• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

金线兰茎腐病拮抗木霉菌鉴定及抑菌和促生效果评价

叶炜, 颜沛沛, 王培育, 李尊文, 郭莺, 张剑亮, 林敏水, 江金兰

叶炜,颜沛沛,王培育,等. 金线兰茎腐病拮抗木霉菌鉴定及抑菌和促生效果评价 [J]. 福建农业学报,2024,39(11):1256−1264. DOI: 10.19303/j.issn.1008-0384.2024.11.007
引用本文: 叶炜,颜沛沛,王培育,等. 金线兰茎腐病拮抗木霉菌鉴定及抑菌和促生效果评价 [J]. 福建农业学报,2024,39(11):1256−1264. DOI: 10.19303/j.issn.1008-0384.2024.11.007
YE W, YAN P P, WANG P Y, et al. Stem Rot-resistant and Growth-promoting Effects of Trichoderma on Anoectochilus roxburghii [J]. Fujian Journal of Agricultural Sciences,2024,39(11):1256−1264. DOI: 10.19303/j.issn.1008-0384.2024.11.007
Citation: YE W, YAN P P, WANG P Y, et al. Stem Rot-resistant and Growth-promoting Effects of Trichoderma on Anoectochilus roxburghii [J]. Fujian Journal of Agricultural Sciences,2024,39(11):1256−1264. DOI: 10.19303/j.issn.1008-0384.2024.11.007

金线兰茎腐病拮抗木霉菌鉴定及抑菌和促生效果评价

基金项目: 福建省财政林业专项(闽财资环指〔2020〕10号);福建省科技计划项目(2023S0018、2023N0047);三明市科技计划项目(2023-N-6、2023-N-19)
详细信息
    作者简介:

    叶炜(1980 —),男,博士,副研究员,主要从事园艺植物生物技术研究,E-mail:yewei922@qq.com

    通讯作者:

    江金兰(1973 —),女,高级农艺师,主要从事园艺植物生物技术研究,E-mail:jjl75@qq.com

  • 中图分类号: S435.672

Stem Rot-resistant and Growth-promoting Effects of Trichoderma on Anoectochilus roxburghii

  • 摘要:
    目的 

    分离具有金线兰茎腐病拮抗作用的木霉菌,为生防菌的开发提供理论基础。

    方法 

    以金线兰仿野生种植植株为材料,利用组织分离法分离木霉菌,利用形态特征与ITS和rpb2序列同源性分析鉴定其分类,利用平板对峙法鉴定其抗茎腐病能力,并对不同木霉菌的促生长作用进行评价。

    结果 

    利用组织分离法分离3株木霉菌A21B-1、A21B-2和A21E。经鉴定,3株木霉株分别为哈茨木霉拟康宁木霉和Trichoderma longifialidicum。对峙生长表明,3种木霉菌株均对茎腐病病原菌尖孢镰刀菌ASP01表现较强的抑制作用,其抑制率分别达75.29%、73.55%和 60.02%。室内防效结果表明,A21B-1菌株对茎腐病有较强的抑制作用,接种15 d后病情抑制率达91.9%,可作为该病的生物防治候选菌株。促进生长试验表明,种植6个月后,施用3个木霉菌的金线兰植株的单株重、株高、茎粗、叶面积及SPAD值较对照均显著提高,其中A21B-2与A21E处理的植株单株重比对照分别提高了58.68%与58.99%,叶面积分别提高66.82%与59.73%,可作为金线兰促进生长的候选菌株。同时,施用木霉菌可有效提高金线兰多糖及金线莲苷的含量,其中A21B-2菌株效果最佳,其多糖及金线莲苷含量均较对照提高89.62%与11.83%,可作为促进金线兰药用成分积累的候选菌株。

    结论 

    3种不同类型的木霉菌在金线兰对抗茎腐病、促进生长和提高多糖含量方面有显著作用。

    Abstract:
    Objective 

    Trichoderma strains antagonistic to stem rot pathogens were studied to develop a biocontrol agent for the disease on Anoectochilus roxburghii.

    Method 

    From the A. roxburghii plants grown under simulated wild conditions, strains of Trichoderma were obtained by tissue isolation and classified by morphological observations and homology analysis with ITS and rpb2 sequences. Ability of the isolates to resist stem rot was evaluated in vitro by the plate confrontation method. Growth of A. roxburghii in the presence of the identified strains was monitored.

    Results 

    The resistant A21B-1, A21B-2, and A21E strains were isolated and subsequently identified as T. rugulosum, T. koningiopsis, and T. longifialidicum showing the inhibition rates of 75.29%, 73.55%, and 60.02%, respectively, on Fusarium oxysporum f. sp. opponiarum ASP01. Furthermore, 15 d after a T. rugulosum inoculation in an indoor control evaluation test A. roxburghii exhibited a significant inhibition rate of 91.9% against the stem rot. That suggested a potentially effective means for control on the disease. In addition, the 3 strains displayed a significant growth promoting effect on the A. roxburghii seedlings in a greenhouse with increased plant weight, height, stem diameter, leaf area, and SPAD value in 6 months. Among them, T. koningiopsis and T. longifialidicum not only significantly increased the plant biomass over control by 58.68% and 58.99% and leaf area by 66.82% and 59.73%, respectively, but also elevated the contents of functional polysaccharides and kinsenoside with the greatest increases of 89.62% on polysaccharides and 11.83% on kinsenoside by T. koningiopsis.

    Conclusion 

    Three strains of Trichoderma demonstrated in vitro a significant antagonistic effect against the stem rot disease on A. roxburghii. Their presence also significantly promoted the growth and increased the functional polysaccharides and kinsenoside contents in the plant.

  • 【研究意义】金线兰(Anoectochilus roxburghii)为兰科(Orchidaceae)开唇兰属(Anoectochilus)多年生草本植物,在我国南方地区分布广泛,为民间传统用药,有“药王”之称[1],其主要药用成分包含金线莲苷、黄酮和多糖等[23]。金线兰栽培过程中极易受到茎腐病的危害,虽然化学防治的效果较好[4],但生物防治因具有安全、持久、有效和对人畜无害等特点,已成为植物病害防治的重要手段[48]。【前人研究进展】生防木霉菌通过产生营养竞争、空间竞争、重寄生,产生抗生素等作用对病原菌产生抑制,已在数十种作物的几十种土传病害和叶部病害防治中得到广泛应用[910]。金线兰中有关木霉菌研究报道较少,仅见路梅等报道了应用哈茨木霉(Trichoderma harzianum)、绿色木霉(T. viride)和放线菌(Actinomycetes sp.)等3种生防菌对金线兰茎腐病致病菌尖孢镰刀菌进行拮抗作用研究,发现哈茨木霉抑菌作用最强,菌丝生长抑制率在第5天达66.7%,表明木霉应用于抑制茎腐病具有较好的开发前景[6]。木霉菌广泛存在于自然界中,除产生生物及非生物胁迫抗性外,还有促进植物生长和提高次生代谢物积累等作用[11]。胡卫丛等利用木霉菌处理水果黄瓜,发现其株高、茎粗、叶绿素含量等生长指标均有不同程度的提高,同时还能提高水果黄瓜中可溶性蛋白和可溶性糖的含量,使水果黄瓜品质明显提高[12]。董琼娥等利用木霉菌处理玫瑰,可使切花总产量提高15.0%,且AB级花占比提高48.0%[13]。吕亮雨等将哈茨木霉应用于枸杞,发现其对树体生长发育、产量的提高最为显著[14]。【本研究切入点】有关木霉菌应用对金线兰产量及品质影响的研究还有待深入探讨。【拟解决的关键问题】以福建上杭仿野生环境中种植12个月的金线兰植株为材料,分离对茎腐病病原菌具有拮抗作用的3株木霉菌,通过分析比较不同种类木霉菌的生理特性及应用于金线兰的效果,以期获得具有提高金线兰抗茎腐病能力并提高金线兰产量与金线莲苷等药用成分含量的木霉菌株,为金线兰茎腐病生物防控与绿色仿生态栽培提供菌株材料及技术参考。

    2021年9月,于福建龙岩上杭旧县镇(25°13′56.01″E, 116°31′6.76″N,海拔高度590.1 m)选择有野生金线兰生长的竹林。将于生根培养基生长6个月的金线兰红霞[Anoectochilus roxburghii (Wall.) Lindl. cv.'Hongxia']组培苗种植于竹林,仿野生种植12个月后,采收生长健壮的植株于无菌袋内用于4 ℃保存备用。金线兰红霞组培苗保存于三明市农业科学研究院药用植物研究所,茎腐病病原物尖孢镰刀菌(Fusarium oxysporum f. sp. opuntiarum ASP01)保藏于中国普通微生物学菌种保藏中心(CGMCC),保藏编号为CGMCC No.40759。金线兰组培方法见文献[15],ASP01菌株分离与继代方法见文献[4]。

    采用组织分离法分离木霉菌株,金线兰植株仿野生种植12个月后,流水洗净,于超净台75%乙醇浸泡30 s,0.1%升汞消毒10 min,无菌水清洗2~3次,无菌条件下切成2 cm左右茎段接种于PDA培养基中,置于28 ℃,黑暗条件培养4 d,挑取菌落边缘少许菌丝至新的PDA培养基进行纯化培养,直至获得性状一致的纯化菌株。

    纯化菌株接种于PDA中,置于25 ℃,黑暗条件培养,每日观察并记录菌落形特征并利用显微镜(Olympus BX53) 40倍物镜下观察木霉菌菌丝、分生孢子梗和孢子形态。

    利用CTAB法提取纯化菌株DNA。利用真菌通用rDNA ITS(internal transcribed sapcer)引物 ITS1 (5′-GAGTTTGATCCTGGCTCA-3′)和ITS4(5′-TCCTCCGCTTATTGATATGC-3′)扩增ITS序列[16],利用rpb2引物rpb2-5f (5′-GAYGAYMGWGATCAYTTYGG-3′)和rpb2-7cr (5′-CCCATRGCTTGYTTRCCCAT-3′)扩增rpb2序列[17]。20 μL PCR反应体系:2 × Taq Mix 10 μL,10 μmol·L−1上下游引物各 1 μL,模板DNA 1 μL,双蒸水补至 20 μL。PCR反应条件:94 ℃预变性5 min;95 ℃变性30 s,退火30 s,72 ℃延伸40 s,40个循环;72 ℃延伸6 min。1%琼脂糖电泳检测,回收500 bp左右ITS序列条带,1 100 bp左右rpb2序列条带,送铂尚生物技术有限公司测序。根据NCBI GenBank 数据库比对测序结果,参照文献[18],选取一致性高及模式木霉菌株的ITS与rpb2序列为建树对象,以Protocrea farinose CPK3144菌株序列为外群,利用MEGA 11软件采用邻接法(neighbor-joining, NJ)构建进化树。

    采用平板对峙培养的方法[19]测定分离菌株对尖孢镰刀菌ASP01的抑制作用。从拮抗菌和病原菌平板上打取4 mm 菌饼接种于直径为 70 mm 的PDA培养基两端,两菌饼相距 5 cm。以只接尖孢镰刀菌ASP01的平板为对照,每处理重复3次。于28 ℃,黑暗条件培养7 d后,测量菌落半径,计算抑制率。抑制率/% =[(对照组半径−处理组半径)/对照组半径]×100。

    参照文献[18,20]的方法,利用显微镜(Olympus BX53) 40倍物镜下观察拍照木霉菌与尖孢镰刀菌ASP01菌株互作情况。

    参照文献[19]的方法制备不同木霉菌孢子悬浮液(5×106孢子·mL−1),以无菌水为对照,均匀喷施于金线兰组培苗叶片上,置于铺有润湿的无菌滤纸培养皿于28 ℃、光周期14L∶10D、光合有效辐射40 μmol·m−2·s−1条件下培养7 d后,用无菌针于叶片中央两侧制造伤口,并在伤口接种尖孢镰刀菌ASP01孢子悬浮液(5×106孢子·mL−1),以5个叶片为1个处理,每个处理设置3个重复。保湿培养7、15 d后,观察并测量病斑面积,计算抑制率。抑制率/%=[(对照组面积−处理组面积) /对照组面积]× 100。

    参照文献[21]的方法,以草炭土和细砂质量比为3∶1的混合土为基质,将生长6个月金线兰组培苗移栽于直径为8 cm营养杯中,置于28 ℃、光周期14L∶10D、光合有效辐射40 μmol·m−2·s−1条件下培养,每15 d喷施1次抗菌发酵液(5×106孢子·mL−1),种植6个月后测定植株生长量和SPAD值。SPAD值采用柯尼卡-美能达SPAD-502Plus仪进行测定。试验以5株为1个处理,每处理3个重复。

    金线兰多糖及黄酮含量测定采用苯酚-硫酸法与NaNO2-Al(NO3)3-NaOH显色法于赛默飞Tecan M200pro酶标仪进行测定[22]。金线莲苷含量采用高效液相色谱-蒸发光散射检测法(HPLC-ELSD)于Waters e2695 alliance高效液相色谱仪进行测定[23]。试验以5株为1个处理,每处理3个重复。

    以于野生环境种植12个月的金线兰红霞植株为材料,通过组织分离法获得3个不重复的疑似木霉菌株,分别命名为A21B-1、A21B-2与A21E。

    3个菌株在PDA培养基生长迅速,3 d可布满70 mm培养皿。A21B-1菌株菌落为绒毛状,正面初期为白色,最终变成深绿色,具有同心圆状轮纹,菌饼中央可见明显的菌丝消退现象,菌落背面为黄白色,呈放射状。显微镜下可见分生孢子梗从菌丝侧枝长出,粗短,瓶茎近球形,尖端变细,分生孢子光滑,近球形(图1 a~d)。A21B-2菌株菌落为羊毛毡状,菌落正面初期为白色,最终变成深绿色,有不规则出现的白色绒毛状突起,菌落背面为黄白色,均匀分布。显微镜下可见分生孢子梗从菌丝侧枝长出,对称生长,瓶茎呈长瓶梗状,分生孢子光滑,呈椭圆形(图1 e~h)。A21E菌株菌落为羊毛毡状,菌落正面初期为黄白色,最终变成浅绿色,菌落背面为黄白色,呈现放射状。显微镜下可见分生孢子梗从菌丝侧枝长出,较多分枝,瓶茎呈瓶梗状,分生孢子光滑,呈圆或椭圆形(图1 i~l)。根据3个菌株的形态与生长特性,初步确定其为木霉菌。

    图  1  木霉菌形态特征
    a~d、e~h、i~l分别为木霉菌菌株A21B-1、A21B-2与A21E接种于PDA培养7 d后的菌落形态;a、e、i为正面;b、f、 j为背面;c、g、k为分生孢子梗与瓶梗形态,d、h、l为分生孢子形态。
    Figure  1.  Morphological characteristics of Trichoderma strains
    a–d, e–h, and i–l: colony morphology of A21B-1, A21B-2, and A21E, respectively, grown on PDA for 7 d; a, e, and i: front views; b, f, and j: back views; c, g, and k: conidia stem, bottle stem; d, h and l : morphology of conidia, respectively.

    为进一步明确3个木霉菌株的分类,分别扩增ITS序列与rpb2并上传到NBCI获得序列号(表1)。利用NCBI BLASTn比对获得相似序列,与模式木霉菌株一并构建进化树(图2),结果显示A21B-1菌株与哈茨木霉菌株聚在一个分支。A21B-2菌株与拟康宁木霉菌株聚在一个分支,A21E菌株与T. longifialidicum 聚在一个分支。结合形态学及分子鉴定结果,3个菌株分别鉴定为哈茨木霉、拟康宁木霉及T. longifialidicum

    表  1  木霉菌序列登录号及种名
    Table  1.  Sequence accession numbers and species of Trichoderma
    菌株
    Strains
    登录号
    Accession No.
    种名
    Species
    ITS rpb2
    A21B-1 ON209377 OR161371 T. harzianum
    A21B-2 ON209378 OR161372 T. konginggipsis
    A21E ON209384 OR161373 T. longifialidiucum
    下载: 导出CSV 
    | 显示表格
    图  2  基于序列ITS与rpb2多基因进化树分析
    标记T的菌株为模式菌,其余为参考菌株。
    Figure  2.  ITS and rpb2 sequence-based phylogenetic tree
    T: representative typical strains; remainders are reference strains.

    通过平板对峙试验,3个木霉菌株均对尖孢镰刀菌ASP01表现较强的生长抑制作用(图3 a~d),培养7 d时,对ASP01菌丝的抑制率分别为75.29%、73.55%和60.02%(表2),表明这3个木霉菌株均对尖孢镰刀菌具有较强的拮抗作用。

    图  3  不同木霉菌与尖孢镰刀菌菌株ASP01对峙培养
    a,e:尖孢镰刀菌ASP01;b,f:A21B-1与ASP01对峙培养;c,g:A21B-2与ASP01对峙培养;d,h:A21E与ASP01对峙培养;箭头所指为木霉菌菌丝侵入ASP01菌丝并导致尖孢镰刀菌孢子不能正常发育。
    Figure  3.  Confrontation cultures of Trichoderma strains and F. oxysporum f. sp. opponiarum ASP01
    a and e: F. oxysporum f. sp. opponiarum ASP01; b and f: confrontation culture of A21B-1 and ASP01; c and g: confrontation culture of A21B-2 and ASP01; d and h: confrontation culture of A21E and ASP01; arrow points to invasion of Trichoderma hyphae into ASP01 hyphae inhibiting normal development of ASP01 spores.
    表  2  不同木霉菌对尖孢镰刀菌株ASP01抑制效果
    Table  2.  Inhibition effects of Trichoderma strains on F. oxysporum f. sp. pponiarum ASP01
    处理
    Treatment
    病原真菌菌落直径
    Colony diameter of pathogens/cm
    抑制率
    Inhibition rates/%
    CK 5.41±0.08 a 0 c
    A21B-1 1.33±0.32 c 75.29±6.45 a
    A21B-2 1.43±0.40 c 73.55±7.38 a
    A21E 2.17±0.16 b 60.02±2.87 b
    数据为平均值±标准误,同列数据后不同小字母表示0.05水平上差异显著。下同。
    Data are presented as mean±SD; those with different lowercase letters on same column indicate significant difference at 0.05 level. Same for below.
    下载: 导出CSV 
    | 显示表格

    通过显微观察分析,可见3个木霉菌株均能侵入ASP01菌丝并导致菌丝萎缩(图3 f~h),并导致瓶梗不能正常发育,分生孢子数显著减少(图3 e~h)。

    通过于金线兰植株喷施木霉菌后接种ASP01,3个木霉菌均不同程度抑制金线兰茎腐病进程的发生,施用木霉菌并接种ASP01 7 d后,可见对照组叶片已有明显的发病症状,而接种3种不同木霉株的植株表现较强抗性,其抑制率分别达98.49%、93.42%和96.71%(表3)。接种后15 d,其防效有所下降,但A21B-1抑制率仍能达91.88%,而A21B-2与A21-E则下降至75.62%与66.41%。表明A21B-1具有较强的金线兰茎腐病抗性,可作为该病生物防治的候选菌株。

    表  3  木霉菌对茎腐病室内防效
    Table  3.  In vitro stem rot disease control by Trichoderma strains
    处理
    Treatment
    接种7 d后 7 d after inoculation 接种15 d 后 15 d after inoculation
    感病面积
    Infected areas/mm2
    抑制率
    Inhibition rates/%
    感病面积
    Infected areas/mm2
    抑制率
    Inhibition rates/%
    CK 354.0±90.7 0 c 995.31±55.58 0 d
    A21B-1 5.33±0.94 98.49±0.26 a 79.93±14.77 91.88±1.47 a
    A21B-2 23.3±5.73 93.42±1.62 b 242.14±38.53 75.62±3.78 b
    A21E 11.8±4.09 96.71±1.15 b 334.17±65.76 66.41±6.61 c
    下载: 导出CSV 
    | 显示表格

    施用不同木霉菌并种植6个月后,测定金线兰植株的生长量情况。结果(表4)可见,在促进生长方面,施用3个木霉菌A21B-1、A21B-2与A21E的金线兰均在单株重、株高、茎粗、叶面积及SPAD值方面较CK显著提高。其中单株重方面,施用3株木霉菌株分别较对照提高2.52%、58.68%与58.99%;株高分别提高25.93%、38.17%和28.92%;叶面积分别增加25.43%、66.82%与59.73%。综合以上结果,在3个木霉菌中,A21B-2与A21E具有较强的促进生长作用,可作为金线兰促进生长的候选菌株。

    表  4  木霉菌对金线兰促生效果
    Table  4.  A. roxburghii growth promoted by presence of Trichoderma strains
    处理
    Treatment
    株高
    Plant height/
    cm
    茎粗
    Stem diameter/
    mm
    叶数
    Number of
    leaves
    叶长
    Leaf Length/
    mm
    叶宽
    Leaf width/
    mm
    叶面积
    Leaf area/
    mm2
    叶厚
    Leaf thickness/
    mm
    根长
    Root length/
    cm
    根粗
    Root diameter/
    mm
    根数
    Root number
    SPAD 单株重
    Single plant
    weight/g
    CK 15.23±1.81 b 2.62±0.30 c 6.67±1.37 b 29.10±3.02 b 26.78±1.84 b 784.69±141.95 b 0.33±0.05 b 7.19±1.08 b 2.02±0.26 b 2.83±0.37 a 46.83±3.84 c 3.17±0.44 c
    A21B-1 19.15±3.26 a 3.05±0.40 b 7.67±1.37 ab 29.85±2.41 b 28.02±2.99 b 984.27±151.95 b 0.42±0.07 a 6.68±0.68 b 1.95±0.21 b 2.83±0.90 a 56.65±4.18 a 3.25±0.45 b
    A21B-2 21.02±2.05 a 3.08±0.19 b 8.33±0.47 a 39.55±3.08 a 32.95±2.41 a 1309.01±177.04 a 0.40±0.00 a 8.93±1.20 a 2.53±0.09 a 2.33±0.47 a 50.53±4.83 b 5.03±0.62 a
    A21E 19.65±2.00 a 3.65±0.29 a 6.00±2.45 b 38.10±0.73 a 32.85±1.67 a 1253.43±87.91 a 0.40±0.00 a 9.14±1.36 a 2.10±0.24 b 3.00±0.00 a 56.95±2.16 a 5.04±0.20 a
    下载: 导出CSV 
    | 显示表格

    在促进次生代谢物积累方面,3个木霉菌在提高干物质含量、多糖及金线苷含量方面均有较为显著的作用(表5),特别是A21B-2,其多糖及金线苷含量较对照分别提高89.62%与11.83%,在3个木霉菌中最好,可作为促进多糖及金线莲苷成分积累的候选菌株。但在黄酮含量方面,施用3个木霉菌均未能起显著提高的作用。

    表  5  木霉菌对金线兰促进次生代谢物积累效果
    Table  5.  Secondary metabolites accumulated in A. roxburghii promoted by presence of Trichoderma strains
    处理
    Treatment
    折干率
    Drying rate/%
    多糖含量
    Content of polysaccharide/(mg·g−1)
    黄酮含量
    Content of flavone/(mg·g−1
    金线莲苷含量
    Content of kinsenoside/(mg·g−1
    CK 11.25±0.71d 6.07±0.14 d 8.15±0.43 a 14.29±0.24 b
    A21B-1 12.88±0.73 cd 7.40±0.68 c 7.20±0.14 c 14.60±0.45 b
    A21B-2 13.91±0.59 b 11.51±0.35 a 7.43±0.24 bc 15.98±0.97 a
    A21E 14.58±0.01 a 8.05±0.99 b 7.76±0.78 ab 14.96±1.26 b
    下载: 导出CSV 
    | 显示表格

    木霉菌可应用于多种作物病害的防治,并具有促进生长与改善环境的作用[18, 2428]。金线兰易感茎腐病,其病原菌尖孢镰刀菌可在多种作物上造成严重的危害,是研究最广泛的病原菌之一[4, 29]。金线兰为地生兰类多年生植物,其生境分布呈现明显的碎片化[30],相对气生兰类,地生兰为应对更为复杂的环境其根际共生菌群也与其他类型兰科植物存在种类与功能的显著区别[31]。本试验将金线兰组培苗种植于野生生境中,并从植株中分离出3株对尖孢镰刀菌具有拮抗作用的木霉菌株,其中菌株A21B-1为哈茨木霉,哈茨木霉在农业生产应用较为广泛,具有重要的产业化开发价值[32, 33],在本试验中,A21B-1菌株在对峙培养试验中对金线兰茎腐病病原菌抑制率为3个木霉菌最高水平,此结果与路梅等[6]研究结果较为一致,此外,A21B-1菌株初步表现出产孢量较其他2个菌株更大的特点,具有良好的产业化开发潜力。菌株A21B-2鉴定为拟康宁木霉,此菌已从油菜[34]、药用植物黄精[35]及石斛[36]等多种植物中分离,具有抗多种细菌与真菌病害[3738]及促生长作用[39]。在本试验中,A21B-2亦是综合表现较为优良的菌株,可在有效抑制茎腐病的同时,促进次生代谢物的积累,亦具有良好的开发潜力。A21E菌株被鉴定为T. longifialidicum,在金线兰中表现较强的促生长作用,此菌株为新近发现的类群[40]

    金线兰的药用成分包含黄酮、多糖以及甾体、苷类等多种类型[22,4142],随着2022年金线兰福建省食品安全地方标准颁布,金线莲苷被列为主要的理化检测指标[43]。本试验中,3个木霉菌对金线兰单株重、株高、叶面积及SPAD值的增长均有显著的影响,吕亮雨等[14]在枸杞的应用中也得到类似的结果,其增产原因与木霉菌剂提高枸杞光合作用有关,在本试验中亦观察到金线兰叶面积及SPAD值提高的现象。在提高药用成分方面,3个木霉菌在干物质含量、多糖及金线苷含量方面均较对照有显著提高,但在黄酮含量上有所降低,这可能与不同次生代谢物受到不同信号激素的调控有关。目前,有关金线兰药用成分积累机制的相关研究仍较缺乏[4445],木霉菌与金线兰的互作研究的开展将为揭示金线兰药用成分积累规律提供新的研究角度。

    本试验结果表明,金线兰野生环境存在丰富的有益木霉菌类型等待发掘,不同木霉菌在提高抗性、促进生长以及提高次生代谢物积累方面均存在较大差异,对金线兰根际木霉菌的进一步研究具有重要的科学意义与现实意义。

  • 图  1   木霉菌形态特征

    a~d、e~h、i~l分别为木霉菌菌株A21B-1、A21B-2与A21E接种于PDA培养7 d后的菌落形态;a、e、i为正面;b、f、 j为背面;c、g、k为分生孢子梗与瓶梗形态,d、h、l为分生孢子形态。

    Figure  1.   Morphological characteristics of Trichoderma strains

    a–d, e–h, and i–l: colony morphology of A21B-1, A21B-2, and A21E, respectively, grown on PDA for 7 d; a, e, and i: front views; b, f, and j: back views; c, g, and k: conidia stem, bottle stem; d, h and l : morphology of conidia, respectively.

    图  2   基于序列ITS与rpb2多基因进化树分析

    标记T的菌株为模式菌,其余为参考菌株。

    Figure  2.   ITS and rpb2 sequence-based phylogenetic tree

    T: representative typical strains; remainders are reference strains.

    图  3   不同木霉菌与尖孢镰刀菌菌株ASP01对峙培养

    a,e:尖孢镰刀菌ASP01;b,f:A21B-1与ASP01对峙培养;c,g:A21B-2与ASP01对峙培养;d,h:A21E与ASP01对峙培养;箭头所指为木霉菌菌丝侵入ASP01菌丝并导致尖孢镰刀菌孢子不能正常发育。

    Figure  3.   Confrontation cultures of Trichoderma strains and F. oxysporum f. sp. opponiarum ASP01

    a and e: F. oxysporum f. sp. opponiarum ASP01; b and f: confrontation culture of A21B-1 and ASP01; c and g: confrontation culture of A21B-2 and ASP01; d and h: confrontation culture of A21E and ASP01; arrow points to invasion of Trichoderma hyphae into ASP01 hyphae inhibiting normal development of ASP01 spores.

    表  1   木霉菌序列登录号及种名

    Table  1   Sequence accession numbers and species of Trichoderma

    菌株
    Strains
    登录号
    Accession No.
    种名
    Species
    ITS rpb2
    A21B-1 ON209377 OR161371 T. harzianum
    A21B-2 ON209378 OR161372 T. konginggipsis
    A21E ON209384 OR161373 T. longifialidiucum
    下载: 导出CSV

    表  2   不同木霉菌对尖孢镰刀菌株ASP01抑制效果

    Table  2   Inhibition effects of Trichoderma strains on F. oxysporum f. sp. pponiarum ASP01

    处理
    Treatment
    病原真菌菌落直径
    Colony diameter of pathogens/cm
    抑制率
    Inhibition rates/%
    CK 5.41±0.08 a 0 c
    A21B-1 1.33±0.32 c 75.29±6.45 a
    A21B-2 1.43±0.40 c 73.55±7.38 a
    A21E 2.17±0.16 b 60.02±2.87 b
    数据为平均值±标准误,同列数据后不同小字母表示0.05水平上差异显著。下同。
    Data are presented as mean±SD; those with different lowercase letters on same column indicate significant difference at 0.05 level. Same for below.
    下载: 导出CSV

    表  3   木霉菌对茎腐病室内防效

    Table  3   In vitro stem rot disease control by Trichoderma strains

    处理
    Treatment
    接种7 d后 7 d after inoculation 接种15 d 后 15 d after inoculation
    感病面积
    Infected areas/mm2
    抑制率
    Inhibition rates/%
    感病面积
    Infected areas/mm2
    抑制率
    Inhibition rates/%
    CK 354.0±90.7 0 c 995.31±55.58 0 d
    A21B-1 5.33±0.94 98.49±0.26 a 79.93±14.77 91.88±1.47 a
    A21B-2 23.3±5.73 93.42±1.62 b 242.14±38.53 75.62±3.78 b
    A21E 11.8±4.09 96.71±1.15 b 334.17±65.76 66.41±6.61 c
    下载: 导出CSV

    表  4   木霉菌对金线兰促生效果

    Table  4   A. roxburghii growth promoted by presence of Trichoderma strains

    处理
    Treatment
    株高
    Plant height/
    cm
    茎粗
    Stem diameter/
    mm
    叶数
    Number of
    leaves
    叶长
    Leaf Length/
    mm
    叶宽
    Leaf width/
    mm
    叶面积
    Leaf area/
    mm2
    叶厚
    Leaf thickness/
    mm
    根长
    Root length/
    cm
    根粗
    Root diameter/
    mm
    根数
    Root number
    SPAD 单株重
    Single plant
    weight/g
    CK 15.23±1.81 b 2.62±0.30 c 6.67±1.37 b 29.10±3.02 b 26.78±1.84 b 784.69±141.95 b 0.33±0.05 b 7.19±1.08 b 2.02±0.26 b 2.83±0.37 a 46.83±3.84 c 3.17±0.44 c
    A21B-1 19.15±3.26 a 3.05±0.40 b 7.67±1.37 ab 29.85±2.41 b 28.02±2.99 b 984.27±151.95 b 0.42±0.07 a 6.68±0.68 b 1.95±0.21 b 2.83±0.90 a 56.65±4.18 a 3.25±0.45 b
    A21B-2 21.02±2.05 a 3.08±0.19 b 8.33±0.47 a 39.55±3.08 a 32.95±2.41 a 1309.01±177.04 a 0.40±0.00 a 8.93±1.20 a 2.53±0.09 a 2.33±0.47 a 50.53±4.83 b 5.03±0.62 a
    A21E 19.65±2.00 a 3.65±0.29 a 6.00±2.45 b 38.10±0.73 a 32.85±1.67 a 1253.43±87.91 a 0.40±0.00 a 9.14±1.36 a 2.10±0.24 b 3.00±0.00 a 56.95±2.16 a 5.04±0.20 a
    下载: 导出CSV

    表  5   木霉菌对金线兰促进次生代谢物积累效果

    Table  5   Secondary metabolites accumulated in A. roxburghii promoted by presence of Trichoderma strains

    处理
    Treatment
    折干率
    Drying rate/%
    多糖含量
    Content of polysaccharide/(mg·g−1)
    黄酮含量
    Content of flavone/(mg·g−1
    金线莲苷含量
    Content of kinsenoside/(mg·g−1
    CK 11.25±0.71d 6.07±0.14 d 8.15±0.43 a 14.29±0.24 b
    A21B-1 12.88±0.73 cd 7.40±0.68 c 7.20±0.14 c 14.60±0.45 b
    A21B-2 13.91±0.59 b 11.51±0.35 a 7.43±0.24 bc 15.98±0.97 a
    A21E 14.58±0.01 a 8.05±0.99 b 7.76±0.78 ab 14.96±1.26 b
    下载: 导出CSV
  • [1] 郑纯, 黄以钟, 季莲芳. 金钱莲文献考证、原植物及商品调查 [J]. 中草药, 1996, 27(3):169−172.

    ZHENG C, HUANG Y Z, JI L F. Pharmacognostic studies on Jinxianlian Ⅰ. bencaologic review, resource survey and taxonomic identification [J]. Chinese Traditional and Herbal Drugs, 1996, 27(3): 169−172. (in Chinese)

    [2]

    QIU Y, SONG W B, YANG Y, et al. Isolation, structural and bioactivities of polysaccharides from Anoectochilus roxburghii (Wall.) Lindl. : A review [J]. International Journal of Biological Macromolecules, 2023, 236: 123883. DOI: 10.1016/j.ijbiomac.2023.123883

    [3]

    DU X, SUN N, TAMURA T, et al. Higher yielding isolation of kinsenoside in Anoectochilus and its antihyperliposis effect [J]. Biological & Pharmaceutical Bulletin, 2001, 24(1): 65−69.

    [4] 叶炜, 颜沛沛, 王培育, 等. 金线兰茎腐病的病原菌鉴定与防治药剂的筛选 [J]. 亚热带农业研究, 2023, 19(1):1−9.

    YE W, YAN P P, WANG P Y, et al. Pathogen identification of Anoectochium roxborghil stem rot and screening of fungicides [J]. Subtropical Agriculture Research, 2023, 19(1): 1−9. (in Chinese)

    [5] 邵清松, 刘洪波, 赵晓芳, 等. 金线莲茎腐病菌的生物学特性及5种杀菌剂对其抑制作用 [J]. 中国中药杂志, 2014, 39(8):1386−1390.

    SHAO Q S, LIU H B, ZHAO X F, et al. Biological characteristics of Fusarium oxysporum and inhibitory effects of five fungicides [J]. China Journal of Chinese Materia Medica, 2014, 39(8): 1386−1390. (in Chinese)

    [6] 路梅, 刘建峰, 郑熊飞, 等. 金线莲茎腐病致病菌的分离及其拮抗菌的筛选 [J]. 浙江农业科学, 2022, 63(10):2354−2358.

    LU M, LIU J F, ZHENG X F, et al. Isolation of pathogenic bacteria from stem rot of Anoectochilus roxburghii and screening of antagonistic bacteria [J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(10): 2354−2358. (in Chinese)

    [7] 赵云青, 陈菁瑛, 林晓军, 等. 金线莲茎腐病病原菌分离及分子鉴定 [J]. 福建农业学报, 2014, 29(10):995−999. DOI: 10.3969/j.issn.1008-0384.2014.10.012

    ZHAO Y Q, CHEN J Y, LIN X J, et al. Molecular identification for southern blight pathogen of anoectoch ilusroxburghii(Wall. )Lindl [J]. Fujian Journal of Agricultural Sciences, 2014, 29(10): 995−999. (in Chinese) DOI: 10.3969/j.issn.1008-0384.2014.10.012

    [8] 林文珍, 郭迟鸣, 郭莺, 等. 1株海洋草酸青霉HY181-2的分离鉴定及其对金线莲茎腐病病原菌的生防能力 [J]. 西南农业学报, 2021, 34(8):1649−1656.

    LIN W Z, GUO C M, GUO Y, et al. Isolation and identification of marine Penicillium oxalicum HY181-2 and its biocontrol ability against pathogen of Anoectochilus stem rot [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(8): 1649−1656. (in Chinese)

    [9]

    WOO S L, HERMOSA R, LORITO M, et al. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture [J]. Nature Reviews Microbiology, 2023, 21(5): 312−326. DOI: 10.1038/s41579-022-00819-5

    [10]

    SOOD M, KAPOOR D, KUMAR V, et al. Trichoderma: The “secrets” of a multitalented biocontrol agent [J]. Plants, 2020, 9(6): 762. DOI: 10.3390/plants9060762

    [11]

    ZHANG J L, TANG W L, HUANG Q R, et al. Trichoderma: A treasure house of structurally diverse secondary metabolites with medicinal importance [J]. Frontiers in Microbiology, 2021, 12: 723828. DOI: 10.3389/fmicb.2021.723828

    [12] 胡卫丛, 黄忠阳, 张宗俊, 等. 化肥减施条件下木霉菌生物有机肥对水果黄瓜生长及品质的影响 [J]. 长江蔬菜, 2023(4):63−66. DOI: 10.3865/j.issn.1001-3547.2023.04.017

    HU W C, HUANG Z Y, ZHANG Z J, et al. Effects of Trichoderma bio-organic fertilizer on growth and quality of fruit cucumber under reduced fertilizer application [J]. Journal of Changjiang Vegetables, 2023(4): 63−66. (in Chinese) DOI: 10.3865/j.issn.1001-3547.2023.04.017

    [13] 董琼娥, 杨顺安, 罗聪, 等. 微生物菌剂对切花玫瑰白粉病的防效及产质量的影响 [J]. 贵州农业科学, 2022, 50(10):54−59. DOI: 10.3969/j.issn.1001-3601.2022.10.009

    DONG Q E, YANG S A, LUO C, et al. Control effect of microbial agent on powdery mildew and yield and quality of cut rose [J]. Guizhou Agricultural Sciences, 2022, 50(10): 54−59. (in Chinese) DOI: 10.3969/j.issn.1001-3601.2022.10.009

    [14] 吕亮雨, 段国珍, 苏彩风, 等. 木霉菌微生物菌剂对枸杞生长及土壤性状的影响 [J]. 沈阳农业大学学报, 2022, 53(4):476−482. DOI: 10.3969/j.issn.1000-1700.2022.04.011

    LÜ L Y, DUAN G Z, SU C F, et al. Effects of microbial agents on growth and soil properties of Lycium barbarum L [J]. Journal of Shenyang Agricultural University, 2022, 53(4): 476−482. (in Chinese) DOI: 10.3969/j.issn.1000-1700.2022.04.011

    [15] 罗庆国, 叶炜, 江金兰, 等. 金线莲组培快繁技术研究 [J]. 南方农业(园林花卉版), 2011, 5(5):43−44.

    LUO Q G, YE W, JIANG J L, et al. Study on tissue culture and rapid propagation of Anoectochilus roxburghii [J]. South China Agriculture, 2011, 5(5): 43−44. (in Chinese)

    [16]

    WHITE T J, BRUNS T, LEE S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]//PCR Protocols. Amsterdam: Elsevier, 1990: 315-322.

    [17]

    CHAVERRI P, CASTLEBURY L A, OVERTON B E, et al. Hypocrea/Trichoderma: species with conidiophore elongations and green conidia [J]. Mycologia, 2003, 95(6): 1100−1140. DOI: 10.1080/15572536.2004.11833023

    [18] 祁智慧, 庄媛, 张海洋, 等. 粮食上木霉菌的分离鉴定及其生防效果 [J]. 微生物学通报, 2023, 50(7):2860−2875.

    QI Z H, ZHUANG Y, ZHANG H Y, et al. Isolation, identification, and biocontrol efficacy determination of Trichoderma spp. on grains [J]. Microbiology China, 2023, 50(7): 2860−2875. (in Chinese)

    [19] 张静雅, 李欣雨, 张成, 等. 木薯炭疽病拮抗木霉菌筛选与室内防效研究 [J]. 中国生物防治学报, 2022, 38(1):115−124.

    ZHANG J Y, LI X Y, ZHANG C, et al. Screening of antagonistic Trichoderma against cassava anthracnose and investigation on its control effect in laboratory [J]. Chinese Journal of Biological Control, 2022, 38(1): 115−124. (in Chinese)

    [20] 甘林, 代玉立, 杨秀娟, 等. 木霉菌对番茄灰霉病菌的抑制作用 [J]. 福建农业学报, 2016, 31(11):1221−1225.

    GAN L, DAI Y L, YANG X J, et al. Antagonistic Effect of Trichoderma spp. Strains on Botrytis cinerea [J]. Fujian Journal of Agricultural Sciences, 2016, 31(11): 1221−1225. (in Chinese)

    [21] 姚晨虓, 李小杰, 刘畅, 等. 3株拮抗烟草尖孢镰刀菌的木霉菌筛选鉴定及促生防病效果评价 [J]. 中国烟草学报, 2022, 28(4):96−105.

    YAO C X, LI X J, LIU C, et al. Screening and identification of three strains of Trichoderma spp. antagonizing Fusarium oxysporum and evaluation of their effects on promoting growth and disease control [J]. Acta Tabacaria Sinica, 2022, 28(4): 96−105. (in Chinese)

    [22] 曹奕鸯, 李永清, 江金兰, 等. 不同种源金线兰及近缘种多糖和总黄酮含量的研究 [J]. 福建农业学报, 2016, 31(6):604−610.

    CAO Y Y, LI Y Q, JIANG J L, et al. Polysaccharide and flavonoid contents in Anoectochilus roxburghii and related species [J]. Fujian Journal of Agricultural Sciences, 2016, 31(6): 604−610. (in Chinese)

    [23] 陈莹, 王文义, 谌赛男, 等. 不同品系及生长期金线莲的金线莲苷含量变化研究 [J]. 中国现代中药, 2021, 23(8):1423−1429.

    CHEN Y, WANG W Y, CHEN S N, et al. Changes in kinsenoside content of different strains of Anoectochilus roxburghii at different growth periods [J]. Modern Chinese Medicine, 2021, 23(8): 1423−1429. (in Chinese)

    [24]

    ADEDAYO A A, BABALOLA O O. Fungi that promote plant growth in the rhizosphere boost crop growth [J]. Journal of Fungi, 2023, 9(2): 239. DOI: 10.3390/jof9020239

    [25]

    DUTTA P, MAHANTA M, SINGH S B, et al. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens [J]. Frontiers in Plant Science, 2023, 14: 1145715. DOI: 10.3389/fpls.2023.1145715

    [26]

    YAO X, GUO H L, ZHANG K X, et al. Trichoderma and its role in biological control of plant fungal and nematode disease [J]. Frontiers in Microbiology, 2023, 14: 1160551. DOI: 10.3389/fmicb.2023.1160551

    [27] 黄靖, 陈婵. 接种促生菌对金线莲生物活性成分及土壤细菌群落的影响 [J]. 江苏农业科学, 2022, 50(23):184−191.

    HUANG J, CHEN C. Influences of inoculation of growth-promoting bacteria on bioactive constituents and soil bacterial communities of Anoectochilus roxburghii [J]. Jiangsu Agricultural Sciences, 2022, 50(23): 184−191. (in Chinese)

    [28]

    VICENTE C S L, SOARES M, FARIA J M S, et al. Insights into the role of fungi in pine wilt disease [J]. Journal of Fungi, 2021, 7(9): 780. DOI: 10.3390/jof7090780

    [29] 张祥丽, 曹瑱艳, 杨怡华, 等. 铁皮石斛镰刀菌根腐病病原菌的鉴定及其对链霉菌发酵液的敏感性分析 [J]. 中国生物防治学报, 2022, 38(1):258−266.

    ZHANG X L, CAO T Y, YANG Y H, et al. Identification of the pathogen causing root rot of Dendrobium officinale and sensitivity to the fermentation broth of Streptomyces [J]. Chinese Journal of Biological Control, 2022, 38(1): 258−266. (in Chinese)

    [30] 叶炜, 江金兰, 李永清, 等. 金线兰及近缘种植物遗传多样性ISSR分子标记分析 [J]. 植物遗传资源学报, 2015, 16(5):1045−1054.

    YE W, JIANG J L, LI Y Q, et al. Analysis of genetic diversity in Anoectochilus roxburghii and it’s relative species using ISSR molecular markers [J]. Journal of Plant Genetic Resources, 2015, 16(5): 1045−1054. (in Chinese)

    [31] 赵泽宇. 地生兰与附生兰菌根真菌的差异比较研究[D]. 北京: 北京协和医学院, 2021.

    ZHAO Z Y. Comparative study on the difference of mycorrhizal fungil between terrestrial and epiphytic orchids[D]. Beijing: Peking Union Medical College, 2021.

    [32] 李婷, 王洪旭, 崔广禄, 等. 哈茨木霉在植物应用上的研究进展 [J]. 中国农学通报, 2023, 39(21):57−61. DOI: 10.11924/j.issn.1000-6850.casb2022-0652

    LI T, WANG H X, CUI G L, et al. Application of Trichoderma harzianum in plant: Research progress [J]. Chinese Agricultural Science Bulletin, 2023, 39(21): 57−61. (in Chinese) DOI: 10.11924/j.issn.1000-6850.casb2022-0652

    [33]

    XIAO Z Y, ZHAO Q Q, LI W, et al. Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects [J]. Frontiers in Microbiology, 2023, 14: 1146210. DOI: 10.3389/fmicb.2023.1146210

    [34] 尤佳琪, 杜然, 顾卫红, 等. 拟康宁木霉T-51菌株生物学特性及其生物防治潜力 [J]. 植物保护学报, 2022, 49(3):946−955.

    YOU J Q, DU R, GU W H, et al. Biological characteristics and biological control potential of endophytic fungus Trichoderma koningiopsis strain T-51 [J]. Journal of Plant Protection, 2022, 49(3): 946−955.

    [35]

    HUANG L P, WEI M S, LI L Q, et al. Polyketides with Anti-Inflammatory Activity from Trichoderma koningiopsis, a Rhizosphere Fungus from the Medicinal Plant Polygonum paleaceum [J]. Journal of Natural Products, 2023, 86(7): 1643−1653. DOI: 10.1021/acs.jnatprod.2c00842

    [36] 董章勇, 罗梅, 陈越, 等. 一株具有生防及诱导抗病作用的拟康宁木霉Tk905菌株及其应用: CN113862160A[P]. 2021-12-31.
    [37] 罗梅, 罗玉霖, 陈沫冰, 等. 拟康宁木霉Tk1的分离鉴定、拮抗作用及其生物学特性 [J]. 中国生物防治学报, 2020, 36(4):581−586.

    LUO M, LUO Y L, CHEN M B, et al. Isolation and identification Trichoderma koningiopsis Tk1, and its antagonistic effect and biological characteristics [J]. Chinese Journal of Biological Control, 2020, 36(4): 581−586. (in Chinese)

    [38] 涂晶晶, 于存. 拟康宁木霉Hailin菌株对马尾松幼苗的促生和防病作用 [J]. 中国植保导刊, 2020, 40(2):9−16,21. DOI: 10.3969/j.issn.1672-6820.2020.02.002

    TU J J, YU C. Effect of Trichoderma koningiopsis on the growth promotion and disease control of Pinus massoniana seedlings [J]. China Plant Protection, 2020, 40(2): 9−16,21. (in Chinese) DOI: 10.3969/j.issn.1672-6820.2020.02.002

    [39] 李海云, 宋晓妍, 张秀省, 等. 拟康宁木霉SMF2防治大白菜软腐病机理研究 [J]. 园艺学报, 2012, 39(7):1373−1379.

    LI H Y, SONG X Y, ZHANG X S, et al. Research on mechanism of Trichoderma pseudokoningii SMF2 controlling soft rot of Chinese cabbage [J]. Acta Horticulturae Sinica, 2012, 39(7): 1373−1379. (in Chinese)

    [40]

    MONTOYA Q V, MEIRELLES L A, CHAVERRI P, et al. Unraveling Trichoderma species in the attine ant environment: Description of three new taxa [J]. Antonie Van Leeuwenhoek, 2016, 109(5): 633−651. DOI: 10.1007/s10482-016-0666-9

    [41] 关璟, 王春兰, 郭顺星. 福建产金线莲中黄酮苷成分的研究 [J]. 中草药, 2005, 36(10):1615−1617.

    GUAN J, WANG C L, GUO S X. Isolation and structural elucidation of flavonoids from Ancecotochilus roxburghii [J]. Chinese Traditional and Herbal Drugs, 2005, 36(10): 1615−1617. (in Chinese)

    [42] 何春年, 王春兰, 郭顺星, 等. 兰科开唇兰属植物的化学成分和药理活性研究进展 [J]. 中国药学杂志, 2004, 39(2):81−84.

    HE C N, WANG C L, GUO S X, et al. Advances in chemistry and pharmacology on plants Orchidaceae Anoectochilus [J]. Chinese Pharmaceutical Journal, 2004, 39(2): 81−84. (in Chinese)

    [43] 福建省卫生健康委员会. 福建省食品安全地方标准金线莲: DBS35/ 006—2022 [S]. 福建省卫生健康委员会, 2022.
    [44]

    QI C X, ZHOU Q, YUAN Z, et al. Kinsenoside: A promising bioactive compound from Anoectochilus species [J]. Current Medical Science, 2018, 38(1): 11−18. DOI: 10.1007/s11596-018-1841-1

    [45]

    YE S Y, SHAO Q S, ZHANG A L. Anoectochilus roxburghii: A review of its phytochemistry, pharmacology, and clinical applications [J]. Journal of Ethnopharmacology, 2017, 209: 184−202. DOI: 10.1016/j.jep.2017.07.032

图(3)  /  表(5)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  40
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-27
  • 修回日期:  2024-05-28
  • 网络出版日期:  2024-11-10
  • 刊出日期:  2024-11-27

目录

/

返回文章
返回