Bioinformatics analysis of differentially expressed genes in gosling plague and prediction of potential therapeutic Chinese medicine
-
摘要:目的
通过生物信息学方法筛选小鹅瘟(gosling plague, GP)相关数据集的致病核心基因及主要信号通路,预测潜在治疗靶点和有效干预中药。
方法通过收集GeneCards数据库中GP相关靶点并经Uniprot数据库标准化,并提取基因表达综合数据库(gene expression omnibus, GEO)肠道炎症数据集(GSE14841)和营养不良数据集(GSE43698),合并使用R语言Limmar包来筛选GP的差异表达基因(differentially expressed genes, DEGs)。利用DAVID数据库对DEGs进行基因本体论(Gene Ontology, GO)分析以及京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)富集分析,通过STRING数据库构建蛋白互作网络(protein-protein interaction network, PPI),Cytoscape 软件及其插件筛选子网络核心基因。将核心基因与Coremine Medical数据库相互映射,筛选能够治疗GP的潜在中药。
结果共筛选得到58个DEGs,富集分析结果显示,DEGs主要参与宿主细胞膜受体识别病毒蛋白、细胞质水解酶与转移酶活性等生物过程,定位于肌动蛋白细胞骨架(actin cytoskeleton, AC),环鸟苷酸-腺苷酸合成酶和干扰素基因刺激因子(cytosolic DNA-Sensing and the STING, cGAS-STING)、丝裂原活化蛋白激酶(mitogen-activated protein kinase, MARK)与Toll样受体(toll-like receptor, TLR)信号通路。通过PPI鉴定出Degree值前10名关键基因:干扰素诱导螺旋酶C结构域3(interferon induced with helicase C domain 3, IFIH3)、干扰素诱导螺旋酶C结构域1(interferon induced with helicase C domain 1, IFIH1)、线粒体抗病毒信号蛋白(mitochondrial antiviral signaling protein, MAVS)、C-C趋化因子配体5(C-C motif chemokine ligand 5, CCL5)、Toll样受体4(toll-like receptor 4, TLR4)、核因子κB(nuclear factor-kappa B, NF-κB)、Ras相关C3毒素底物2(ras-related C3 botulinum toxin substrate 2, RAC2)、Toll样受体9(toll-like receptor 9, TLR9)、早期生长应答基因1(early growth response 1, EGR1)、Erb-B2受体酪氨酸激酶3(erb-B2 receptor tyrosine kinase 3, ERBB3)。TLR4、TLR9、NF-κB、ERBB3为筛选到的GP感染性炎症4个核心基因。预测出治疗GP的潜在中药50种,中药类别主要包括清热解毒药、补虚药、解表药、收敛止泻药等4类。
结论本研究应用生物信息学方法明确了与GP相关的4个核心基因以及50种潜在靶向中药,为防治GP的天然药物研发提供了新思路与理论依据。
Abstract:ObjectiveBy using bioinformatics methods, we screened the core pathogenic genes and main signaling pathways of GP from related datasets, and predicted potential therapeutic targets and effective intervention Chinese herbal medicines.
MethodGP-related targets were collected from the GeneCards database and standardized via the Uniprot database. The intestinal inflammation dataset (GSE14841) and the malnutrition dataset (GSE43698) from the Gene Expression Omnibus (GEO) were extracted and combined. The differentially expressed genes (DEGs) of GP were screened using the Limma package in R language. The DAVID database was used for GO analysis and KEGG enrichment analysis of DEGs. The STRING database was used to construct the protein-protein interaction network (PPI), and the Cytoscape software and its plugins were used to screen the core genes of the sub-network. The core genes were mapped with the Coremine Medical database to screen for potential traditional Chinese medicines that could treat GP.
ResultA total of 58 DEGs were screened out. The results of enrichment analysis showed that the DEGs were mainly involved in biological processes such as the recognition of viral proteins by the host cell membrane receptors, and the activities of cytoplasmic hydrolases and transferases. They were located in the actin cytoskeleton (AC), the cytosolic DNA-Sensing and the STING (cGAS-STING), mitogen-activated protein kinase (MARK) and toll-like receptor (TLR) signaling pathways. Through the PPI, the top 10 key genes in terms of the Degree value were identified: interferon induced with helicase C domain 3 (IFIH3), interferon induced with helicase C domain 1 (IFIH1), mitochondrial antiviral signaling protein (MAVS), C-C motif chemokine ligand 5 (CCL5), toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), ras-related C3 botulinum toxin substrate 2 (RAC2), toll-like receptor 9 (TLR9), early growth response 1 (EGR1), erb-B2 receptor tyrosine kinase 3 (ERBB3). TLR4, TLR9, NF-κB and ERBB3 were the four core genes identified in the inflammatory response to GP infection. A total of 50 potential traditional Chinese medicines for treating GP were predicted, and the categories of traditional Chinese medicines mainly included four types such as heat-clearing and detoxifying medicines, tonifying deficiency medicines, exterior-releasing medicines, and astringent antidiarrheal medicines.
ConclusionThis study applied bioinformatics methods to identify four core genes related to GP and 50 potential targeted traditional Chinese medicines, providing new ideas and theoretical basis for the development of natural medicines for the prevention and treatment of GP.
-
Keywords:
- gosling plague /
- goose parvovirus /
- potential Chinese herbs /
- virtual screening /
- bioinformatics
-
0. 引言
【研究意义】红树林是生长在热带、亚热带海岸潮间带滩涂上的木本植物群落,由其主导形成的红树林生态系统在维持滨海湿地生产力、生物多样性等方面发挥着巨大的作用[1]。秋茄(Kandelia obovata)作为广布种,在我国主要分布在广东、广西、福建、台湾等地的浅海、河流冲积带、盐滩[2]。但随着纬度的升高,秋茄红树林群落的冠层高度有降低的趋势。研究秋茄幼苗的土壤营养可为提高引种秋茄的生长发育能力提供重要依据。【前人研究进展】红树林生长的沉积物具有酸性强、有机质含量高等特征[3],但仍被认为营养匮乏,尤其是植物生长所必需的氮磷元素的缺少[4]。因此,适当的补充植物所需要的营养对提高育苗效果、培育壮苗具有重要的意义。施肥作为补充土壤养分最有效、最直接的方式,可以提高土壤中有效养分的含量,促进植物的生长。但盲目施肥、过量施肥不仅会增加成本,还会造成环境污染等现象[5]。因此,对于红树植物秋茄幼苗培育来说亟需探寻科学合理的施肥策略。土壤微生物是土壤中的重要成分,参与土壤生态系统中的物质循环和能量转化,施肥影响土壤微生物的数量和种群结构,反过来土壤微生物深刻影响土壤理化和生物学性质,进而影响肥料对植物的有效性[6−7]。不同的施肥处理对土壤的影响显著不同[8]。施加有机肥可改变土壤微生物群落多样性,增加固氮微生物等功能微生物菌群丰度[9]。司海丽等[10]指出施用适量有机肥可以显著提高玉米产量,增加土壤养分和微生物数量。25%鸡粪与75%化肥配施可显著提高土壤微生物多样性、均匀度和优势度指数,土壤微生物总量[11],施加化肥的根际土壤中,会提高脱硫杆菌和嗜盐放线菌的丰富度[12]。【本研究切入点】目前,关于施肥对红树植物生长的影响方面主要通过表观指标或有关酶去指示[13],而有关施肥对红树植物秋茄土壤微生物群落结构影响的研究尚有待深入探讨。【拟解决的关键问题】研究不同品牌、不同类型(有机/无机)商品肥以及不同施肥量对红树植物秋茄幼苗的生长指标、叶绿素含量和土壤微生物群落结构的影响,结合多元统计分析,探究秋茄幼苗培育的最适肥料种类及施肥量,为制定科学的施肥制度和构建健康的土壤环境提供依据。
1. 材料与方法
1.1 试验材料
供试滨海滩涂淤泥采自福建省晋江市金井镇滨海滩涂(周围海水盐度为25‰~32‰)。淤泥呈灰黑色,质地黏稠,自然风干后淤泥质地细腻,总氮6.09g·kg−1、总磷2.53 g·kg−1。试验所用的沙为产自福建的普通河沙,总氮(0.15±0.04) g·kg−1、总磷(0.79±0.01) g·kg−1。
供试秋茄为本实验室自行培育的1年苗龄幼苗。试验初始时植物株高为(21.99±0.67 )cm。
本试验选用3种有机肥(原绿牌通用蚓肥,有效成分:3.38%N、2.08% P2O5、1.24% K2O;原绿牌苗木专用蚓肥,有效成分:3.38%N、2.08% P2O5、1.24% K2O;尊龙牌蚓肥,有效成分:2.46%N、4.63% P2O5、2.43% K2O;),1种无机肥(市售复合肥,有效成分:15%N、15% P2O5、15% K2O)。其中有机肥中有机质>52%、粪大肠菌群<0.3 MPN·g−1、pH 5.8。
1.2 试验方法
施肥设置为:原绿通用蚓肥和原绿苗木专用蚓肥T1、T2、T3和T4施加量分别为3.59(N、P2O5、K2O = 0.12、0.07、0.04,下同)、7.18(0.24、0.15、0.09)、14.36(0.48、0.30、0.18)、21.54(0.72、0.45、0.27)g·kg−1 湿基质;尊龙蚓肥T1~T4施加量分别为4.87(0.12、0.23、0.12)、9.74(0.24、0.45、0.24)、19.48(0.48、0.90、0.47)、29.22(0.72、1.35、0.71)g·kg−1 湿基质;市售复合肥T1~T4施加量分别为0.27(0.04、0.04、0.04)、0.53(0.08、0.08、0.08)、1.07(0.16、0.16、0.16)、1.60(0.24、0.24、0.24)g·kg−1 湿基质。有机肥每60 d追施1次,无机肥每20 d追施1次,保证各种肥料施加的氮总量一致,同时设置不施肥的CK组。长势一致的秋茄幼苗在长28 cm、宽20 cm、高17 cm的塑料收纳箱中进行培育,培育基质为滨海滩涂淤泥和沙子按体积比1∶1混合。每箱基质6 kg,均匀种植幼苗3株,并设置3个重复组。室温设置为(24±1)℃,辅以人工光照。试验自2022年6月5日至10月3日,持续120 d。
1.3 分析方法
1.3.1 植物生长指标的测定方法
株高为胚轴顶部到叶顶端之间的距离;叶长叶宽为最大健康叶片的长和宽;叶片数为健康、功能正常的叶片数量。
1.3.2 叶绿素的测定方法
叶绿素含量测定采用丙酮提取比色法[14],试验结束时取第2对子叶测定。
1.3.3 土壤微生物高通量测序分析
第0天土壤样本取自未种植秋茄的混合均匀的土壤,第120天取自于距离表层5 cm的根附近土壤。微生物 DNA 使用 Fast DNA kit for soil 试剂盒,按照说明书进行提取。提取的 DNA 用 PCR 扩增 16S rRNA 基因 V3~V4 区,引物为 341F (5′-CCT AYG GGR BGC ASC AG-3′)和 806R (5′- GGA CTA CNN GGG TAT CTA AT-3′),然后构建文库,进行 Illumina HiSeq 高通量测序。得到的序列利用 DADA2 软件标准流程进行序列质控(DADA2 Pipeline Tutorial1.16:http://benjjneb.github.io/dada2/tutorial.html),去除低质量序列,并提取代表性序列[15]。将代表性序列与 SILVA138版参比数据库进行比对,得到序列的分类信息。以序列数最小的样本(
12166 条序列)为标准,对每个样本的序列数进行均一化。1.4 数据分析
相关数据采用Excel 2019和SPSS13.0软件进行数据整理分析,各处理组的差异采用单因素方差分析(ANOVA)法进行显著性检验,当差异显著时,采用S-N-K法进行多重比较。所有数据均以均值±标准误差(SE)表示。
2. 结果与分析
2.1 不同施肥条件下秋茄幼苗的生长情况
2.1.1 幼苗培育成活率
在不同施肥条件下秋茄幼苗培育中尊龙蚓肥的成活率最高,为96.60%,其次是原绿通用蚓肥和原绿苗木专用蚓肥,分别为93.20%和86.40%,市售复合肥中秋茄的成活率较低,为80.00%。
2.1.2 秋茄表观生长指标
如图1所示,施肥处理组的秋茄株高增长量均显著高于对照组。原绿通用蚓肥的株高增长量随施肥量的升高而降低,T1时显著高于其他处理组和对照组,为(4.20±0.33 )cm。原绿苗木专用蚓肥的株高增长量在T4处理下最大,为(4.42±0.35 )cm。施用尊龙蚓肥的各处理组呈先升后降的趋势,在T2组达最大值(5.18±0.51 )cm。施用市售复合肥的秋茄株高增长量随着施肥量的升高而下降,其中T1和T2处理时株高增长量较大,分别为(4.87±0.09 )cm和(4.40±0.14) cm。
图 1 秋茄幼苗在不同施肥条件下株高、叶片数、叶长、叶宽的增长量不同小写字母表示同种肥料不同施肥量下的均值差异达显著水平(P<0.05)。图3同。Figure 1. Plant height and leaf number, length, and width of K. obovata seedlings under different fertilization treatmentsData with different lowercase letters on same treatment indicate significant differences under different application rates (P<0.05). Same for Fig. 3.与株高增长量相似,秋茄的叶片数增长量在尊龙蚓肥的T2组最大,达(6.50±0.92)片·株−1,显著高于该品牌肥料的其他处理组(P<0.05)。原绿通用蚓肥、原绿苗木专用蚓肥和市售复合肥的秋茄叶片数增长量分别在T3、T2、T1下最大,为(5.00±0.86)、(5.33±0.61)、(5.67±0.76)片·株−1。
叶长、叶宽增长量的变化趋势基本一致:尊龙蚓肥T2组的叶长和叶宽增长量最大,分别为(1.88±0.11)、(0.83±0.07)cm,显著大于其他组(P<0.05),原绿通用蚓肥、原绿苗木专用蚓肥和市售复合肥的秋茄叶长、叶宽增长量分别在T3、T2、T2最大,分别为(1.80±0.13) 、(0.75±0.11) cm;(1.78±0.08) 、(0.83±0.06) cm;(1.50±0.19)、(1.10±0.09) cm。
图2为秋茄4个表观生长指标的PCA分析。结果表明,PC1和PC2的贡献率分别为59.68%和21.77%,累积贡献率为81.45%,说明PC1和PC2能够反映指标的整体信息。4个表观指标间呈正相关,均指向右侧,叶片数增长量对PC1贡献度最大。市售复合肥T2组(SS-T2)、尊龙蚓肥T2、T8组(ZL-T2、ZL-T8)、原绿苗木专用蚓肥(YLMM-T2)排在PCA图的最右边,显示其与4个表观指标有良好的正向关系。综合来看,尊龙蚓肥T2组中(ZL-T2)排在PCA图最右侧。
图 2 秋茄幼苗在不同施肥条件中生长指标PCA分析图中的每个点表示一个施肥处理组。ZG:株高增长量;YPS:叶片数增长量;YC:叶长增长量;YK:叶宽增长量。YLMM:原绿苗木蚓肥;YLTY:原绿通用蚓肥;ZL:尊龙蚓肥;SS:市售复合肥;T1~T4:T1~T4处理组。Figure 2. PCA on growth indexes of K. obovata seedlings under treatmentsDot: a treatment group; ZG: plant height increasement; YPS: leaf number increasement; YC: leaf length increasement; YK: leaf width increasement; YLMM: YLMM fertilizer; YLTY: YLTY fertilizer; ZL: ZL fertilizer; SS: SS fertilizer; T1–T4: Treatment groups 1–4.2.1.3 秋茄叶片叶绿素含量
如图3所示,施用原绿通用蚓肥后,叶绿素b和总叶绿素含量随着施肥量的增加而下降,均在施肥量T1时最大(4.23±0.34、9.71±0.52 mg·g−1),此时叶绿素a含量也取得最大值(5.48±0.21 mg·g−1),显著大于其他组(P<0.05)。施用原绿苗木专用蚓肥后,叶绿素a和总叶绿素含量随着施肥量的增加呈现出先增后减的趋势,在T2时达最大值(6.61±0.11、9.98±0.22 mg·g−1),显著大于其他组(P<0.05),叶绿素b在T1时最大。施用尊龙蚓肥后,叶绿素b和总叶绿素呈先增后减的趋势,在T2时达最大值(4.29±0.28、9.21±0.04 mg·g−1),而叶绿素a在T3时达最大。施用市售复合肥后,叶绿素a和总叶绿素随着肥料用量的增加而逐渐减小,在T1时达最大值(8.22±0.09、11.88±0.14 mg·g−1),叶绿素b随着肥料用量的增加先增大后减小。
2.2 土壤微生物群落分析
2.2.1 多维尺度分析(MDS)和韦恩图分析
综合上述结果,将秋茄最优施用肥料类型即施尊龙蚓肥(有机肥)组和施市售复合肥(无机肥)组进行比较,分析两种肥料施用后秋茄土壤微生物群落演替状况。图4A可知,秋茄培育120 d后,对照组土壤微生物群落组成发生了显著变化。而120 d时,有机肥各处理组之间的微生物群落组成也存在差异,施肥量最少的T1组与其余处理组之间的距离较远,而其余处理组之间的距离较近,相互混合。从无机肥的各处理组中可以看出,施肥量的不同对土壤细菌群落组成影响较大,施肥量少的T1和T2组与其余处理组之间的距离较远(T1和T2之间的距离也较远),而T3和T4组之间的距离较近。120 d后对照组与施无机肥的T3、T4之间距离较近。无机肥施肥量最低的T1组和施有机肥的各组之间距离较近,且与有机肥施肥量最低的T1组最近。
图4B为微生物ASVs数(可代表物种数)韦恩图。由图可以看出,施肥组特有的ASVs数量明显高于未施肥的对照组,其中有机肥组特有
8662 个ASVs,高于无机肥组特有的7447 个ASVs。有机肥组和对照组共有的ASVs较少,仅有144个,无机肥组和对照组共有的ASVs较多,有637个。2.2.2 微生物群落α多样性
由图5A可知,培育秋茄120 d后对照组和处理组土壤微生物ASVs数均明显上升。随施肥量增加,有机肥各处理组ASVs数呈先上升后缓慢下降的趋势,在T1时最小(
1087.50 ±190.43个),T2时最大(1474.50 ±165.67个),T3和T4处于中间,这与秋茄表观生长指标结果一致。无机肥组ASVs数呈先下降后上升再下降的趋势,T2时最小(813.50±19.09个),T3时最大(1494.50 ±118.02个),T1和T4处于中间,这与秋茄表观生长指标结果负相关。由图5B可知,培育秋茄120天后对照组和处理组土壤微生物香浓维纳指数均明显上升(市售复合肥T2组除外)。与微生物ASVs数的变化情况相似,在各处理组中,有机肥组在T2时达最大值(6.64±0.19),T1时达最小值(5.93±0.49);无机肥组在T3时达最大值(6.46±0.26),T2时达最小值(5.06±0.72)。
2.2.3 微生物相对丰度变化
如图6A,有机肥各组中变形菌门Proteobacteria(0.3032)、放线菌门Actinobacteriota(0.2359)、绿弯菌门Chloroflexi(0.1315)、拟杆菌门Bacteroidetes(0.1162)占优势,而无机肥各组中变形菌门Proteobacteria(0.3329)、拟杆菌门Bacteroidetes(0.1735)、厚壁菌门Firmicutes(0.1766)和绿弯菌门Chloroflexi(0.7670)占优势,此外,无机肥T1组中放线菌门(0.1888)也为优势门类。有机肥的各处理组土壤中,放线菌门、绿弯菌门、厚壁菌门的丰度高于第0天的CK组。在无机肥中,除了施肥量最低的T1外,厚壁菌门、拟杆菌门的丰度均高于第0天的CK组,其中T3的厚壁菌门、拟杆菌门的丰度最高。
如图6B所示,在属水平上,把相对丰度>0.001的细菌选为丰富属,剩余的归为其他属(Others)。有机肥组和无机肥T1组中Limibaculum(0.0121、0.0173)、Nocardioides(0.0086、0.0050)、Haliangium(0.0060、0.0103)、Nitrospira(0.0068、0.0115)为优势属。相较于对照组0 d,这些属在施有机肥120 d后迅速增加。而无机肥T2~T4组中Rikenellaceae_RC9_gut_group(0.0302)、Christensenellaceae_R-7_group(0.0164)、Prevotella(0.0130)和Ruminococcus(0.0137)为优势属。
3. 讨论
3.1 不同施肥条件下红树植物幼苗的生长情况
施加不同肥料后,秋茄各项生长指标均有增加。根据PCA分析,在所有施肥处理组中,有机肥尊龙蚓肥T2处理下秋茄各表观生长指标综合表现最好。此外,尊龙蚓肥T2处理下,秋茄叶片中叶绿素b和总叶绿素含量也均取得最大值。相较于其他肥料,尊龙蚓肥中磷的含量更高。磷肥对红树生长非常重要,陆王康等[16]研究秋茄胎生苗最佳的 N、P、K 肥配比是 2∶3∶1,认为不同比例的氮磷钾配比对秋茄的生长影响不同。同样也有研究指出氮和磷常联合作用对植物生长产生影响,而红树群落边缘区域缺磷从而导致树木矮化[17]。林子腾[18]指出木榄施肥最佳方案:是N50P80K15,肥料中较多的磷肥和合适氮磷钾配比较有助于促进红树林植物苗高、地径和树高。
对于无机肥(市售复合肥),根据PCA分析T1处理下秋茄各表观生长指标综合表现最好,在该施肥条件下株高增长量、叶绿素a 和总叶绿素含量均高于其他处理组。而随着市售复合肥施用量增加,秋茄的各指标呈下降趋势,说明高浓度肥料使秋茄幼苗生长受到抑制。王若鹏等[19]对比了史丹利复合肥、生物有机肥和掺混肥料对芝麻性状的影响,发现施肥处理后芝麻株高和茎粗均显著高于对照组。霍树清等[20]调查农家肥和化肥的不同施肥处理对苗木生长的影响,发现短时间单施化肥对株高的影响不明显,长时间单施化肥后苗木质量差。
总的来看,不施肥或过量施肥会对秋茄幼苗造成营养胁迫。适度施肥能提高秋茄幼苗生长指标、有益于光合色素的生成、有效提高光合作用效率、增强植物对环境的适应性。
3.2 不同施肥条件对土壤微生物群落的影响
微生物群落α多样性结果表明,有机肥各处理组间微生物α多样性的变化趋势与植物生长指标变化趋势一致,在植物生长情况最好的尊龙T2处理下,土壤微生物多样性最高。而无机肥各处理组间微生物α多样性的变化趋势则与植物生长指标变化趋势负相关。这可能是由于有机肥可能通过促进土壤微生物与植物协同,进而有助于植物生长,例如有机质需要微生物降解进而变成适合植物吸收的无机物。王东丽等[21]将微生物菌剂与有机肥配施,发现施加微生物能够协同有机肥促进植物苦参的生长。无机肥具有见效快的特点,虽有助于植物生长,但过量施用可能会导致土壤环境恶化,扰乱土壤微生物结构,影响土壤细菌群落丰度;有机肥可改善不同土壤和植物类型的土壤微生态环境,进而调节土壤微生物群落结构[22]。张迎春等[23]研究将生物有机肥部分替代化肥可增加莴笋根际土壤细菌数和放线菌数,抑制真菌的生长。同样,本研究表明,120 d后,施有机肥秋茄长势最好的组(T2)微生物ASVs数和香浓维纳指数高于施无机肥秋茄长势最好的组[T2组(P< 0.05)],并且施有机肥的特有微生物ASVs最多达
8682 个,多于施无机肥和对照组(7447 、2171 个)。此外,大量研究表明,施用有机肥相比无机肥会增加土壤微生物功能多样性,同时能提高土壤微生物生物量和碳源利用率,促进植物营养的吸收[24]。土壤微生物多样性是土壤环境多因素作用下的综合结果,除了有机肥提供养分,微生物生长环境也显著影响土壤微生物群落多样性。这也说明无机肥处理的土壤微生物群落容易失衡,种群趋于单一化。进而表明施加有机肥的微生物群落稳定性优于无机肥。本研究中有机肥和无机肥组的优势菌门有很大差别。有机肥组中以变形菌门、放线菌门、绿弯菌门和拟杆菌门为优势,而无机肥组中以变形菌门、拟杆菌门和厚壁菌门为优势。相关研究表明[25],变形菌门中很多类群具有固氮作用,在土壤氮素和有机质的转化过程中发挥着重要作用。放线菌门和绿弯菌门主要参与土壤有机质的分解,在土壤养分供给中有着重要作用[26]。有研究表明[27],长期施用有机肥料会增加变形菌门和绿弯菌门的数量。在属水平上,有机肥组中Limibaculum、Nocardioides、Nitrospira和Haliangium为优势属,相较于对照组0天,这些属在施有机肥120 d后迅速增加。Limibaculum可加强了微生物类群之间的相互作用,增加了网络的复杂性,有助于土壤的修复[28]。因此,施加有机肥可能有助于红树生长土壤所需微生物的关联性。Nitrospira能将亚硝酸盐氧化成硝酸盐,也可以促进植物营养吸收,同时可分泌激素并促进作物生长[29]。Nocardioides广泛存在于种植农作物的土壤中,具有水解酶,可以分解土壤中的污染物[30]。也有研究证明施肥提高了Nocardioides的相对丰度有助于土壤向健康方向发展[31]。熊悯梓等[32]发现Haliangium与土壤氮磷、有机质含量存在显著性正相关,并促进植物的生长。这与本研究一致,本研究中在秋茄长势较好的施肥处理中(有机肥T2组)Haliangium的相对丰度也较大。
4. 结论
在尊龙牌蚓肥T2(9.74 g·kg−1,每60天补施一次)处理中,秋茄各项生长指标的综合性能最好,在培育120 d后,其株高、叶片数、叶长、叶宽的增长量比不施肥的对照组分别增加117.50%、178.57%、51.15%、63.34%。此时光合特性较强,成活率为100%。施肥显著影响了土壤微生物群落结构,有机肥可能通过促进土壤微生物与植物协同的方式进而有助于秋茄生长。与施无机肥相比,施加有机肥提高了土壤微生物多样性和土壤有益菌丰度,例如增加了放线菌门Actinobacteriota和Nitrospira、Nocardioides、Limibaculum属微生物丰度,这些微生物与有机质分解及氮循环有关。总之,施有机肥在一定程度上同时促进秋茄生长和土壤微生物多样性,而施无机肥虽然促进秋茄生长但可能对土壤微生物多样性产生负面效应,后续需要更大规模和长时间试验来确认这一结论的显著性。
-
图 1 肠道炎症差异表达基因与营养不良差异表达基因筛选
A~B:肠道炎症与营养不良相关差异基因表达火山图;C~D:肠道炎症与营养不良差异基因表达热图;E~F:肠道炎症与营养不良相关差异基因韦恩图。
Figure 1. Intersection gene Venn diagram of differentially expressed genes in intestinal inflammation and malnutrition
A–B: volcanic map of differentially expressed genes related to intestinal inflammation and malnutrition; C–D: heatmap of differentially expressed genes related to intestinal inflammation and malnutrition; E–F: Venn diagram of differentially expressed genes related to intestinal inflammation and malnutrition.
表 1 核心基因的中药预测结果
Table 1 The prediction of traditional Chinese medicine corresponding to genes
基因 Gene 中药 Traditional Chinese medicine TRL4 黄连、玫瑰花、山药、茵陈、苦参、甘草、莲子肉、白术、钩藤、夏枯草、
葛根、柴胡、鹅不食草、枳椇子、干姜、桑白皮、桑叶、杜仲TRL9 黄芩、甘草、人参、半夏、苦参 NF-κB 褐藻、木蝴蝶、木香、肉豆蔻、党参、柴胡、龙葵、薏苡仁、没药、吴茱萸、
甘草、土茯苓、钩藤、黄连、桑白皮、白果、桑叶、大枣、车前子、绞股蓝、
白扁豆、诃子肉、墨旱莲、杜仲、矮地茶、黄柏、枸骨叶ERBB3 小叶海藻、苦参、葱白、瓜蒌皮、夏枯草、麝香、天花粉、茶树根、枇杷叶、
瓜蒌、黑芝麻 -
[1] HUO X R,CHEN Y M,ZHU J R,et al. Evolution,genetic recombination,and phylogeography of goose parvovirus[J]. Comparative Immunology,Microbiology and Infectious Diseases,2023,102:102079.
[2] WANG H Z,LEI D,XU B Y,et al. Continuous surveillance of pathogens detects excretion of avian orthoreovirus and parvovirus by several wild waterfowl:Possible wild bird reservoirs[J]. Poultry Science,2024,103(8) :103940.
[3] ZHANG S Z,DONG H,LIN F Q,et al. Development and application of a multiplex PCR method for the simultaneous detection of goose parvovirus,waterfowl reovirus,and goose astrovirus in Muscovy ducks[J]. Journal of Virological Methods,2024,324:114857. DOI: 10.1016/j.jviromet.2023.114857
[4] ONISIFOROU A,SPYROU G M. Identification of viral-mediated pathogenic mechanisms in neurodegenerative diseases using network-based approaches[J]. Briefings in Bioinformatics,2021,22(6) :bbab141. DOI: 10.1093/bib/bbab141
[5] STRYSKO J P,STEENHOFF A P. Biomarkers make the case for a comprehensive approach to diagnosing severe acute malnutrition[J]. Pediatrics,2021,147(6) :e2021050215.
[6] HU C Q,GE M,LIU Y,et al. From inflammation to depression:Key biomarkers for IBD-related major depressive disorder[J]. Journal of Translational Medicine,2024,22(1) :997.
[7] WANG B,WANG X F,XIONG Z W,et al. A review on the applications of Traditional Chinese medicine polysaccharides in drug delivery systems[J]. Chinese Medicine,2022,17(1) :12.
[8] SINGH S,MURTI Y,SEMWAL B. Antiviral activity of natural herbs and their isolated BioactiveCompounds:A review[J]. Combinatorial Chemistry & High Throughput Screening,2024,27(14) :2013−2042.
[9] CLOUGH E,BARRETT T,WILHITE S E,et al. NCBI GEO Archive for gene expression and epigenomics data sets:23-year update[J]. Nucleic Acids Research,2024,52(D1) :D138−D144.
[10] LIU X X,ZHANG X H,LI L Q,et al. Bioinformatics analysis of potential key genes and pathways in neonatal necrotizing enterocolitis[J]. BMC Pediatrics,2022,22(1) :658.
[11] RITCHIE M E,PHIPSON B,WU D,et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Research,2015,43(7) :e47. DOI: 10.1093/nar/gkv007
[12] GUSTAVSSON E K,ZHANG D,REYNOLDS R H,et al. Ggtranscript:An R package for the visualization and interpretation of transcript isoforms using ggplot2[J]. Bioinformatics,2022,38(15) :3844−3846. DOI: 10.1093/bioinformatics/btac409
[13] GU Z G,HÜBSCHMANN D. Make interactive complex heatmaps in R[J]. Bioinformatics,2022,38(5) :1460−1462. DOI: 10.1093/bioinformatics/btab806
[14] HUANG D W,SHERMAN B T,LEMPICKI R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nature Protocols,2009,4(1) :44−57. DOI: 10.1038/nprot.2008.211
[15] SZKLARCZYK D,KIRSCH R,KOUTROULI M,et al. The STRING database in 2023:Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Research,2023,51(D1) :D638−D646. DOI: 10.1093/nar/gkac1000
[16] SHANNON P,MARKIEL A,OZIER O,et al. Cytoscape:A software environment for integrated models of biomolecular interaction networks[J]. Genome Research,2003,13(11) :2498−2504. DOI: 10.1101/gr.1239303
[17] CHIN C H,CHEN S H,WU H H,et al. cytoHubba:Identifying hub objects and sub-networks from complex interactome[J]. BMC Systems Biology,2014,8(S4) :S11. DOI: 10.1186/1752-0509-8-S4-S11
[18] CHICCO D,JURMAN G. A statistical comparison between Matthews correlation coefficient (MCC) ,prevalence threshold,and Fowlkes–Mallows index[J]. Journal of Biomedical Informatics,2023,144:104426. DOI: 10.1016/j.jbi.2023.104426
[19] BADER G D,HOGUE C W V. An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics,2003,4:2. DOI: 10.1186/1471-2105-4-2
[20] 吴娜,饶颖,周佳林,等. 中药通过调节铁死亡作用治疗溃疡性结肠炎的用药规律研究[J]. 中成药,2023,45(10) :3482−3486. DOI: 10.3969/j.issn.1001-1528.2023.10.056 WU N,RAO Y,ZHOU J L,et al. Study on the law of traditional Chinese medicine in treating ulcerative colitis by regulating iron death[J]. Chinese Traditional Patent Medicine,2023,45(10) :3482−3486. (in Chinese) DOI: 10.3969/j.issn.1001-1528.2023.10.056
[21] NIU Y J,ZHAO L L,LIU B H,et al. Comparative genetic analysis and pathological characteristics of goose parvovirus isolated in Heilongjiang,China[J]. Virology Journal,2018,15(1) :27. DOI: 10.1186/s12985-018-0935-5
[22] YANG Y T,DENG Z C,ZHANG L J,et al. Novel goose parvovirus VP1 targets IRF7 protein to block the type I interferon upstream signaling pathway[J]. Poultry Science,2024,103(9) :104065. DOI: 10.1016/j.psj.2024.104065
[23] LIU M D,XIANG F J,PAN J L,et al. Host-derived lactic acid bacteria alleviate short beak and dwarf syndrome by preventing bone loss,intestinal barrier disruption,and inflammation[J]. Veterinary Microbiology,2024,296:110187. DOI: 10.1016/j.vetmic.2024.110187
[24] LIN C,ZHENG M,XIAO S F,et al. Duck cGAS inhibits DNA and RNA virus replication by activating IFNs and antiviral ISGs[J]. Frontiers in Immunology,2023,14:1101335. DOI: 10.3389/fimmu.2023.1101335
[25] HU S,SEVIER C S,KURPIOS N A. Protocol to detect smooth muscle actin-alpha and measure oxidative damage in neonatal mouse intestine[J]. STAR Protocols,2022,3(3) :101524. DOI: 10.1016/j.xpro.2022.101524
[26] MORI T,GIOVANNELLI L,BILIA A R,et al. Exosomes:Potential next-generation nanocarriers for the therapy of inflammatory diseases[J]. Pharmaceutics,2023,15(9) :2276. DOI: 10.3390/pharmaceutics15092276
[27] FAGHFOURI A H,ZARRIN R,MALEKI V,et al. A comprehensive mechanistic review insight into the effects of micronutrients on toll-like receptors functions[J]. Pharmacological Research,2020,152:104619. DOI: 10.1016/j.phrs.2019.104619
[28] ARANCIBIA S A,BELTRÁN C J,AGUIRRE I M,et al. Toll-like receptors are key participants in innate immune responses[J]. Biological Research,2007,40(2) :97−112.
[29] KUZMICH N N,SIVAK K V,CHUBAREV V N,et al. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis[J]. Vaccines,2017,5(4) :34. DOI: 10.3390/vaccines5040034
[30] BARNABEI L,LAPLANTINE E,MBONGO W,et al. NF-κB:At the borders of autoimmunity and inflammation[J]. Frontiers in Immunology,2021,12:716469. DOI: 10.3389/fimmu.2021.716469
[31] NTUNZWENIMANA J C,BOUCHER G,PAQUETTE J,et al. Functional screen of inflammatory bowel disease genes reveals key epithelial functions[J]. Genome Medicine,2021,13(1) :181. DOI: 10.1186/s13073-021-00996-7
[32] YU H,LIN L B,ZHANG Z Q,et al. Targeting NF-κB pathway for the therapy of diseases:Mechanism and clinical study[J]. Signal Transduction and Targeted Therapy,2020,5(1) :209. DOI: 10.1038/s41392-020-00312-6
[33] HICKS M R,HISERODT J,PARAS K,et al. ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs[J]. Nature Cell Biology,2018,20(1) :46−57. DOI: 10.1038/s41556-017-0010-2
[34] LI L,YANG L L,YANG L Q,et al. Network pharmacology:A bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine[J]. Chinese Medicine,2023,18(1) :146. DOI: 10.1186/s13020-023-00853-2
[35] 黄爱英. 小鹅瘟的防治[J]. 畜禽业,2023,34(7) :83−85. HUANG A Y. Prevention and control of gosling plague[J]. Livestock and Poultry Industry,2023,34(7) :83−85. (in Chinese)
[36] 于浩然,李天琦,王连英,等. 复方中草药口服液对感染小鹅瘟病毒雏鹅免疫和抗氧化功能的影响[J]. 黑龙江畜牧兽医,2018(16) :162−164 YU H R,LI T Q,WANG L Y,et al. The effect of oral liquid of compound Chinese herbal medicine on immune and antioxidant functions of goslings infected with Goose parvovirus[J]. Heilongjiang Animal Science and Veterinary Medicine,2018(16) :162−164. (in Chinese)
[37] CHEN Z,YE S Y. Research progress on antiviral constituents in traditional Chinese medicines and their mechanisms of action[J]. Pharmaceutical Biology,2022,60(1) :1063−1076. DOI: 10.1080/13880209.2022.2074053
[38] 李天琦. 香菇多糖和黄芪多糖对感染GPV雏鹅免疫及小肠炎性损伤的作用[D]. 哈尔滨:东北农业大学,2019. LI T Q. Effects of Astragalus and Lentinus polysaccharides on immunity and small intestinal injury of gosling infected by GPV. Harbin:Northeast Agricultural University,2019. (in Chinese)
[39] AKBARI A,BIGHAM A,RAHIMKHOEI V,et al. Antiviral polymers:A review[J]. Polymers,2022,14(9) :1634. DOI: 10.3390/polym14091634
[40] YANG Y,XIAO G,CHENG P,et al. Protective application of Chinese herbal compounds and formulae in intestinal inflammation in humans and animals[J]. Molecules,2023,28(19) :6811. DOI: 10.3390/molecules28196811