregnancy signs in impregnated animals are currently detected by using the complex erythrocyte rosette test. Hence, not until a simple method is developed can a wide application based on the approach be realized. In theory, the interferon-stimulated genes and exosomal miRNAs may be useful for the diagnosis, but no testing technology has yet been established. And the commercially available PAG test kits for early-stage pregnancy or late-stage embryo loss are cost prohibitive for average farmers at present. By briefly describing the basics and presenting the pros and cons of various available devices and methods, this article provides a concise reference for the livestock ranchers in their decision-making and for the animal husbandry scientists in directing their efforts to develop a reliable and affordable means of fertilization detection in cattle and sheep.
-
Keywords:
- cattle /
- sheep /
- pregnancy diagnosis /
- miRNAs /
- PAGs
-
茶树修剪是通过人为剪除部分枝条,改变茶树自然生长的分枝习性,使树冠向外围空间伸展,促进营养生长,塑造理想树形,并去除顶端优势,增加芽叶萌发,延长茶树经济年龄的一种通用方法[1]。修剪对茶树养分分配,根、茎比平衡,鲜叶生化成分等均会产生重要影响[2]。对以采摘嫩芽叶为主要经济目标的人工生态系统,茶园修剪枝叶往往作为废弃物而未引起足够重视,尤其在茶园生态系统中的服务功能与作用更鲜见研究报道。茶树经人为修剪后枝叶自动凋落而覆盖地表,故可借鉴生态系统“凋落物”的概念,对茶园生态系统凋落物的生态服务功能进行研究。
凋落物(Litter)又称枯落物或有机碎屑,是指生态系统内由地上植物组分产生并归还到地表,作为分解者的物质和能量来源,借以维持生态系统功能的所有有机质的总称[3-4]。凋落物的存在不仅可以减少对土壤的溅击侵蚀,亦能阻滞地表径流对土壤的冲蚀;还可促进土壤和大气之间的水分交换,有利于保持水分,减少地表蒸发,因而具有水土保持与水源涵养的功能[5]。同时凋落物的分解对生态系统的物质循环和养分平衡方面作用亦不小觑[6]。在茶园方面,吕文等[7]研究发现3、4年生茶树经修剪后的蒸散速率均大幅下降,分别降低了36.73%、48.32%,其原因不仅与茶株高度降低,导致界面层导度减小,减少水分从茶株向大气的传输有关。且与茶园经修剪后,凋落的枝、叶覆盖在茶行间,增加了行间的土壤遮蔽,降低了土壤的蒸发作用有关。由此可知,修剪能对茶园生态系统的水文功能产生一定影响。
日前鲜见有关茶园修剪枝叶作为凋落物,对其所具备生态水文功能的研究与报道。因此,本研究借鉴生态系统凋落物的概念,探讨不同修剪模式对茶树修剪枝、叶的产生量;并采用室内持水模拟试验对其持水特性进行研究,旨在揭示不同修剪模式茶树修剪凋落物及其组分的持水特性与拦蓄能力,以期为茶园生态系统水土保持、水源涵养功能的定量化研究与评估提供理论基础和科学依据。
1. 材料与方法
1.1 试验地概况
试验茶园位于福建省福安市社口镇,福建省农业科学院茶叶研究所2号山,地处119°34′E、27°13′N,属丘陵坡地,海拔约70 m,年无霜期285 d,年均降雨量1 646 mm,年均气温19.3℃,为典型的中亚热带季风气候。
1.2 试验设计
供试茶树品种黄观音,树龄14年,种植密度约55 000株·hm-2,树高约110 cm,树幅60 cm × 80 cm,生长较均匀一致。试验按照茶园惯用修剪方式,设不同修剪深度处理3个,分别为重度修剪(树冠面下约20 cm处平剪)、中度修剪(15 cm处平剪)和轻度修剪(7 cm处平剪)处理。每处理小区长为12 m、面积约15 m2,3个区组重复。修剪机具为单人修剪机(川崎牌PST80H)。
1.3 试验方法
1.3.1 修剪枝生物量统计
采用人工分拣,将每处理小区修剪枝收集完全,称重,计算生物量鲜重(fresh weight,FW);随后将一部分修剪物,分离枝、叶,统计枝叶比;并放置室内自然风干,风干时称重,计算自然含水率(Ro);将各小区自然风干后的枝、叶,分别置于80℃恒温干燥箱内烘干至恒重,称重,计算含水率和生物量干重(dry weight,DW),并换算成1 hm2茶园的修剪枝生物量。
1.3.2 修剪物持水特性测定
分别扦取一定量3个修剪处理的茶树枝叶,称重后装入15 cm×30 cm的尼龙网袋,进行0.5、1、1.5、2、4、6、8、10、12、16、24 h浸水处理,随后取出,静止5 min至修剪枝叶不滴水时分别称重,计算修剪枝叶不同浸水时间的持水量、持水率与吸水速率[8-9]。借鉴森林凋落物水文特征相关计算公式[10-13],进行茶树修剪凋落物持水特性、拦蓄能力的相关计算。
持水率R/%=[(浸泡t时间的凋落物重Wt-凋落物烘干重W0)/凋落物烘干重W0] ×100%
持水量Q/(t·hm-2)= 凋落物现存量M×凋落物持水率R
吸水速率V1/(g·g-1·h-1)=(浸泡时间的凋落物重Wt-凋落物烘干重W0)/(凋落物烘干重W0×浸泡时间t)
最大持水率Rm/%= 凋落浸泡24 h中最大持水率Rx
最大持水量Q/(t·hm-2)= 最大持水率Rm×凋落物现存量M
最大拦蓄率Lr/% = 最大持水率Rm-自然含水率R0
最大拦蓄量L/(t·hm-2)= 最大拦蓄率Lr×凋落物现存量M
有效拦蓄率W/% = 0.85Rm-自然含水率R0
有效拦蓄量L2/(t·hm-2)= 有效拦蓄率W×凋落物现存量M
1.4 数据分析
数据经Excel 2010处理;采用SPSS 22.0中单因素方差分析(One-Way ANOVA)的LSD(Least significant difference)法进行显著性分析;Origin Pro 8.5.1软件作图。
2. 结果与分析
2.1 不同修剪深度对茶树修剪凋落物生物量的影响
由表 1可知,不同修剪深度处理的修剪枝叶生物量,无论是总量、叶、枝的鲜重(FW),还是总量、叶、枝的干重,均表现为重度修剪>中度修剪>轻度修剪,其总量、叶、枝的鲜重,3个处理间的差异均达到显著水平,而总量、叶、枝的干重,处理间的差异,表现为轻度修剪与中度修剪、重度修剪之间差异显著,而中度修剪与重度修剪之间却无显著差异。在生物重构成上,鲜重和干重均表现为叶>枝,其中叶鲜重占比为65.27%~75.82%,叶干重占比降为62.24%~70.86%;枝叶干重仅为鲜重的33.62%~39.09%;茶枝修剪物烘干后,叶枝比值下降明显,降幅达12.23%~22.36%,且有随修剪深度的增大而下降的趋势,这与不同深度修剪枝叶的含水量差异有关,修剪深度越深,修剪枝叶的平均含水率越低。
表 1 不同修剪深度对茶树修剪枝叶生物量的影响Table 1. Biomass of leaf- and stem-clippings produced by various pruning practices处理 生物量-鲜重/(t·hm-2) 生物量-干重/(t·hm-2) 含水率
/%总量 叶 枝 叶/枝比 总量 叶 枝 叶/枝比 轻度修剪 4.59±0.07a 3.48±0.18a 1.11±0.18a 3.13±0.71 1.75±0.02a 1.24±0.04a 0.51±0.04a 2.43±0.27 66.38±5.27 中度修剪 6.48±0.05b 4.45±0.07b 2.03±0.07b 2.19±0.11 2.38±0.02b 1.53±0.04b 0.85±0.04b 1.80±0.12 63.25±0.25 重度修剪 7.40±0.01c 4.83±0.09c 2.57±0.09c 1.88±0.10 2.49±0.38b 1.55±0.03b 0.94±0.03b 1.65±0.08 61.91±0.55 注:同列不同小写字母表示不同处理间存在显著性差异(P< 0.05)。 2.2 不同修剪深度对茶树修剪凋落物及其组分持水能力的影响
2.2.1 持水率
3种修剪处理的修剪凋落物及其组分的持水率均随浸水时间的延长而呈增加趋势,尤以前4 h增加迅速,随后增势趋缓(图 1)。修剪凋落物混合样及其组分的最大持水率表现为:中度修剪(121.33%)>重度修剪(113.69%)>轻度修剪(106.16%);叶>枝,其中叶的平均最大持水率为137.47%,分别是混合组分和枝的平均最大持水率的1.2倍和1.49倍。由此可知,叶在修剪物组分中的持水能力最大,其分别是对应混合组分的1.14~1.34倍;而枝条的持水率较小,仅为对应混合组分的0.79~0.81倍。
2.2.2 持水量
由图 2可知,不同修剪处理凋落物及其组分的持水量变化趋势与持水率相一致,均随时间延长而呈增加趋势,尤其在前2 h内增加迅速,2 h后变化趋缓。3种修剪处理的混合组分饱和时间约在16 h;3处理修剪枝叶及其组分的最大持水量表现为:中度修剪(2.89 t·hm-2)>重度修剪(2.83 t·hm-2)>轻度修剪(1.86 t·hm-2),混合枝叶>叶>枝,枝条的持水量最少,且增幅较小。由此可见,枝叶比及其老嫩程度、生物量、持水率高低对其持水能力影响较大。
2.2.3 吸水速率
由图 3可知,3个处理凋落物各组分吸水速率的变化,表现为前0.5 h内最大,随后呈急剧下降趋势,至4 h后,下降趋势渐趋平缓,随时间延长变化趋于一致。3个处理的凋落物及其组分的最大吸水速率均表现为:叶>叶枝混合>枝,其中叶的平均最大吸水速率2.14 g·g-1·h-1,分别为枝叶混合的1.27倍、枝的1.95倍。同一组分不同处理的最大吸水速率,表现出明显差异,其中混合组为:中度修剪(1.78 g·g-1·h-1)>重度修剪(1.70 g·g-1·h-1)>轻度修剪(1.59 g·g-1·h-1); 叶组分: 轻度修剪(2.18 g·g-1·h-1)>中度修剪(2.13 g·g-1·h-1)>轻度修剪(2.12 g·g-1·h-1);枝条组分:中度修剪(1.28 g·g-1·h-1)>重度修剪(1.05 g·g-1·h-1)>轻度修剪(0.97 g·g-1·h-1)。
2.3 不同修剪深度下茶树修剪凋落物及其组分的拦蓄能力
2.3.1 修剪凋落物的拦蓄能力
研究结果(表 2)表明,3处理下的茶树修剪凋落物对降雨的拦蓄能力不同,其中混合组分的最大拦蓄率(量)及有效拦蓄率(量)均表现为:中度修剪>重度修剪>轻度修剪,而枝或叶组分不同处理间的变化不明朗。不同修剪处理下凋落物及其组分的最大持水量(率)>最大拦蓄量(率)>有效拦蓄量(率),其中中度修剪处理的单次修剪凋落物的有效拦蓄量为2.19 t·hm-2,分别比最大持水量、最大拦蓄量下降了24.22%和16.41%;同样,重度修剪的有效拦蓄量分别下降了24.03% 和9.19%,轻度修剪的有效拦蓄量分别下降了25.27%和10.75%。
表 2 不同深度下茶树修剪凋落物及其组分对降雨拦蓄能力的比较Table 2. Flood-intercepting capacity of litter from various pruning practices浸水时间 轻度修剪 中度修剪 重度修剪 叶 枝 混合 叶 枝 混合 叶 枝 混合 最大持水率R/% 141.98 83.97 106.16 138.12 99.29 121.33 132.32 92.64 113.69 最大持水量Q/(t·hm-2) 1.76 0.43 1.86 2.11 0.84 2.89 2.05 0.87 2.83 最大拦蓄率Lr/%t 133.71 77.60 95.12 130.83 92.58 110.12 124.22 84.67 103.41 最大拦蓄量L/(t·hm-2) 1.66 0.40 1.66 2.00 0.79 2.62 1.93 0.8 2.57 有效拦蓄率W/% 112.41 65.01 79.19 110.11 77.68 91.92 104.37 70.77 86.35 有效拦蓄量L2/(t·hm-2) 1.39 0.33 1.39 1.68 0.66 2.19 1.62 0.67 2.15 2.3.2 修剪凋落物各组分的蓄水能力
由表 2看出,不同修剪处理下凋落物枝、叶组分对降雨的拦蓄能力不同。3种修剪处理下叶组分凋落物最大持水量、最大拦蓄量、有效拦蓄量表现为:中度修剪>重度修剪>轻度修剪;而最大持水率、最大拦蓄率、有效拦蓄率均表现为:轻度修剪>中度修剪>重度修剪。枝条组分则与之不同,其最大持水率、最大拦蓄率、有效拦蓄率表现为:中度修剪>重度修剪>轻度修剪,最大持水量、最大拦蓄量、有效拦蓄量为:重度修剪>中度修剪>轻度修剪。不同处理下凋落物及其组分的最大持水率、最大拦蓄率及有效拦蓄率均表现为:叶>混合>枝,其凋落物组分的最大持水量、最大拦蓄量及有效拦蓄量均呈现叶占比最大,枝次之。由此可说明凋落物中以叶组分对降雨的拦蓄能力最强。
3. 讨论与结论
陆地植被生态系统中凋落物对截持降水、防止土壤溅蚀、阻延地表径流、抑制土壤水分蒸发、增强土壤抗冲效能等方面都具有非常重要的意义[14-15]。另有研究表明,修剪不仅是茶树培育树冠的一项重要农艺措施,还可使昆虫失去部分栖息地,对采食嫩芽叶的病虫害有一定的抑制作用[16]。但作为修剪凋落物本身其所具有的生态水文功能则一直被忽略。
本研究表明,3种修剪处理下凋落物生物量(DW)为1.75~2.49 t·hm-2,仅为鲜重的33.62%~39.09%。若以轻度修剪每年2次计算,则由修剪产生的凋落物的生物量约为3.5 t·hm-2,加上茶树生长过程中自然形成的凋落物,而其实际生物量应略大。然而,由于茶园生态系统人为干扰强烈其现存量应低于两者之和,因此仍远小于森林生态系统凋落物的产生量。如远低于15年生马占相思林和湿地松林的年凋落量(11.14、7.30 t·hm-2)[17];低于同气候带处于顶级群落演替阶段的木荷、细柄阿丁枫、浙江桂、观光木林等(5.96~7.22 t·hm-2),接近于杉木人工林(3.47、4.82 t·hm-2)[12, 18];与苦竹林、慈竹林、撑绿杂交竹林、苦竹+光皮桦混交林等人工林的凋落物蓄积量(0.95~2.21 t·hm-2)大致相当[19],其差异主要与植被类型及树种组分、植被密度、树龄、水热条件不同有关。
当前研究表明凋落物的现存量、分解状态及持水性能对生态系统含蓄水源的功能具有重要影响。本研究发现,3个不同深度修剪的凋落物混合样的最大持水率表现为:中度修剪(121.33%)>重度修剪(113.69%)>轻度修剪(106.16%),且均以叶组分的持水率最大,其平均最大持水率为137.47%,是混合枝叶组分平均最大持水率的1.2倍,枝的1.49倍。该结果与前人研究规律一致[12, 20]。但其混合枝叶组分持水率小于同气候带的6种天然林枯落物最大持水率(159.34%~196.02%),接近浙江桂(159.34%)[18];亦小于亚热带阔叶林(158%~309%)[20]和温带森林(265.19%~525.36%)[11];与6年生桉树人工林叶、枝最大持水率(139.99%、66.21%)[21]相当。
本研究表明,凋落物持水作用主要表现在降雨前期的2 h内,特别是前30 min,这一结果与前人研究一致[12, 19, 22]。3种修剪深度的凋落物及其组分的最大吸水速率均表现为:叶>混合>枝,这一结果与其持水率较为一致。各组分的最大持水量均表现为:混合>叶>枝,混合组分最大持水量以中度修剪为大、其次为重度修剪与轻度修剪(1.86~2.89 t·hm-2)。该结果小于杉木人工林(4.24~11.60 t·hm-2)[12],远小于亚热带阔叶林(13.37~17.71 t·hm-2)[23],接近同属亚热带的3种人工林(3.3~6.8 t·hm-2)[24],差异原因主要与植被类型、生物量、凋落物组分持水特性有关。
不同修剪程度的茶树修剪物对降雨的拦蓄能力不同。本研究表明,3种处理下混合组分的最大拦蓄率(95.12%~110.12%),有效拦蓄率(79.19%~91.91%)。与彭玉华等[13]报道的5种植被类型凋落物的最大拦蓄率(95.13%~147.49%),有效拦蓄率(75.41%~122.77%)相当。混合组分的最大持水量、最大拦蓄量及有效拦蓄量均表现为:中度修剪>重度修剪>轻度修剪。中度修剪下的单次修剪凋落物的有效拦蓄量(2.19 t·hm-2),比最大持水量、最大拦蓄量分别下降24.22%和16.41%,小于同气候带杉木林的最大拦蓄量(3.44~9.92 t·hm-2),介于有效拦蓄量(1.88~5.93 t·hm-2)[12],远小于彭华等[13]报道的植被类型最大拦蓄量(377.55~520.62 t·hm-2)和有效拦蓄量(313.54~430.74 t·hm-2)。本研究表明茶园生态系统凋落物的拦蓄降水能力明显小于森林生态系统,两者相差悬殊主要为各自生态系统内的凋落物现存量及及持水率差别巨大所致。
生产茶园内的茶树每年都要进行1~3次修剪,考虑茶树枝叶自然凋落的存在茶园实际凋落物及其蓄水能力要大于单纯修剪凋落物的统计量,加之凋落物存在自然分解过程其持水特性非恒定,故有关人为管理导致的茶树凋落物分解与养分循环、生态水文功能的动态变化还有待进一步深入研究。在茶树修剪凋落物组分中,叶组分由于其生物学特性及生物量占比较大等原因,成为茶园生态系统凋落物中涵养水源功能的主要承担者。本研究仅从单一凋落物的生态水文功能角度分析,表明茶园生态系统凋落物所具备的生态水文功能弱于森林生态系统,这与茶园人工生态系统存在较强的水土流失现象相一致。尤其对于新建茶园,在合理选择栽植方式外(如:等高条栽),应加强水土保持的生态(如生草覆盖)和工程技术措施(设置缓路横沟、等高梯层、外埂内沟,保持梯面适度内倾等)。
此外,从土地利用类型对生态服务功能影响角度出发,植被类型由林/灌丛地转变为茶园降低了地表覆盖度、凋落物现存量及持水量,其必然对生态系统的水土保持、水源涵养的功能产生显著及长期影响。因此,在规划茶叶种植时不应盲目增加种植面积,而应进行经济和生态效益的均衡考虑。
-
表 1 不同妊娠相关标志物诊断法在牛羊生产中的应用
Table 1 Various methods for pregnancy diagnosis on cattle and sheep based on pregnancy-related markers
妊娠诊断方法
Pregnancy diagnostic生产中应用效果
Application effect in production优点
Advantage局限性
Disadvantage孕酮浓度检测
P4 detectionAI后10、21和30 d,流产奶牛P4显著低于妊娠奶牛[29];
羊在AI后14~30 d,妊娠组P4显著高于未妊娠组[30];方便、可批量操作 程序复杂、对检测环境要求严格 早孕因子检测
EPF detection牛配种后1个月,妊娠与空怀差异显著 [32];
绵羊进行早孕诊断,准确率90.81%[33];诊断时间早,妊娠24 h后即可检出 肿瘤 EPF可能造成假阳性结果 IFN-τ及ISGs
IFN-τ and ISGsAI后22 d流产奶牛ISG15比妊娠奶牛低[41];
羊在AI后15 d内 ISG15的表达均上调[41];诊断时间早 判别标准需要进一步研究 妊娠相关糖蛋白检测
PAG detection牛PAG检测试剂盒准确率可达93.9%[60];
羊PAG检测试剂盒敏感性100.0%,特异性95.8%[57];诊断时间早 检测成本和技术要求高 外泌体miRNAs 牛:miR-26a可能是潜在妊娠诊断标志物[65];
羊:miR-379可能是潜在妊娠诊断标志物[69];诊断时间早 在试验研究阶段,无相应检测产品 -
[1] 包凯,曹宇,刘光磊,等. 奶牛的早期妊娠诊断研究进展[J]. 现代畜牧兽医,2016(8) :49−52. DOI: 10.3969/j.issn.1672-9692.2016.08.012 BAO K,CAO Y,LIU G L,et al. Advance of early pregnancy diagnosis technology in dairy cows[J]. Modern Journal of Animal Husbandry and Veterinary Medicine,2016(8) :49−52. (in Chinese) DOI: 10.3969/j.issn.1672-9692.2016.08.012
[2] DE VRIES A. Economic value of pregnancy in dairy cattle[J]. Journal of Dairy Science,2006,89(10) :3876−3885. DOI: 10.3168/jds.S0022-0302(06)72430-4
[3] CONSENTINI C E C,ALVES R L O R,SILVA M A,et al. What are the factors associated with pregnancy loss after timed-artificial insemination in Bos indicus cattle?[J]. Theriogenology,2023,196:264−269. DOI: 10.1016/j.theriogenology.2022.10.037
[4] PURSLEY J R,SANTOS A,MINELA T. Review:Initial increase in pregnancy-specific protein B in maternal circulation after artificial insemination is a key indicator of embryonic survival in dairy cows[J]. Animal,2023,17:100746. DOI: 10.1016/j.animal.2023.100746
[5] PINEDO P J,MANRÍQUEZ D,CIARLETTA C,et al. Association between body condition score fluctuations and pregnancy loss in Holstein cows[J]. Journal of Animal Science,2022,100(10) :skac266. DOI: 10.1093/jas/skac266
[6] 钟朱夏,胡修忠,向敏,等. 妊娠相关糖蛋白的生物学功能及其在畜牧生产中的研究进展[J]. 畜牧兽医学报,2024,55(3) :874−881. ZHONG Z X,HU X Z,XIANG M,et al. Research progress on biological function and application of pregnancy associated glycoproteins in livestock production[J]. Acta Veterinaria et Zootechnica Sinica,2024,55(3) :874−881. (in Chinese)
[7] 李雯乔,李发弟,王新基,等. 家畜早期妊娠诊断的研究进展[J]. 畜牧兽医学报,2023,54(5) :1782−1791. LI W Q,LI F D,WANG X J,et al. Advance of early pregnancy diagnosis in livestock[J]. Acta Veterinaria et Zootechnica Sinica,2023,54(5) :1782−1791. (in Chinese)
[8] 贾晓,邱瑾,舒娟,等. 血清孕酮水平检测在克隆胚胎移植受体牛的筛选及妊娠诊断中的应用[J]. 中国生物工程杂志,2020,40(7) :1−8. JIA X,QIU J,SHU J,et al. Serum progesterone level detection for the screening of recipient cattle for cloned embryo transfer and their pregnancy diagnosis[J]. China Biotechnology,2020,40(7) :1−8. (in Chinese)
[9] 宋立峰,刘静静,刘月琴,等. 用于检测绵羊妊娠早孕因子多克隆抗体的制备[J]. 中国草食动物科学,2014,34(S1) :203−205. DOI: 10.3969/j.issn.2095-3887.2014.z1.075 SONG L F,LIU J J,LIU Y Q,et al. Preparation of polyclonal antibody for detecting early pregnancy factor in sheep[J]. China Herbivore Science,2014,34(S1) :203−205. (in Chinese) DOI: 10.3969/j.issn.2095-3887.2014.z1.075
[10] BREUKELMAN S P,PERÉNYI Z,TAVERNE M M,et al. Characterisation of pregnancy losses after embryo transfer by measuring plasma progesterone and bovine pregnancy-associated glycoprotein-1 concentrations[J]. Veterinary Journal,2012,194(1) :71−76. DOI: 10.1016/j.tvjl.2012.02.020
[11] 余婕,向敏,刘辰晖,等. 干扰素-τ调控牛母体妊娠识别分子机制的研究进展[J]. 中国奶牛,2021(8) :28−32. YU J,XIANG M,LIU C H,et al. Research progress on molecular mechanism of maternal recognition of pregnancy regulated by interferon-tau in cows[J]. China Dairy Cattle,2021(8) :28−32. (in Chinese)
[12] ROMANO J E,PINEDO P,BRYAN K,et al. Comparison between allantochorion membrane and amniotic sac detection by per rectal palpation for pregnancy diagnosis on pregnancy loss,calving rates,and abnormalities in newborn calves[J]. Theriogenology,2017,90:219−227. DOI: 10.1016/j.theriogenology.2016.11.004
[13] 李玮. 早期妊娠诊断技术在肉牛生产中的应用研究[J]. 中国畜牧业,2024(12) :104−105. DOI: 10.3969/j.issn.2095-2473.2024.12.051 LI W. Application research of early pregnancy diagnosis technology in beef cattle production[J]. China Animal Industry,2024(12) :104−105. (in Chinese) DOI: 10.3969/j.issn.2095-2473.2024.12.051
[14] BORŞ S I,BORȘ A. Economics of rebreeding nonpregnant dairy cows diagnosed by transrectal ultrasonography on day 25 after artificial insemination[J]. Animals,2022,12(6) :761. DOI: 10.3390/ani12060761
[15] SILVA E,STERRY R A,KOLB D,et al. Accuracy of a pregnancy-associated glycoprotein ELISA to determine pregnancy status of lactating dairy cows twenty-seven days after timed artificial insemination[J]. Journal of Dairy Science,2007,90(10) :4612−4622. DOI: 10.3168/jds.2007-0276
[16] SZENCI O. Recent possibilities for the diagnosis of early pregnancy and embryonic mortality in dairy cows[J]. Animals,2021,11(6) :1666. DOI: 10.3390/ani11061666
[17] KAREN A,BAJCSY A C,MINOIA R,et al. Relationship of progesterone,bovine pregnancy-associated glycoprotein-1 and nitric oxide with late embryonic and early fetal mortalities in dairy cows[J]. The Journal of Reproduction and Development,2014,60(2) :162−167. DOI: 10.1262/jrd.2013-033
[18] BRZOZOWSKA A,STANKIEWICZ T,BŁASZCZYK B,et al. Ultrasound parameters of early pregnancy and Doppler indices of blood vessels in the placenta and umbilical cord throughout the pregnancy period in sheep[J]. BMC Veterinary Research,2022,18(1) :326. DOI: 10.1186/s12917-022-03424-z
[19] RAMÍREZ-GONZÁLEZ D,POTO Á,PEINADO B,et al. Ultrasonography of pregnancy in murciano-granadina goat breed:Fetal growth indices and umbilical artery Doppler parameters[J]. Animals,2023,13(4) :618. DOI: 10.3390/ani13040618
[20] 李福慧. 规模化奶牛场B超早期妊娠诊断规程的研究[D]. 呼和浩特:内蒙古农业大学,2021. LI F H. Research on early pregnancy diagnosis procedure by ultrasonography in scaled dairy farm[D]. Hohhot:Inner Mongolia Agricultural University,2021. (in Chinese)
[21] 刘宗玲,张文倩,郭志杰,等. 湖羊B超早期妊娠诊断的研究[J]. 中国草食动物科学,2022,42(3) :63−66. DOI: 10.3969/j.issn.2095-3887.2022.03.014 LIU Z L,ZHANG W Q,GUO Z J,et al. Study on early pregnancy diagnosis of hu sheep by B-ultrasound[J]. China Herbivore Science,2022,42(3) :63−66. (in Chinese) DOI: 10.3969/j.issn.2095-3887.2022.03.014
[22] 熊琪,张群,金晶,等. 直肠B超在湖北黑头山羊发情鉴定和早期妊娠诊断中的应用[J]. 湖北农业科学,2020,59(S1) :180−184. XIONG Q,ZHANG Q,JIN J,et al. Application of rectal B-ultrasound in the estrus identification and early pregnancy diagnosis of Hubei black headed goat[J]. Hubei Agricultural Sciences,2020,59(S1) :180−184. (in Chinese)
[23] SZELÉNYI Z,SZENCI O,KOVÁCS L,et al. Practical aspects of twin pregnancy diagnosis in cattle[J]. Animals,2021,11(4) :1061. DOI: 10.3390/ani11041061
[24] LÓPEZ-GATIUS F,SZENCI O. Clinical management of pregnancy-related problems between days 28 and 60 in the dairy cow[J]. Theriogenology,2023,206:140−148. DOI: 10.1016/j.theriogenology.2023.04.024
[25] LONERGAN P,SÁNCHEZ J M. Symposium review:Progesterone effects on early embryo development in cattle[J]. Journal of Dairy Science,2020,103(9) :8698−8707. DOI: 10.3168/jds.2020-18583
[26] YAN L Y,ROBINSON R,SHI Z D,et al. Efficacy of progesterone supplementation during early pregnancy in cows:A meta-analysis[J]. Theriogenology,2016,85(8) :1390–1398.
[27] 苏妮,孙振师,张化恒. 奶牛三种早孕诊断方法的比较[J]. 山东畜牧兽医,2012,33(4) :17−18. SU N,SUN Z S,ZHANG H H. Comparison of three diagnostic methods for early pregnancy in dairy cows[J]. Shandong Journal of Animal Science and Veterinary Medicine,2012,33(4) :17−18. (in Chinese)
[28] 李永鹏. 根据乳汁孕酮水平进行奶山羊早期妊娠诊断的研究[J]. 畜牧兽医学报,1984,15(2) :18−25. LI Y P. Pregnancy diagnosis in the dairy goats from milk progesterone concentration[J]. Chinese Journal of Animal and Veterinary Sciences,1984,15(2) :18−25. (in Chinese)
[29] MARTINS J P N,WANG D,MU N,et al. Level of circulating concentrations of progesterone during ovulatory follicle development affects timing of pregnancy loss in lactating dairy cows[J]. Journal of Dairy Science,2018,101(11) :10505−10525. DOI: 10.3168/jds.2018-14410
[30] NYMAN S,GUSTAFSSON H,BERGLUND B. Extent and pattern of pregnancy losses and progesterone levels during gestation in Swedish Red and Swedish Holstein dairy cows[J]. Acta Veterinaria Scandinavica,2018,60(1) :68. DOI: 10.1186/s13028-018-0420-6
[31] 赵梦圆. 绵羊早期妊娠诊断关键生殖激素及差异蛋白筛选[D]. 太谷:山西农业大学,2019. ZHAO M Y. Screening of key reproductive hormones and differential proteins in early pregnancy diagnosis of sheep[D]. Taigu:Shanxi Agricultural University,2019. (in Chinese)
[32] HAN X,WANG S Y,REN Y,et al. Selection of early pregnancy specific proteins and development a rapid immunochromatographic test strip in cows[J]. Theriogenology,2022,187:127−134. DOI: 10.1016/j.theriogenology.2022.04.029
[33] 贺加双,马卫明,邓立新,等. 玫瑰花环抑制实验检测肉牛早孕因子(EPF) 活性[J]. 中国牛业科学,2011,37(3) :11−13. DOI: 10.3969/j.issn.1001-9111.2011.03.003 HE J S,MA W M,DENG L X,et al. Detection of beef cattle pregnancy using rosette inhibition test[J]. China Cattle Science,2011,37(3) :11−13. (in Chinese) DOI: 10.3969/j.issn.1001-9111.2011.03.003
[34] 郑毛亮,李广,陶大勇,等. 用血清酸滴定法对3个品种绵羊进行早期妊娠诊断的研究[J]. 安徽农业科学,2011,39(8) :4708−4709. DOI: 10.3969/j.issn.0517-6611.2011.08.116 ZHENG M L,LI G,TAO D Y,et al. Early pregnancy diagnosis by serum acid titration in three sheep breeds[J]. Journal of Anhui Agricultural Sciences,2011,39(8) :4708−4709. (in Chinese) DOI: 10.3969/j.issn.0517-6611.2011.08.116
[35] 陈超,张欣欣,安志高,等. 奶牛早期妊娠诊断技术的研究进展[J]. 中国奶牛,2019(4) :26−29. CHEN C,ZHANG X X,AN Z G,et al. Research progress on early pregnancy diagnosis techniques for dairy cows[J]. China Dairy Cattle,2019(4) :26−29. (in Chinese)
[36] WILTBANK M C,MONTEIRO P L J,DOMINGUES R R,et al. Review:Maintenance of the ruminant corpus luteum during pregnancy:Interferon-tau and beyond[J]. Animal,2023,17:100827. DOI: 10.1016/j.animal.2023.100827
[37] BAI H,KAWAHARA M,TAKAHASHI M,et al. Recent progress of interferon-tau research and potential direction beyond pregnancy recognition[J]. The Journal of Reproduction and Development,2022,68(5) :299−306. DOI: 10.1262/jrd.2022-061
[38] TALUKDER A K,YOUSEF M S,RASHID M B,et al. Bovine embryo induces an anti-inflammatory response in uterine epithelial cells and immune cells in vitro:Possible involvement of interferon tau as an intermediator[J]. The Journal of Reproduction and Development,2017,63(4) :425−434. DOI: 10.1262/jrd.2017-056
[39] KIKUCHI M,KIZAKI K,SHIGENO S,et al. Newly identified interferon tau-responsive Hes family BHLH transcription factor 4 and cytidine/uridine monophosphate kinase 2 genes in peripheral blood granulocytes during early pregnancy in cows[J]. Domestic Animal Endocrinology,2019,68:64−72. DOI: 10.1016/j.domaniend.2019.01.006
[40] AHMAD SHEIKH A,HOODA O K,KALYAN A,et al. Interferon-tau stimulated gene expression:A proxy to predict embryonic mortality in dairy cows[J]. Theriogenology,2018,120:61−67. DOI: 10.1016/j.theriogenology.2018.07.028
[41] YOSHINO H,KIZAKI K,HIRATA T I,et al. Interferon-stimulated gene expression in peripheral blood leucocytes as a convenient prediction marker for embryo status in embryo-transferred Japanese black cows during the peri-implantation period[J]. Veterinary Sciences,2023,10(7) :408. DOI: 10.3390/vetsci10070408
[42] DOMINGUES R R,ANDRADE J P N,CUNHA T O,et al. Profiles of interferon-stimulated genes in multiple tissues and circulating pregnancy-associated glycoproteins and their association with pregnancy loss in dairy cows[J]. Biology of Reproduction,2024,110(3) :558−568. DOI: 10.1093/biolre/ioad164
[43] KOSE M,KAYA M S,AYDILEK N,et al. Expression profile of interferon tau-stimulated genes in ovine peripheral blood leukocytes during embryonic death[J]. Theriogenology,2016,85(6) :1161−1166. DOI: 10.1016/j.theriogenology.2015.11.032
[44] MAUFFRÉ V,GRIMARD B,EOZENOU C,et al. Interferon stimulated genes as peripheral diagnostic markers of early pregnancy in sheep:A critical assessment[J]. Animal,2016,10(11) :1856−1863. DOI: 10.1017/S175173111600077X
[45] GIORDANO J O,GUENTHER J N,LOPES G,et al. Changes in serum pregnancy-associated glycoprotein,pregnancy-specific protein B,and progesterone concentrations before and after induction of pregnancy loss in lactating dairy cows[J]. Journal of Dairy Science,2012,95(2) :683−697. DOI: 10.3168/jds.2011-4609
[46] WALLACE R M,POHLER K G,SMITH M F,et al. Placental PAGs:Gene origins,expression patterns,and use as markers of pregnancy[J]. Reproduction,2015,149(3) :R115−R126. DOI: 10.1530/REP-14-0485
[47] OLIVEIRA FILHO R V,FRANCO G A,REESE S T,et al. Using pregnancy associated glycoproteins (PAG) for pregnancy detection at day 24 of gestation in beef cattle[J]. Theriogenology,2020,141:128−133. DOI: 10.1016/j.theriogenology.2019.09.014
[48] NANAS I,CHOUZOURIS T M,DOVOLOU E,et al. Early embryo losses,progesterone and pregnancy associated glycoproteins levels during summer heat stress in dairy cows[J]. Journal of Thermal Biology,2021,98:102951. DOI: 10.1016/j.jtherbio.2021.102951
[49] REESE S T,GEARY T W,FRANCO G A,et al. Pregnancy associated glycoproteins (PAGs) and pregnancy loss in high vs sub fertility heifers[J]. Theriogenology,2019,135:7−12. DOI: 10.1016/j.theriogenology.2019.05.026
[50] DOMINGUES R R,ANDRADE J P N,CUNHA T O,et al. Is pregnancy loss initiated by embryonic death or luteal regression? Profiles of pregnancy-associated glycoproteins during elevated progesterone and pregnancy loss[J]. JDS Communications,2022,4(2) :149−154.
[51] DE MIRANDA E SILVA CHAVES C,DIAS DA COSTA R L,RONCATO DUARTE K M,et al. Visual ELISA for detection of pregnancy-associated glycoproteins (PAGs) in ewe serum[J]. Theriogenology,2017,97:78−82. DOI: 10.1016/j.theriogenology.2017.04.026
[52] STECKELER P,WEBER F,ZERBE H,et al. Evaluation of a bovine visual pregnancy test for the detection of pregnancy-associated glycoproteins in sheep[J]. Reproduction in Domestic Animals,2019,54(2) :280−288. DOI: 10.1111/rda.13356
[53] AKKÖSE M,ÇıNAR E M,YAZLıK M O,et al. Serum pregnancy–associated glycoprotein profiles during early gestation in Karya and Konya Merino sheep[J]. Veterinary Medicine and Science,2024,10(1) :e1345. DOI: 10.1002/vms3.1345
[54] ROBERTS J N,MAY K J,VEIGA-LOPEZ A. Time-dependent changes in pregnancy-associated glycoproteins and progesterone in commercial crossbred sheep[J]. Theriogenology,2017,89:271−279. DOI: 10.1016/j.theriogenology.2016.10.029
[55] MOSAAD A F,EL-NAKHLA S M,ABD EL-RASOUL F H,et al. Effect of ambient lead on progesterone and pregnancy-associated glycoprotein 1 and their relationship with abortion in Zaraibi goats:A field study[J]. Tropical Animal Health and Production,2024,56(1) :40. DOI: 10.1007/s11250-023-03877-w
[56] DE CAROLIS M,BARBATO O,ACUTI G,et al. Plasmatic profile of pregnancy-associated glycoprotein (PAG) during gestation and postpartum in Sarda and lacaune sheep determined with two radioimmunoassay systems[J]. Animals,2020,10(9) :1502. DOI: 10.3390/ani10091502
[57] LAMGLAIT B,RAMBAUD T. Diagnosis of pregnancy in barbary sheep (Ammotragus lervia) using a bovine assay for pregnancy-associated glycoproteins[J]. Journal of Zoo and Wildlife Medicine,2017,48(2) :525−528. DOI: 10.1638/2016-0129.1
[58] DE MIRANDA E SILVA CHAVES C,DA COSTA R L D,DUARTE K M R,et al. Evaluation of a cattle rapid test for early pregnancy diagnosis in sheep[J]. Tropical Animal Health and Production,2020,52(3) :1345−1349. DOI: 10.1007/s11250-019-02130-7
[59] 李艳艳. 牛妊娠相关糖蛋白(PAG) ELISA检测技术的应用研究[D]. 杨凌:西北农林科技大学,2015. LI Y Y. Study on the application of ELISA for detection of bovine pregnancy-associated glycoprotein (PAG) [D]. Yangling:Northwest A & F University,2015. (in Chinese)
[60] 薄小辉. 妊娠相关糖蛋白在奶牛早期妊娠诊断上的应用研究[D]. 北京:中国农业科学院,2017. BO X H. Study on the application of pregnancy-related glycoprotein in the diagnosis of early pregnancy in dairy cows[D]. Beijing:Chinese Academy of Agricultural Sciences,2017. (in Chinese)
[61] MOUSSAFIR Z,ALLAI L,EL KHALIL K,et al. Could a bovine pregnancy rapid test be an alternative to a commercial pregnancy-associated glycoprotein ELISA test in dairy cattle?[J]. Animal Reproduction Science,2018,192:78−83. DOI: 10.1016/j.anireprosci.2018.02.016
[62] HAN J R,ZHANG Y B,GE P,et al. Exosome-derived CIRP:An amplifier of inflammatory diseases[J]. Frontiers in Immunology,2023,14:1066721. DOI: 10.3389/fimmu.2023.1066721
[63] YÁÑEZ-MÓ M,SILJANDER P R,ANDREU Z,et al. Biological properties of extracellular vesicles and their physiological functions[J]. Journal of Extracellular Vesicles,2015,4(1) :27066. DOI: 10.3402/jev.v4.27066
[64] LU J,GETZ G,MISKA E A,et al. MicroRNA expression profiles classify human cancers[J]. Nature,2005,435(7043) :834−838. DOI: 10.1038/nature03702
[65] TREIBER T,TREIBER N,MEISTER G. Regulation of microRNA biogenesis and function[J]. Thrombosis and Haemostasis,2012,107(4) :605−610. DOI: 10.1160/TH11-12-0836
[66] POHLER K G,GREEN J A,MOLEY L A,et al. Circulating microRNA as candidates for early embryonic viability in cattle[J]. Molecular Reproduction and Development,2017,84(8) :731−743. DOI: 10.1002/mrd.22856
[67] ZHAO G,GUO S,JIANG K F,et al. MiRNA profiling of plasma-derived exosomes from dairy cows during gestation[J]. Theriogenology,2019,130:89−98. DOI: 10.1016/j.theriogenology.2019.03.001
[68] IOANNIDIS J,XAVIER DONADEU F. Circulating miRNA signatures of early pregnancy in cattle[J]. BMC Genomics,2016,17:184. DOI: 10.1186/s12864-016-2529-1
[69] MARKKANDAN K,AHN K,LEE D J,et al. Profiling and identification of pregnancy-associated circulating microRNAs in dairy cattle[J]. Genes & Genomics,2018,40(10) :1111−1117.
[70] NAKAMURA K,KUSAMA K,BAI R L,et al. Induction of IFNT-stimulated genes by conceptus-derived exosomes during the attachment period[J]. PLoS One,2016,11(6) :e0158278. DOI: 10.1371/journal.pone.0158278
[71] KLISCH K,SCHRANER E M. Intraluminal vesicles of binucleate trophoblast cell granules are a possible source of placental exosomes in ruminants[J]. Placenta,2020,90:58−61. DOI: 10.1016/j.placenta.2019.12.006
[72] CLEYS E R,HALLERAN J L,MCWHORTER E,et al. Identification of microRNAs in exosomes isolated from serum and umbilical cord blood,as well as placentomes of gestational day 90 pregnant sheep[J]. Molecular Reproduction and Development,2014,81(11) :983−993. DOI: 10.1002/mrd.22420
[73] BURNS G,BROOKS K,WILDUNG M,et al. Extracellular vesicles in luminal fluid of the ovine uterus[J]. PLoS One,2014,9(3) :e90913. DOI: 10.1371/journal.pone.0090913
[74] HUANG T,LIANG X Y,BAO H,et al. Multi-omics analysis reveals the associations between altered gut microbiota,metabolites,and cytokines during pregnancy[J]. mSystems,2024,9(3) :e0125223. DOI: 10.1128/msystems.01252-23
-
期刊类型引用(1)
1. 董照锋. 茶树修剪技术对北方茶园病虫控制的效应. 茶叶. 2017(04): 207-209 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 3