• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

七叶一枝花种质遗传多样性分析及初级核心种质构建

刘玲玲, 丁明月, 谢倩, 罗文宝, 陈清西, 苏海兰

刘玲玲,丁明月,谢倩,等. 七叶一枝花种质遗传多样性分析及初级核心种质构建[J]. 福建农业学报,2025,X(X) :1−12.
引用本文: 刘玲玲,丁明月,谢倩,等. 七叶一枝花种质遗传多样性分析及初级核心种质构建[J]. 福建农业学报,2025,X(X) :1−12.
LIU L L,DING M Y,XIE Q,et al. Genetic diversity analysis of Paris polyphylla Sm. and construction of primary core germplasm[J]. Fujian Journal of Agricultural Sciences,2025,X(X) :1−12.
Citation: LIU L L,DING M Y,XIE Q,et al. Genetic diversity analysis of Paris polyphylla Sm. and construction of primary core germplasm[J]. Fujian Journal of Agricultural Sciences,2025,X(X) :1−12.

七叶一枝花种质遗传多样性分析及初级核心种质构建

基金项目: 福建省科技重大专项专题项目(2022NZ029017),福建农林大学横向科技创新基金项(102-KHF200005)
详细信息
    作者简介:

    刘玲玲(1999 —),女,在读硕士,主要从事药用植物遗传多样性研究,E-mail:1553881821@qq.com

    通讯作者:

    陈清西(1964−),男,教授,主要从事园艺植物栽培生理,E-mail:cqx0246@163.com

    苏海兰(1980−),女,高级农艺师,主要从事药用植物利用与生态栽培,363801575@qq.com

  • 中图分类号: S567.2

Genetic diversity analysis of Paris polyphylla Sm. and construction of primary core germplasm

  • 摘要:
    目的 

    七叶一枝花因市场需求增长,但资源供不应求,出现野生资源过度开采,种质混杂现象,为此构建其初级核心种质,为优良基因挖掘、种质改良与保护提供理论支持。

    方法 

    通过15条ISSR(Inter-Simple Sequence Repeat)引物对60份种质进行遗传多样性分析,采用Structure软件进行群体结构分析,使用NTSYSpc2.10e软件进行聚类分析、主成分分析进行验证,同时基于Structure分组-比例取样法构建初级核心种质,并对初级核心种质的构建效果进行评价。

    结果 

    15条引物共扩增出102个位点,多态位点率为97.05%,平均Shannonʹs信息指数(I)、Neiʹs遗传多样性指数(He)分别为0.50220.3328,表明种质具有丰富的遗传多样性;Structure软件分析结果显示,群体数K值为3是较为合适的分类选择。主坐标分析与群体结构分析结果一致,但聚类分析与群体结构略有不同,其结果均与地域分布相关;采用Structure分组-比例取样法构建初级核心种质,从7种抽样比例中筛选,筛选得到12份初级核心种质,占原种质的20%,其Shannon's信息指数(I)、Nei's遗传多样性指数(He)、有效等位基因数(Ne)保留率分别为104.22%、106.43%、107.71%;t检验与主坐标分析表明,所构建的核心种质不仅具有丰富的遗传多样性,且在原种质中也呈现出均匀分布的特点。

    结论 

    七叶一枝花具有丰富的遗传多样性,所构建的初级核心种质能够有效代表原种质的遗传多样性。

    Abstract:
    Objective 

    Due to the increasing market demand for Paris polyphylla, the resource supply cannot meet the demand, leading to over-exploitation of wild resources and genetic admixture. To address this issue, we aimed to construct an initial core germplasm collection to provide theoretical support for gene mining, germplasm improvement, and conservation.

    Methods 

    Genetic diversity analysis was conducted using 15 ISSR primers on 60 accessions. Population structure analysis was performed using Structure software, cluster analysis using NTSYSpc2.10e software, and principal component analysis (PCA) for validation. An initial core germplasm was constructed based on the grouping-proportional sampling method derived from Structure analysis, and its effectiveness was evaluated.

    Results 

    The 15 ISSR primers amplified a total of 102 loci, with a polymorphic locus rate of 97.05%. The average Shannon's information index (I) and Nei's genetic diversity index (He) were 0.5022 and 0.3328, respectively, indicating rich genetic diversity within the germplasm. Structure analysis suggested that K = 3 was the optimal number of subpopulations. Principal coordinate analysis (PCoA) results were consistent with population structure analysis, although cluster analysis showed slight differences, which were correlated with geographic distribution. Using the grouping-proportional sampling method, 12 accessions were selected from seven different sampling proportions, representing 20% of the original germplasm. The retention rates of Shannon's information index (I), Nei's genetic diversity index (He), and effective allele number (Ne) in the core germplasm were 104.22%, 106.43%, and 107.71%, respectively. The t-test and principal coordinate analysis (PCoA) demonstrated that the constructed core germplasm not only exhibits rich genetic diversity but also shows a uniform distribution within the original germplasm collection.

    Conclusion 

    Paris polyphylla exhibits significant genetic diversity, and the constructed initial core germplasm effectively represents the genetic diversity of the original germplasm.

  • 鸭瘟(Duck plague,DP),又名鸭病毒性肠炎(Duck viral enteritis,DVE),是由鸭瘟病毒(duck plague virus,DPV)引起的鸭、鹅、雁及其他雁形目禽类的急性、败血性、高度致死性传染病,是危害养鸭业的重要疾病之一,该病流行广泛,传播迅速,发病率和死亡率高,曾给世界各国造成巨大的经济损失[1-3]

    2015年以来,福建省不同日龄未免疫鸭瘟疫苗的番鸭群均不同程度发生疑似鸭瘟疫情,病程急、病鸭流泪、肿头、拉黄绿色稀便,剖检见肝脏肿大质脆边缘坏死、肠黏膜及淋巴环出血、食道和泄殖腔出血等,为明确其病原并采取有效控制措施减少损失,本课题组采集60~120日龄疑似鸭瘟病死番鸭的肝脾胰等组织进行病原分离,应用单抗间接免疫荧光抗体技术,PCR技术和动物回归试验等鉴定,现将结果报道如下。

    番鸭胚和番鸭均购自福州山区健康番鸭场,番鸭胚成纤维细胞(MDEF)的制备按文献[1]的方法进行。

    抗鹅细小病毒(GPV)单抗、抗雏番鸭细小病毒(MPV)单抗、抗鸭呼肠孤病毒(MDRV)单抗、抗鸭源副粘病毒(DPMV)和禽坦布苏病毒(TUMV)单抗等均为本课题组制备并保存;鸭瘟病毒荧光PCR检测试剂盒购于北京生科尚仪科技有限公司。

    取疑似病死番鸭的肝、脾、胰腺等组织,剪碎研磨,以Hank′s液制成1:5匀浆,加双抗各1 000 U,4℃过夜,低温冻融3次,7 000 r·min-1离心10 min,将上清液经直径为0.22 μm的微孔滤膜过滤,收集滤液供病毒分离和核酸抽提用。

    取长成单层的MDEF细胞,弃去营养液,接种上述病料滤液,37℃吸附1 h,倾去吸附液,以灭菌Hank′s冲洗3次后,加足量维持液(0.5%HL-2%小牛血清)。并设置未接种病料的细胞对照组,37℃继续培养,逐日观察细胞病变至7 d,置-20℃冻融3次,收获细胞。如上反复传代,观察病变情况。

    按殷震法[1]进行,在37℃、pH 7.2的PBS缓冲液中测定分离毒对鸡、鸽红细胞的血凝性。

    (1) 冰冻切片制备:取临床自然病鸭或人工感染病死鸭肝、脾、胰腺等组织在冰冻切片机中切成6 μm厚的薄片,冷丙酮固定15 min,晾干备用。

    (2) 感染病毒的细胞板制备:将分离毒DP1d3适当稀释后接种于已成长单层的MDEF 96孔细胞培养板,于37℃、6%CO2培养,当细胞病变达30%时,弃去培养液,甩干。每孔加100 μL甲醇(预置-20℃)于4℃固定30 min,弃甲醇,用0.85%生理盐水洗涤3次,每孔100 μL, 每次5 min,甩干,置-20℃保存供IFA试验。

    (3) IFA染色及观察:取上述冰冻切片或感染病毒的细胞板,按常规方法[4]分别以抗GPV、MPV、DRV、DPMV和TUMV单抗为一抗、羊抗鼠IgG-FITC为二抗进行间接荧光抗体试验检测,置荧光显微镜下观察,以出现亮绿色特异性荧光判为阳性。

    4份第3代细胞分离毒(DPVfj1、DPVfj2、DPVfj3、DPVfj4) 用DNA提取试剂盒提取病毒核酸,按照鸭瘟病毒荧光PCR检测试剂盒说明书操作,在实时荧光定量PCR仪(eppendorf公司)进行检测。并设阴阳性对照。

    第3代细胞毒(DP1d3) 提取核酸。根据已发表的鸭瘟病毒(JQ673560) gJ蛋白基因序列,设计了如下引物:gJ1:5′-atgtatacag acgttacggtc-3′,gJ2:5′-tcatac catacaaaggcatag-3′。利用TAKARA公司试剂进行PCR扩增,将回收的PCR产物与pMD-18T载体连接后转化到感受态细胞,进行重组质粒的筛选。鉴定后的重组质粒由TAKARA公司进行序列测定,应用分析软件对gJ基因进行分析和比较。

    30日龄健康雏番鸭15羽随机分为2组,其中健康对照组5羽,每羽腿肌注射正常MDEF细胞0.1 mL;攻毒组10羽,每羽腿部肌肉注射第3代细胞培养毒(DP1d3)0.1 mL。隔离饲养,每天观察并记录试验鸭发病和死亡情况,并从病死鸭中分离病毒。

    在1.5.2动物回归试验中,当攻毒组人工感染后第4 d出现死亡鸭时,移入10羽5日龄健康番鸭与攻毒组鸭同居饲养,每天观察并记录试验鸭发病和死亡情况,并从病死鸭中分离回收病毒。

    将DP1d3经口服和腿部肌肉注射途径人工感染17日龄健康雏鹅6羽,0.8 mL·羽-1,每天观察并记录感染鹅发病和死亡情况,并从病死鹅中分离病毒。

    6份65~120日龄疑似病死番鸭肝脾组织匀浆上清,接种MDEF单层细胞培养并盲传至第3代,其中4份出现细胞病变,表现为局灶性细胞圆缩、随后病变范围逐渐扩大并脱落,部分细胞融合形成巨融合细胞(图 1)。随着传代代次增加,出现病变的时间亦随之缩短。暂将这4株病毒命名为DPVfj1、DPVfj2、DPVfj3、DPVfj4。

    图  1  分离毒致MDEF单层细胞的CPE
    注:A为MDEF对照;B为接毒后72 h CPE。
    Figure  1.  CPE of MDEF monolayer on cells infected by isolated viruses

    血凝试验显示分离毒不能凝集鸡、鸽红细胞,提示分离毒无血凝特性。

    人工病死番鸭肝、脾、胰腺等组织的冰冻切片和感染病毒的细胞板分别经抗GPV、MPV、MDRV、DPMV和TUMV单抗的IFA,均未出现特异性荧光,结果均为阴性。

    4份分离毒应用鸭瘟病毒荧光PCR检测试剂盒进行鉴定,扩增曲线如图 2所示,分离毒DPVfj1、DPVfj2、DPVfj3、DPVfj4、阳性对照、阴性对照CT值分别为19.32、19.45、24.9、22.8、21.71、none,判定4份分离毒均为鸭瘟病毒核酸阳性。

    图  2  鸭瘟病毒荧光PCR检测
    Figure  2.  Result of fluorescence RT PCR detection on DPV

    对PCR产物的阳性重组质粒进行正、反向测序,得到长度为1 173 bp鸭瘟病毒gJ基因部分序列。经BLAST分析,该序列与多株鸭瘟病毒gJ蛋白基因序列(KJ549663、KF693236、JQ673560、KF487736、JQ647509、EU082088、FJ222443、JF999965、KF263690) 相似度均大于99%(图 3)。PCR产物序列进一步证实分离毒为鸭瘟病毒。

    图  3  分离毒遗传进化分析
    Figure  3.  Phylogeny analysis on isolated viruses

    人工感染组番鸭于接种分离毒后3 d出现精神沉郁,食欲废绝,渴欲增加,行走迟缓、喜卧等症状,第4 d出现死亡,10羽番鸭死亡6羽,第5 d接种鸭全部死亡,发病率和死亡率均为100%。剖检病死鸭出现与临床自然感染一致的病变,肝脏略肿大质脆出血、脾脏略肿大呈瘀黑色,特征性病变表现为肠黏膜出血环及出血点和泄殖腔出血点(图 4),并从病死鸭肝脾匀浆中分离到病毒。动物回归试验表明分离毒是该病的病原。

    图  4  人工感染病死番鸭病变
    注:1为肝;2为脾;3为肠;4为泄殖腔。
    Figure  4.  Pathologic changes on Muscovy ducks died from induced infection by isolated viruses

    5日龄番鸭与病鸭同居后第4 d开始发病,第6 d出现死亡,至第8 d 10羽番鸭死亡3羽,继续观察到25 d,发病率和死亡率均为30%,并从病死鸭肝脾匀浆中分离到病毒。同居感染试验结果表明直接接触是该病传播途径之一。

    17日龄健康雏鹅以细胞毒原液DP1d3(0.8 mL·羽-1)经口服和肌注途径人工感染后,每天观察至28 d,结果人工感染鹅未出现临床症状且生长发育良好,初步表明该分离毒对鹅不易感,无致病性。

    鸭瘟由Baudet于1923年首次在荷兰发现,随后陆续在许多养鸭国家暴发和流行[1-4]。该病病原是鸭瘟病毒,属疱疹病毒科a疱疹病毒亚科,核酸为线状双股DNA。在我国该病多见于成年种鸭和蛋鸭,其临床特征性症状是流泪,眼睑肿胀,两脚发软不能站立,下痢,头颈部肿大,俗称“大头瘟”,剖检可见食道和泄殖腔黏膜出血并伴有黄褐色假膜覆盖[4]。至今全国各地均有鸭瘟流行的报道,鸭瘟仍然是目前阻碍我国养鸭业发展的重要传染病之一[5-10]

    本研究应用MDEF从疑似鸭瘟病毒自然感染病死番鸭中分离到病毒,分离毒无血凝活性,能致MDEF产生细胞病变,经荧光定量PCR、gJ蛋白基因PCR及其产物序列测定均证实分离毒属于鸭瘟病毒,人工感染对鹅不易感,无致病性;对雏番鸭具有很强的致病性,发病率和死亡率均高达100%,动物回归能复制出与自然感染一致的病症,并能回收到病毒。提示该分离毒为鸭瘟病毒强毒株,但其全基因序列还有待进一步测定。

    由于我省有十多年未发生鸭瘟疫情,养殖企业也不同程度忽视了鸭瘟疫苗免疫。然而2015年以来,我省不同日龄不同品种未免疫鸭瘟疫苗的鸭群均不同程度发生该病,发病率和病死率高,给养鸭业敲响了警钟。建议在加强日常饲养管理和生物安全措施的同时,应对鸭瘟疫苗的免疫予以足够重视,可根据疫区流行情况适当调整免疫程序(如疫源地在10日龄首免、间隔20 d加强免疫1次)。

  • 图  1   引物UBC824对部分材料扩增结果

    M为2000bp Marker, 1~22,26与27为植物材料编号

    Figure  1.   Amplification results of primer UBC824 on some materials

    M is a 2000bp Marker, and 1~22, 26, and 27 are the plant material numbers.

    图  2   七叶一枝花种质材料K值与ΔK的关系

    K值表示假设的群体数量;ΔK确定最优的K值

    Figure  2.   Graphical relationship between K and ΔK of Paris polyphylla Sm. germplasms

    The K value represents the assumed number of populations; ΔK is used to determine the optimal K value

    图  3   60份七叶一枝花种质材料遗传结构分析

    1~60,为植物材料编号

    Figure  3.   Genetic structure of 60 Paris polyphylla Sm. germplasms

    Numbers 1~60 are the plant material numbers.

    图  4   60份七叶一枝花种质材料聚类分析

    红色标记与群体结构中Ⅰ类相对应,绿色标记与群体结构中Ⅱ类相对应,蓝色标记与群体结构中Ⅲ类相对应

    Figure  4.   Cluster analysis of 60 Paris polyphylla Sm. germplasm materials

    Red markers correspond to Group I in the population structure, green markers correspond to Group II, and blue markers correspond to Group III.

    图  5   60份七叶一枝花种质主坐标分析

    红色标记与群体结构中Ⅰ类相对应,绿色标记与群体结构中Ⅱ类相对应,蓝色标记与群体结构中Ⅲ类相对应

    Figure  5.   Analysis of the main coordinates of germplasm of 60 Paris polyphylla Sm.

    Red markers correspond to Group I in the population structure, green markers correspond to Group II, and blue markers correspond to Group III.

    图  6   保留种质与初级核心种质主坐标的分布

    保留种质指的是在构建核心种质后未被选入核心种质库的剩余种质资源

    Figure  6.   Distribution of the main coordinates of primary core germplasm and preserved germplasm

    The retained germplasm refers to the portion of the original germplasm collection that remains after the construction of the core collection, i.e., those accessions not selected for inclusion in the core germplasm.

    表  1   七叶一枝花60份种质资源信息

    Table  1   Information on germplasm resources of Paris polyphylla SM.

    编号
    Number
    种源地
    Provenance
    经纬度与海拔
    Latitude,Longitude,and Elevation
    1 福建省漳州市南靖县和溪镇
    Hexi Township, Nanjing County, Zhangzhou City, Fujian Province
    24°52'28"N,117°15'15"E,
    594 m
    2 福建省南平市邵武市肖家坊镇
    Xiaojiafang Town, Shaowu City, Nanping City, Fujian Province
    27°09'44"N,117°15'50"E,
    471 m
    3 福建省南平市光泽县桃州基地寨里镇
    Zhaili Township, Taizhou Base, Glossy County, Nanping City, Fujian Province
    27°06′53″N,117°15'13"E,
    456 m
    4 福建省南平市光泽县桃州基地寨里镇
    Zhaili Township, Taizhou Base, Glossy County, Nanping City, Fujian Province
    27°06′53″N,117°15'13"E,
    456 m
    5 福建省南平市光泽县华侨乡
    Huaqiao Township, Glossy County, Nanping City, Fujian Province
    27°33'36"N,117°12'50"E,
    372 m
    6 福建省南平市光泽县崇仁乡
    Chongren Township, Glossy County, Nanping City, Fujian Province
    27°35'58"N117°21'32"E,
    332 m
    7 福建省南平市光泽县华侨乡
    Huaqiao Township, Glossy County, Nanping City, Fujian Province
    27°33'53"N,117°11'54"E,
    400 m
    8 福建省南平市光泽县司前乡
    Sizian Township, Glossy County, Nanping City, Fujian Province
    27°54'18"N,117°31'43"E,
    440 m
    9 福建省南平市光泽县鸾凤乡
    Luanfeng Township, Glossy County, Nanping City, Fujian Province
    27°33'07"N,117°20'34"E,
    334 m
    10 福建省南平市光泽县华侨乡
    Huaqiao Township, Glossy County, Nanping City, Fujian Province
    27°33'40"N117°11'58"E,
    405 m
    11 福建省泉州市南安市水头镇
    Shuitou Town, Nan'an City, Quanzhou City, Fujian Province
    24°42'54"N,118°20'06"E,
    370 m
    12 福建省泉州市南安市眉山乡
    Meishan Township, Nan'an City, Quanzhou City, Fujian Province
    25°05'26"N,118°17'58"E,
    661 m
    13 福建省漳州市南靖县梅林镇
    Meilin Township, Nanjing County, Zhangzhou City, Fujian Province
    24°41'59"N,117°04'07"E,
    450 m
    14 福建省漳州市南靖县和溪镇
    Hexi Township, Nanjing County, Zhangzhou City, Fujian Province
    24°52'32"N,117°12'36"E,
    466 m
    15 福建省南平市邵武市大竹镇
    Dazhu Town, Shaowu City, Nanping City, Fujian Province
    27°65'32"N,117°15'13"E,
    471 m
    16 福建省三明市大田县奇韬镇
    Qitao Town, Datian County, Sanming City, Fujian Province
    26°03'27"N,117°52'29"E,
    519 m
    17 福建省三明市三元区中村乡
    Zhongcun Commune, Sanyuan District, Sanming City, Fujian Province
    26°7′18″N,117°43′21″E,
    933 m
    18 福建省三明市三元区中村乡
    Zhongcun Commune, Sanyuan District, Sanming City, Fujian Province
    26°08'48"N,117°42'32"E,
    542 m
    19 福建省龙岩市武平县下坝乡
    Xiaba Township, Wuping County, Longyan City, Fujian Province
    24°52'28"N,116°03'13"E,
    387 m
    20 福建省南平市光泽县华侨乡
    Huaqiao Township, Glossy County, Nanping City, Fujian Province
    27°32'39"N,117°12'10"E,
    378 m
    21 福建省南平市光泽县华侨乡
    Huaqiao Township, Glossy County, Nanping City, Fujian Province
    27°33'13"N,117°12'20"E,
    387 m
    22 福建省南平市光泽县华侨乡
    Huaqiao Township, Glossy County, Nanping City, Fujian Province
    27°33'42"N,117°13'16"E,
    462 m
    23 福建省南平市光泽县止马镇
    Zhima Town, Glossy County, Nanping City, Fujian Province
    27°54'58"N,117°10'60"E,
    450 m
    24 福建省南平市光泽县鸾凤乡
    Luanfeng Township, Glossy County, Nanping City, Fujian Province
    27°32'31"N,117°20'36"E,
    338 m
    25 福建省南平市邵武市肖家方镇
    Xiaojiafang Town, Shaowu City, Nanping City, Fujian Province
    27°09'21"N,117°17'53"E,
    386 m
    26 云南文山壮族苗族自治州富宁县归朝镇
    Guichao Township, Funing County, Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan Province
    23°61'43"N,105°81'02"E,
    728 m
    27 云南文山壮族苗族自治州砚山县平远镇
    Pingyuan Township, Yanshan County, Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan Province
    23°44'88"N,104°17'48"E,
    1572 m
    28 云南省昭通市水富市太平镇
    Taiping Town, Shufu City, Zhaotong City, Yunnan Province
    28°54'12"N,104°20'45"E,
    1017 m
    29 云南省普洱市西盟佤族自治县中淉镇
    Zhongwang Township, Ximeng Wa Autonomous County, Pu'er City, Yunnan Province
    22°48'70"N,99°43'32"E,
    1395 m
    30 云南省曲靖市富源县十八莲山镇
    Shibalianshan Township, Fuyuan County, Qujing City, Yunnan Province
    25°04'39"N,104°44'32"E,
    1720 m
    31 湖北省宜昌市五峰县牛庄乡
    Niuzhuang Township, Wufeng County, Yichang City, Hubei Province
    30°13'47"N,110°22'00"E,
    1789 m
    32 湖北省黄冈市蕲春县狮子镇
    Lion Town, Herb County, Huanggang City, Hubei Province
    30°13'54"N,115°45'43"E,
    529 m
    33 湖北省恩施土家族苗族自治州恩施市芭蕉侗族乡
    Basho Dong Township, Enshi Tujia and Miao Autonomous Prefecture, Hubei Province
    30°06'54"N,109°24'11"E,
    712 m
    34 湖北省宜昌市兴山县水月寺镇
    Guishan Township, Macheng City, Huanggang City, Hubei Province
    31°13'30"N,111°01'50"E,
    1112 m
    35 湖北省宜昌市兴山县水月寺镇
    Guishan Township, Macheng City, Huanggang City, Hubei Province
    31°13'33'N,111°01'54"E,
    1150 m
    36 湖北省黄冈市麻城市龟山镇
    Guishan Township, Macheng City, Huanggang City, Hubei Province
    31°04'36"N,115°11'23"E,
    382 m
    37 湖北省恩施市土家族苗族自治州咸丰县高乐山镇
    Gaoleshang Township, Xianfeng County, Tujia-Miao Autonomous Prefecture, Enshi City, Hubei Province
    29°40'41"N,109°08'41"E,
    744 m
    38 四川省乐山市峨边县新林镇
    Xinlin Town, Ebian County, Leshan City, Sichuan Province
    29°10'27"N,103°15'12"E,
    851 m
    39 四川省达州市大竹县团坝镇
    Tuanba Township, Dazhu County, Dazhou City, Sichuan Province
    30°38'30"N,107°02'56"E,
    835 m
    40 四川省阿坝藏族羌族自治州汶川县水磨镇
    Shuimo Township, Wenchuan County, Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province
    30°56'05"N,103°25'33"E,
    919 m
    41 四川省阿坝藏族羌族自治州汶川县水磨镇
    Shuimo Township, Wenchuan County, Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province
    30°56'05"N,103°25'33"E,
    922 m
    42 四川省阿坝藏族羌族自治州汶川县水磨镇
    Shuimo Township, Wenchuan County, Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province
    30°56'04"N,103°25'29"E,
    903 m
    43 四川省成都市崇州县怀远镇
    Huaiyuan Town, Chongzhou County, Chengdu City, Sichuan Province
    30°41'54"N,103°32'00"E,
    615 m
    44 安徽省安庆市潜山县五庙乡
    Wumiao Township, Qianshan County, Anqing City, Anhui Province
    30°38'50"N,116°17'37"E,
    406 m
    45 安徽省安庆市太湖县北中镇
    Beizhong Township, Taihu County, Anqing City, Anhui Province
    30°39'27"N,115°49'54"E,
    364 m
    46 安徽省六安市霍山县磨子潭镇
    Mazitan Township, Huoshan County, Lu'an City, Anhui Province
    31°14'06"N,116°19'40"E,
    318 m
    47 浙江省衢州市常山县芳村镇
    Fangcun Town, Changshan County, Quzhou City, Zhejiang Province
    29°02'16"N,118°37'03"E,
    350 m
    48 浙江省丽水市遂昌县龙洋乡
    Longyang Township, Suichang County, Lishui City, Zhejiang Province
    28°18'04"N, 118°56'57"E
    764 m
    49 浙江省丽水市龙泉市竹垟畲族乡
    Zhuyang She Township, Longquan City, Lishui City, Zhejiang Province
    28°02'57"N,118°56'53"E,
    468 m
    50 浙江省丽水市龙泉市宝溪乡
    Baoxi Township, Longquan City, Lishui City, Zhejiang Province
    27°73'97"N,118°71'14"E,
    581 m
    51 陕西省安康市旬阳市赵湾镇
    Zhaowan Town, Xunyang City, Ankang City, Shaanxi Province
    32°99'72"°N,109°16'26"E,
    780 m
    52 陕西省汉中市宁强县二郎坝镇
    Erlangba Township, Ningqiang County, Hanzhong City, Shaanxi Province
    32°67'12"N,106°09'47"E,
    1205 m
    53 湖南省益阳市安化县东坪镇
    Dongping Town, Anhua County, Yiyang City, Hunan Province
    28°21'74"N,111°04'75"E,
    408 m
    54 湖南省张家界市慈利县龙潭河镇
    Longtanhe Township, Cili County, Zhangjiajie City, Hunan Province
    29°24'15"N,111°07'18"E,
    280 m
    55 广西省桂林市阳朔县兴坪镇
    Xingping Town, Yangshuo County, Guilin City, Guangxi Province
    24°63'69"N,110°22'27"E,
    426 m
    56 广西省玉林市福绵区成均镇
    Chengjun Town, Fumian District, Yulin City, Guangxi Province
    22°57'32"N,109°99'34"E,
    1109 m
    57 贵州省毕节市纳雍县水东镇
    Shuitong Township, Nayong County, Bijie City, Guizhou Province
    27°12'58"N,105°12'66"E,
    1651 m
    58 广东省清远市连州市三水瑶族乡
    Sanshui Yao Township, Lianzhou City, Qingyuan City, Guangdong Province
    25°08'35"N,112°16'03"E,
    707 m
    59 河南省三门峡市卢氏县双槐树乡
    Shuanghuishu Township, Lushi County, Sanmenxia City, Henan Province
    33°84'66"N,110°89'22"E,
    1007 m
    60 江西省吉安市井冈山市茅坪乡
    Maoping Township, Jinggangshan City, Jis'an City, Jiangxi Province
    26°63'17"N,114°06'66"E,
    800m
    下载: 导出CSV

    表  2   15条ISSR分子标记的引物信息

    Table  2   Primer information for 15 ISSR molecular markers

    引物编号
    Primer
    引物序列(5ʹ-3ʹ)
    primer(5ʹ-3ʹ)
    退火温度/ ℃
    Annealing temperature/ ℃
    UBC811 GAGAGAGAGAGAGAGAC 55.3
    UBC824 TCTCTCTCTCTCTCTCG 53.0
    UBC834 AGAGAGAGAGAGAGAGYT 55.8
    UBC835 AGAGAGAGAGAGAGAGYC 56.3
    UBC844 CTCTCTCTCTCTCTCTRC 52.3
    UBC853 TCTCTCTCTCTCTCTCRT 52.0
    UBC855 ACACACACACACACACYT 57.0
    UBC864 ATGATGATGATGATGATG 51.2
    UBC866 CTCCTCCTCCTCCTCCTC 63.2
    UBC873 GACAGACAGACAGACA 51.9
    UBC874 CCCTCCCTCCCTCCCT 60.8
    UBC878 GGATGGATGGATGGAT 48.5
    UBC880 GGAGAGGAGAGGAGAGGAGAGGAGA 55.0
    UBC881 GGGTGGGGTGGGGTGGGGTGGGGTG 54.3
    UBC889 DBDACACACACACACAC 52.5
    下载: 导出CSV

    表  3   15条ISSR引物扩增结果及七叶一枝花遗传多样性分析

    Table  3   Amplification results of 15 ISSR primers and analysis of genetic diversity of Paris polyphylla Sm.

    引物
    Primer
    总带数
    No.of bands
    多态性条带
    Polymorphic
    bands
    观测等位基因数
    Observed number of
    alleles (Na)
    有效等位基因数
    Effective number of
    alleles (Ne)
    Neiʹs遗传多样性指数
    Nei's gene diversity
    index (He)
    Shannonʹs信息指数
    Shannon's information
    index (I)
    UBC811 6 5 1.8333 1.4829 0.2567 0.3940
    UBC824 6 5 1.8333 1.3750 0.2181 0.3557
    UBC834 7 7 2.0000 1.6419 0.3804 0.5637
    UBC835 9 9 2.0000 1.6246 0.3758 0.5598
    UBC844 7 7 2.0000 1.6515 0.3831 0.5662
    UBC853 6 6 2.0000 1.5484 0.3485 0.5299
    UBC855 8 8 2.0000 1.5809 0.3434 0.5144
    UBC864 7 7 2.0000 1.5979 0.3614 0.5424
    UBC866 6 6 2.0000 1.4071 0.2694 0.4288
    UBC873 6 6 2.0000 1.7446 0.4269 0.6163
    UBC874 8 8 2.0000 1.4067 0.2837 0.4526
    UBC878 8 8 2.0000 1.4375 0.2821 0.4424
    UBC880 6 5 1.8333 1.6115 0.3143 0.4668
    UBC881 6 6 2.0000 1.5130 0.3083 0.4682
    UBC889 6 6 2.0000 1.8078 0.4410 0.6309
    平均值 Average value 6.8 6.6 1.9666 1.5557 0.3328 0.5022
    下载: 导出CSV

    表  4   各群体Q值分布

    Table  4   Distribution of Q-value of each population

    类群
    Group
    种群数量
    Number of germplasm
    Q≤0.6 Q>0.6 Q≥0.8 Q≥0.9
    29(48.33%) 3(5.00%) 3(5.00%) 2(3.30%) 21(35.00%)
    12 (20.00%) 1(1.70%) 1(1.70%) 1(1.70%) 9(15.00%)
    19 (31.70%) 1(1.70%) 0(0.00%) 3(5.00%) 15(25.00%)
    合计Total 60(100.00%) 5(8.40%) 4(6.70%) 6(10.00%) 45(75.00%)
    Q值表示个体属于某一类群的比例
    The Q value represents the proportion of an individual belonging to a particular population
    下载: 导出CSV

    表  5   不同抽样比例构建初级核心种质的遗传多样性

    Table  5   Different sampling ratios were used to construct the genetic diversity of the primary core germplasm

    抽样比例/%
    Sampling
    portion
    抽样数
    Number of samples
    观测等位基因数
    Observed number of
    alleles (Na)
    有效等位基因数
    Effective number of
    alleles (Ne)
    Neiʹs遗传多样性指数
    Nei's gene diversity
    index (He)
    Shannonʹs信息指数
    Shannon's information
    index (I)
    多态性
    位点
    (PPL)
    多态性位点率
    (PPB) /%
    抽样前
    Before sampling
    60 1.9706±0.1698a 1.5557±0.2913a 0.3328±0.1341a 0.5022±0.1692a 102 100
    40 24 1.9706±0.1698a 1.5976±0.2916a 0.3507±0.1317a 0.5233±0.1657a 99 97.06
    35 21 1.9706±0.1698a 1.6019±0.2867a 0.3533±0.1292a 0.5267±0.1627a 99 97.06
    30 18 1.9706±0.1698a 1.6076±0.2869a 0.3556±0.1288a 0.5295±0.1615a 99 97.06
    25 15 1.9608±0.1951a 1.6100±0.2844a 0.3568±0.1291a 0.5302±0.1646a 98 96.08
    20 12 1.9314±0.2541a 1.6134±0.3073a 0.3542±0.1428a 0.5234±0.1871a 98 96.08
    15 9 1.9020±0.2988a 1.6036±0.3274a 0.3457±0.1551a 0.5098±0.2067a 92 90.20
    10 6 1.8039±0.3990b 1.5704±0.3566b 0.3235±0.1799a 0.4730±0.2512a 83 81.37
    同列数据中标有不同小写字母表示差异显著(P<0.05),相同小写字母表示组间差异不显著(P>0.05)
    Different lowercase letters within the same column indicate significant differences (P < 0.05), while the same lowercase letters indicate no significant differences (P > 0.05) between groups.
    下载: 导出CSV

    表  6   分子标记构建七叶一枝花资源初级核心种质

    Table  6   The primary core germplasm based on the molecular marker of Paris polyphylla Sm. germplasm resources

    地区来源
    Geographic Origin
    初级核心种质份数
    Primary core collection size
    编号
    Number
    福建省
    Fujian Province
    2 16、24
    云南省
    Yunnan Province
    2 29、30
    湖北省
    Hubei Province
    1 37
    四川省
    Sichuan Province
    1 39
    安徽省
    Anhui Province
    1 45
    浙江省
    Zhejiang Province
    2 48、50
    陕西省
    Shaanxi Province
    1 51
    湖南省
    Hunan Province
    1 54
    广东省
    Guangdong Province
    1 58
    种质编号见表1
    The germplasm number refers to Table 1.
    下载: 导出CSV

    表  7   初级核心种质与原种质及保留种质之间t检验

    Table  7   The t-test values between primary core germplasm and initial germplasm and reserve germplasm

    种质
    Collections
    样本数
    Number of samples
    观测等位基因数
    Observed number of
    alleles (Na)
    有效等位基因
    Effective number of
    alleles(Ne)
    Neiʹs遗传多样性指数
    Nei's gene diversity
    index(He)
    Shannonʹs信息指数
    Shannon's information
    index(I)
    原种质OC 60 1.9706 1.5557 0.3328 0.5022
    初级核心种质PCC 12 1.9314 1.6134 0.3542 0.5234
    保留种质RC 48 1.9510 1.5207 0.3138 0.4767
    t1 0.5061 0.5367 0.6190 0.6981
    t2 0.6624 0.4302 0.4823 0.4885
    t1为初级核心种质与原种质各遗传参数t检验值;t2为核心种质与保留种质各遗传参数t检验值。
    t1.The value of genetic diversity parameters between primary core germplasm and initial germplasmt2. The value of genetic diversity parameters between core germplasm and reserve germplasm
    下载: 导出CSV
  • [1] 中国科学院中国植物志编辑委员会. 中国植物志-第十五卷[M]. 北京:科学出版社,1978.
    [2] 国家药典委员会. 中华人民共和国药典-一部:2020年版[M]. 北京:中国医药科技出版社,2020.
    [3] 张翔宇,陈晓芳,柳敏,等. 重楼属药用植物资源分布及少数民族应用研究[J]. 中国野生植物资源,2023,42(1) :103−109,116. DOI: 10.3969/j.issn.1006-9690.2023.01.016

    ZHANG X Y,CHEN X F,LIU M,et al. Study on the distribution of medicinal plant resources of Paris and its application in ethnic minorities[J]. Chinese Wild Plant Resources,2023,42(1) :103−109,116. (in Chinese) DOI: 10.3969/j.issn.1006-9690.2023.01.016

    [4] 牛雨晴,江保东,朱育菁,等. 七叶一枝花种质资源鉴定与评价研究进展[J]. 福建农业科技,2023,54(9) :20−24.

    NIU Y Q,JIANG B D,ZHU Y J,et al. Research progress on the identification and evaluation of the germplasm resources of Paris polyphylla[J]. Fujian Agricultural Science and Technology,2023,54(9) :20−24. (in Chinese)

    [5] 罗晓锋,周先治,周建金. 福建七叶一枝花种质资源遗传多样性的ISSR分析[J]. 亚热带农业研究,2023,19(4) :268−272.

    LUO X F,ZHOU X Z,ZHOU J J. Genetic diversity of Paris polyphylla Smith var. chinensis germplasm resources from Fujian based on ISSR[J]. Subtropical Agriculture Research,2023,19(4) :268−272. (in Chinese)

    [6]

    FRANKEL O. Genetic perspectives of germplasm conservation[J]. Genetic Manipulation:Impact on Man and Society,1984:161-170.

    [7] 李自超,张洪亮,孙传清,等. 植物遗传资源核心种质研究现状与展望[J]. 中国农业大学学报,1999,4(5) :51−62. DOI: 10.3321/j.issn:1007-4333.1999.05.010

    LI Z C,ZHANG H L,SUN C Q,et al. Status and prospects of core collection in plant germplasm resource[J]. Journal of China Agricultural University,1999,4(5) :51−62. (in Chinese) DOI: 10.3321/j.issn:1007-4333.1999.05.010

    [8]

    YAN P Y,ZHANG L,HAO J F,et al. Construction of a core collection of Korean pine (Pinus koraiensis) clones based on morphological and physiological traits and genetic analysis[J]. Forests,2024,15(3) :534. DOI: 10.3390/f15030534

    [9] 黄伟业,李润泽,唐芳,等. 基于表型性状构建内蒙古花苜蓿核心种质[J/OL]. 草地学报,2024:1–23. (2024-10-23) . http;//kns.cnki.net/KCMS/detail/detail.aspx?filename=CDXU20241021002&dbname=CJFD&dbcode=CJFQ.

    HUANG W Y,LI R Z,TANG F,et al. Construction of Medicago ruthenica L. core germplasm based on phenotypic traits[J]. China Industrial Economics,2024:1–23. (2024-10-23) . http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CDXU20241021002&;dbname=CJFD&dbcode=CJFQ.(in Chinese)

    [10] 吴涛,陈少瑜,肖良俊,等. 基于SSR标记的云南省核桃种质资源遗传多样性及核心种质构建[J]. 植物遗传资源学报,2020,21(3) :767−774.

    WU T,CHEN S Y,XIAO L J,et al. Genetic diversity analysis and core collection construction of walnut germplasm in Yunnan Province[J]. Journal of Plant Genetic Resources,2020,21(3) :767−774. (in Chinese)

    [11]

    KOOREVAAR T,WILLEMSEN J H,VISSER R F,et al. Construction of a strawberry breeding core collection to capture and exploit genetic variation[J]. BMC Genomics,2023,24(1) :740.

    [12]

    HU G M,JIANG Q,WANG Z,et al. Genetic diversity analysis and core collection construction of the Actinidia chinensis complex (kiwifruit) based on SSR markers[J]. Agronomy,2022,12(12) :3078.

    [13] 张武君,陈菁瑛,刘保财,等. 福建省山药初级核心种质的构建[J]. 福建农业学报,2023,38(11) :1267−1276.

    ZHANG W J,CHEN J Y,LIU B C,et al. Establishing a primary core collection of Chinese yam germplasms in Fujian[J]. Fujian Journal of Agricultural Sciences,2023,38(11) :1267−1276. (in Chinese)

    [14]

    KUMAR G P,PATHANIA P,GOYAL N,et al. Genetic diversity and population structure analysis to construct a core collection from safflower (Carthamus tinctorius L.) germplasm through SSR markers[J]. Agriculture,2023,13(4) :836.

    [15]

    SA K J,KIM D M,OH J S,et al. Construction of a core collection of native Perilla germplasm collected from South Korea based on SSR markers and morphological characteristics[J]. Scientific Reports,2021,11(1) :23891.

    [16] 苏海兰,郑梅霞,江保东,等. 栽培与野生七叶一枝花土壤微生物多样性研究[J]. 福建农业学报,2024,39(8) :993−1005.

    SU H L,ZHENG M X,JIANG B D,et al. Differentiations between microbes in cultivated and wild Paris polyphylla field soils[J]. Fujian Journal of Agricultural Sciences,2024,39(8) :993−1005. (in Chinese)

    [17] 周武先,段媛媛,卢超,等. 基于CDDP标记的重楼属种质资源鉴定及遗传多样性分析[J]. 中草药,2019,50(20) :5033−5039. DOI: 10.7501/j.issn.0253-2670.2019.20.027

    ZHOU W X,DUAN Y Y,LU C,et al. Genetic diversity analysis and germplasm identification of Paris species by CDDP markers[J]. Chinese Traditional and Herbal Drugs,2019,50(20) :5033−5039. (in Chinese) DOI: 10.7501/j.issn.0253-2670.2019.20.027

    [18] 尹晓蛟,何银生,王智,等. 基于表型的重楼属种质遗传多样性分析[J]. 浙江农业科学,2020,61(5) :960−964.

    YIN X J,HE Y H WANG Z,et al. Genetic diversity analysis of Paris L. germplasms based on phenotype[J]. Journal of Zhejiang Agricultural Sciences,2020,61(5) :960−964. (in Chinese)

    [19] 张龙进. 山茱萸种质资源遗传多样性分析及核心种质构建方法研究[D]. 西安:陕西师范大学,2012.

    ZHANG L J. Analysis of genetic diversity of Cornus officinalis germplasm resources and study on construction method of core germplasm[D]. Xi’an:Shaanxi Normal University,2012. (in Chinese)

    [20]

    EVANNO G,REGNAUT S,GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE:A simulation study[J]. Molecular Ecology,2005,14(8) :2611−2620. DOI: 10.1111/j.1365-294X.2005.02553.x

    [21]

    ROHLF F. NTSYS-pc - numerical taxonomy and multivariate analysis system[J/OL]. Applied Biostatistics Inc. New York,1988-2-1, https://www.researchgate.net/publication/246982444

    [22] 李嘉惠. 何首乌种质研究及核心种质初步构建[D]. 广州:广东药科大学,2020.

    LI J H. Study on Polygonum multiflorum germplasm and preliminary construction of core germplasm[D]. Guangzhou:Guangdong Pharmaceutical University,2020. (in Chinese)

    [23]

    SOLBRIG O T. The iubs-scope-unesco program of research in biodiversity[J]. Ecological Applications,1992,2(2) :131−138. DOI: 10.2307/1941769

    [24] 宋静静. 桑树核心种质农艺性状与ISSR标记的关联分析[D]. 镇江:江苏科技大学,2015

    SONG J J. Correlation analysis between agronomic traits and ISSR markers of mulberry core collection[D]. Zhenjiang:Jiangsu University of Science and Technology,2015. (in Chinese)

    [25] 刘胜坤,胡剑民,朱红军,等. 基于ISSR的重楼种质资源遗传多样性研究[J]. 湖北林业科技,2020,49(5) :20−23. DOI: 10.3969/j.issn.1004-3020.2020.05.007

    LIU S K,HU J M,ZHU H J,et al. Genetic diversity studying of germplasms of Paris species resources by ISSR markers[J]. Hubei Forestry Science and Technology,2020,49(5) :20−23. (in Chinese) DOI: 10.3969/j.issn.1004-3020.2020.05.007

    [26] 苏群,王虹妍,刘俊,等. 基于SSR荧光标记构建睡莲核心种质[J]. 园艺学报,2023,50(10) :2128−2138.

    SU Q,WANG H Y,LIU J,et al. Construction of core collection of Nymphaea based on SSR fluorescent markers[J]. Acta Horticulturae Sinica,2023,50(10) :2128−2138. (in Chinese)

    [27] 程建慧,廖荣俊,宋其岩,等. 基于SSR标记分析浙西南香椿天然居群的遗传多样性[J]. 中南林业科技大学学报,2024,44(2) :146−156,165.

    CHENG J H,LIAO R J,SONG Q Y,et al. Genetic diversity analysis of To ona sinensis natural populations in southwest Zhejiang based on SSR markers[J]. Journal of Central South University of Forestry & Technology,2024,44(2) :146−156,165. (in Chinese)

    [28] 吕伟,韩俊梅,任果香,等. 山西芝麻种质资源SSR遗传多样性及群体结构分析[J]. 核农学报,2021,35(7) :1495−1506. DOI: 10.11869/j.issn.100-8551.2021.07.1495

    LYU W,HAN J M,REN G X,et al. Genetic diversity analysis of sesame germplasm resources in Shanxi with SSR markers[J]. Journal of Nuclear Agricultural Sciences,2021,35(7) :1495−1506. (in Chinese) DOI: 10.11869/j.issn.100-8551.2021.07.1495

    [29] 张金霞,刘贺梅,孙建权,等. 分子标记技术在水稻品种改良中的应用[J]. 中国种业,2021(9) :14−18. DOI: 10.3969/j.issn.1671-895X.2021.09.005

    ZHANG J X,LIU H M,SUN J Q,et al. Application of molecular marker technology in rice variety improvement[J]. China Seed Industry,2021(9) :14−18. (in Chinese) DOI: 10.3969/j.issn.1671-895X.2021.09.005

    [30] 张馨方,张树航,李颖,等. 基于SSR标记构建燕山板栗核心种质[J]. 华北农学报,2021,36(S1) :31−38. DOI: 10.7668/hbnxb.20192435

    ZHANG X F,ZHANG S H,LI Y,et al. Construction of core collection of Yanshan chestnut germplasm based on SSR markers[J]. Acta Agriculturae Boreali-Sinica,2021,36(S1) :31−38. (in Chinese) DOI: 10.7668/hbnxb.20192435

    [31] 杨帆,张艳芳,王锦华,等. 山药种质资源SSR分析及初级核心种质库的构建[J]. 北方农业学报,2022,50(2) :18−27. DOI: 10.12190/j.issn.2096-1197.2022.02.03

    YANG F,ZHANG Y F,WANG J H,et al. SSR analysis of Chinese yam(Dioscorea opposita Thunb. ) germplasm resources and construction of primary core collection[J]. Journal of Northern Agriculture,2022,50(2) :18−27. (in Chinese) DOI: 10.12190/j.issn.2096-1197.2022.02.03

    [32] 陈明堃,陈璐,孙维红,等. 建兰种质资源遗传多样性分析及核心种质构建[J]. 园艺学报,2022,49(1) :175−186.

    CHEN M K,CHEN L,SUN W H,et al. Genetic diversity analysis and core collection of Cymbidium ensifolium germplasm resources[J]. Acta Horticulturae Sinica,2022,49(1) :175−186. (in Chinese)

    [33] 燕丽萍,吴德军,毛秀红,等. 基于SSR荧光标记的白蜡核心种质构建[J]. 中南林业科技大学学报,2019,39(7) :1−9.

    YAN L P,WU D J,MAO X H,et al. Construction of core collection of Fraxinus based on SSR molecular markers[J]. Journal of Central South University of Forestry & Technology,2019,39(7) :1−9. (in Chinese)

    [34] 赵慧,马芹,刘振华,等. 药用植物核心种质研究进展[J]. 山东农业科学,2023,55(7) :173−180.

    ZHAO H,MA Q,LIU Z H,et al. Research progress of core collection of medicinal plants[J]. Shandong Agricultural Sciences,2023,55(7) :173−180. (in Chinese)

  • 期刊类型引用(4)

    1. 廖素凤,罗进凤,兰孜怡,黄婷婷,熊钒,杨志坚,许明,郑金贵. 基于UPLC-MS/MS的豆瓣菜酚酸类组分分析. 天然产物研究与开发. 2024(11): 1874-1888 . 百度学术
    2. 张今君,夏慧丽,方如意. 超高效液相色谱-串联质谱法测定红美人中8种酚酸化合物. 食品研究与开发. 2022(09): 169-175 . 百度学术
    3. 卢专,黄永桥,于以竹,毛敏霞,简银池,吴新文. UPLC-MS/MS分析绿茶中12种酚酸类物质. 食品安全导刊. 2022(15): 53-56+61 . 百度学术
    4. 姚娜,黄燕明,汪静,李雪银,陈桂生,王斌,康志英. 麸炒白术配方颗粒HPLC指纹图谱研究. 亚太传统医药. 2020(12): 78-83 . 百度学术

    其他类型引用(2)

图(6)  /  表(7)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 6
出版历程
  • 网络出版日期:  2025-03-31

目录

/

返回文章
返回